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Motivation

• Financial institutions are becoming more and more connected to each
other.

• The size and diversity of the financial system are also becoming larger and
larger.

• This leads to a significant systemic risk.

• Financial default contagion: The bankruptcies of some institutions bring
loss to its neighbors, might leading new insolvency and propagating
through the network.

• Even a small part of institutions’ defaults can trigger a large default
cascade.
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Main Issues

• In many cases, the size of financial network is large.

• heterogeneity (diversity) is high in the financial network.
• Partial informations available:

• we do not know the structure of linkages in the network;
• we know partial characteristics of the institutions: the total assets and

liabilities, the total number of out-links and in-links...

Our concerns: Using limit theorems to

• Analyse the network structure at the end of the contagion

• Quantify the systemic risk of the network

• Try to minimize the systemic risk
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Overview
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Financial Network

• Interbank liability: For two financial institutions i , j ∈ [n], `ij ≥ 0 denotes
the cash-amount that bank i owes bank j .

• A link from i to j means that there is interbank liability from i to j , i.e.
`ij > 0.
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Financial Network

The capital structure of institution i in the network:

• Assets: Interbank asset ai =
∑

j∈[n] `ji , external assets ei , cash hi .

• Liabilities: Interbank liability `i =
∑

j∈[n] `ij .

• Shock scenario: a fraction of loss εi in external assets.

Capital before shock: ci (ε) = ei + ai + hi − `i .

Capital after shock: ci (ε) = (1− εi )ei + ai + hi − `i .

6 / 26



Model Limit theorems Quantifying Systemic Risk Targeting Interventions in Financial Networks

Default cascade

Shock scenario ε = (ε1, . . . , εn) ∈ [0, 1]n for size n network, the set of
fundamental defaults:

D0(ε) = {i ∈ [n] : ci (εi ) < 0}.

Liability recovery rates matrix R = Rij , satisfying:

hi + (1− εi )ei +
n∑

j=1

Rji`ji ≥
n∑

j=1

Rij`ij .

Default cascade: evolution of the defaulted set at k step

Dk = Dk(ε,R) =
{
i ∈ [n] : ci (εi ) <

∑
j∈Dk−1

(1− Rji )`ji
}
.

Dk ↗, can not be larger than [n]. There is a final set of defaulted institutions
D?.
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Configuration Model

It is natural to model financial network as a random graph, where all
institutions are nodes and they connect to others uniformly at random through
directed edges.

• In-degree sequence d+
n = (d+

1 , . . . , d
+
n ) and out-degree sequence

d−n = (d−1 , . . . , d
−
n ).

• ∑
i∈[n] d

+
i =

∑
i∈[n] d

−
i .

In the above figure, (d+
1 , d

−
1 ) = (3, 3), (d+

2 , d
−
2 ) = (3, 2).
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• A configuration is a matching of all out half-edges with all in half-edges.

• The configuration model is the random directed multigraph which is
uniformly distributed across all possible configurations.

The above figure is a configuration between four nodes with degree
(d+

1 , d
−
1 ) = (2, 3), (d+

2 , d
−
2 ) = (3, 1), (d+

3 , d
−
3 ) = (2, 2), (d+

4 , d
−
4 ) = (2, 3).
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Default threshold: For a node i , the default threshold is the maximum number
of defaulted neighbours that i can tolerate before becoming defaulted, provided
that its counterparties default in an order that is uniformly at random.

• Similar to Amini, Cont, Minca 2016, the information regarding assets,
liabilities, capital after exogenous shocks and recovery rates (distributions)
could all be encoded in a single probability threshold function.

• Each node i has a random threshold Θ(n)(i) with certain distribution.

• to reduce the dimensionality, consider a classification of financial
institutions into a countable (finite or infinite) set of characteristics X .

• For each x ∈ X , it contains all observable informations for the financial
institutions:

x = (d+
x , d

−
x , ex , hx , . . .).

• any institutions belongs to one charateristics,

x
(n)
i = (d+

i , d
−
i , ei , hi , . . .) ∈ X .
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Finding the final solvent institutions

We call a link coming from a defaulted node as infected link. Using the default
threshold, the default set Dk can be identified by

Dk =
{
i ∈ [n] :

∑
j :j→i

11{j ∈ Dk−1} ≥ Θi

}
,

The dynamics of contagion:

• We reveal the infected links one by one.

