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• “the global system of interconnected computer systems using
the Internet protocol suite.” (Wikipedia)

• computers address each other via an IP address
• domain names abstract over IP addresses via the Internet’s
addressbook, the Domain Name System (DNS)
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Accessing Services Securely via Transport Layer Security (TLS)

• every equipment on the path could tamper with the packets

• encryption protects against reading contents
• authentication protects against changes of contents and
impersonation
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lots of routers routers everywhere
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Provider

  IP of signal.org? 
  52.222.141.4 

  Initiate TLS session: "signal.org", key  

  Response: signal.org's certificate (encrypted), key  

• key exchange protocol: compute (ga)b = (gb)a = gab and derive
a session key from that for subsequent data.
This is secure by a Diffie-Hellman cryptographic assumption.

• The server proves affiliation to a domain by a certificate that has
been signed by a certificate authority

• The server will know that all successfully decrypted data is from
the same client that started the connection.
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The Server Name Indication has been Plain Text …

… and thus TLS is useless to hide the destination of traffic.

https://www.bleepingcomputer.com/news/security/

south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
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Hide the Payload of Server Name Indication

Since 2018, experiments have been conducted to encrypt the Server
Name Indication
https://blog.cloudflare.com/esni/
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China Blocking ALL Traffic Using Encrypted SNI

https:

//www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/
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Public-Key Encryption

Sender Receiver

• the mathematical structure makes it slow;
huge overhead for each message

• “easy” key distribution (identity stays complicated)

visualizations of this style are adapted from a joint talk with Doreen Riepel and Eduard Hauck
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Symmetric Encryption or: Data Encapsulation Mechanism

Sender Receiver

• We assume that both parties know a secret key k
• mostly operations on bits: fast
• quasi arbitrary amounts of data without overhead
(by using a secure operation mode)

• Examples: AES-256-GCM, ChaCha20Poly1305
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Hybrid Can Mean Many Things …

• Usually: combine the best of different systems.

• Here: the combination of asymmetric and symmetric
cryptographic systems.

• Idea: Encrypt a fresh symmetric key to a public key,
and use it for subsequent symmetric encryption of the payload.
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Key Encapsulation Mechanism

Sender Receiver

Similar to Public-Key Encryption, but the payload is always a
uniformly random key.
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Hybrid Encryption: Use the best from both worlds

• asymmetric primitive to encrypt a symmetric key
Key Encapsulation Mechanism (KEM)

• symmetric primitive to encrypt the actual data
Data Encapsulation Mechanism (DEM)

HPKE roughly is computing the following

k, enc← encap(pkR)
c← sym-enc(k,m)

and sending enc, c to the recipient. The recipient uses

k← decap(skR, enc)
m← sym-dec(k, c)

to retrieve the message.
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Why a new Standard for an old technique?

Hybrid Encryption is an old idea. Why a new standard?

• modern crypto

• provable security
• test vectors
• freely implementable (no patents or paywalls)
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Cryptographic Security Properties of HPKE

“The message shall remain private”

• more specific: an adverary shall not be able to distinguish a
ciphertext of a plaintext m1 and from one of a plaintext m2
(plaintexts of the same length)

• even if we encrypt and decrypt messages under the same key
for the adversary
(except the challenge ciphertext)

• We call this Chosen-Ciphertext Indistinguishability or IND-CCA2
• this covers confidentiality and integrity
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The CryptoVerif Automatic Protocol Prover

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
(the applied π-calculus)

• built-in proof strategy
• supports secrecy, correspondence, and equivalence properties
• if the proof concludes, we have asymptotic security
• computes exact security probability bound

depending on number of queries, runtime of adversary, length of inputs
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Verified Implementations

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, Santiago

Zanella-Béguelin: HACLxN: Verified Generic SIMD Crypto (for all your favorite platforms) https://ia.cr/2020/572
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Verified Implementations and Cryptographic Proofs
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Link between Implementations and Cryptographic Proofs

17



Conclusion
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Provider

  IP and ECH pk of signal.org? 
  52.222.141.4,  

  Initiate TLS session: enc("signal.org", ), key  

  Response: signal.org's certificate (encrypted), key  

• The new Hybrid Public Key Encryption standard:
tools.ietf.org/html/draft-irtf-cfrg-hpke-07 by
Richard L. Barnes, Karthik Bhargavan, Benjamin Lipp, Christopher A.
Wood

• The under-submission paper analysing cryptographic security:
Analysing the HPKE Standard, ia.cr/2020/1499 by Joël Alwen,
Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, Doreen Riepel
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