• We can set the duration between two successive reveals as we want.
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Death process of balls and bins

Regard all nodes as bins and all half-edges as balls. We have the following
types:

• Bins: D (defaulted), S (solvent).

• Balls: H+ (healthy in), H− (healthy out), I+ (infected in), I− (infected
out).

Balls’ death and colouring:

• Initially, all I− balls white, all H+ ∪ I+ (in) balls alive, and randomly
recolor a white ball red.

• From time 0 on, in balls start to die randomly.

• If there are ` in balls remaining, next random death for an in ball is after a
exponential time with mean 1/`;

• we recolor a white ball red randomly at the same moment when an in ball
dies.
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Death process of balls and bins

• Denote by Wn(t) the number of white balls at time t.

• The contagion stops when all infected links are revealed, denote the
stopping time by τ?n .

• Infected links −→ White balls Institutions −→ Bins
Reveal an infected link −→ An in ball’s death + Coloring a white ball

• Let S
(n)
x,θ,`(t) be the number of solvent institutions (bins) with type x ,

threshold θ and ` defaulted neighbors at time t.

• Let Sn(t) and Dn(t) be the number of solvent (defaulted) institutions et
time t respectively,

Sn(t) =
∑
x∈X

d+x∑
θ=1

θ−1∑
`=0

S
(n)
x,θ,`(t).
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LLN of the default contagion

Assumptions

• The institutions in the same characteristic class have the same threshold
distribution function independently. Namely, for all x ∈ X ,
θ = 0, 1, . . . , d+

x :

P(Θ(n)
x = θ) = q(n)

x (θ).

• For some probability distribution functions µ and qx over the set of
characteristics X and independent of n, we have µ

(n)
x → µx and

q
(n)
x (θ)→ qx(θ) as n→∞, for all x ∈ X and θ = 0, 1, . . . , d+

x .

• As n→∞, the average degree converges:

λ(n) :=
∑
x∈X

d+
x µ

(n)
x =

∑
x∈X

d−x µ
(n)
x −→ λ :=

∑
x∈X

d+
x µx ∈ (0,∞).
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LLN of the default contagion

Theorem 1
Let τn ≤ τ?n be a stopping time such that τn

p−→ t0 for some t0 > 0. Then for
all (x , θ, `), we have (as n→∞)

sup
t≤τn

∣∣S (n)
x,θ,`(t)

n
− µxqx(θ)b

(
d+
x , 1− e−t , `

)∣∣ p−→ 0,

sup
t≤τn

∣∣Sn(t)

n
− fS(e−t)

∣∣ p−→ 0, sup
t≤τn

∣∣Dn(t)

n
− fD(e−t)

∣∣ p−→ 0,

sup
t≤τn

∣∣Wn(t)

n
− fW (e−t)

∣∣ p−→ 0.
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The limit function of Sn(t)/n, Dn(t)/n and Wn(t)/n are given by:

fS(e−t) :=
∑
x∈X

µx

d+x∑
θ=1

qx(θ)β
(
d+
x , e

−t , d+
x − θ + 1

)
, fD(e−t) = 1− fS(e−t),

fW (e−t) :=λe−t −
∑
x∈X

µxd
−
x

d+x∑
θ=1

qx(θ)β
(
d+
x , e

−t , d+
x − θ + 1

)
.

where

b(d , z , `) :=P(Bin(d , z) = `) =

(
d

`

)
z`(1− z)d−`,

β(d , z , `) :=P(Bin(d , z) ≥ `) =
d∑

r=`

(
d

r

)
z r (1− z)d−r ,

and Bin(d , z) denotes the binomial distribution with parameters d and z .
In fact, we obtained LLN for all quantities regarding the network structure,
even for the numbers of balls of four different types H+, H−, I+, I−.
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Stopping time

Define further,

z? := sup
{
z ∈ [0, 1] : fW (z) = 0

}
.

Since the white ball process Wn(t) control the stopping time of the contagion
dynamics and fW (e−t) is the limit function of Wn(t)/n, z? should be the limit
of e−τ

?
n .

In fact, we show that (as n→∞):

(i) If z? = 0 then τ?n
p−→∞.

(ii) If z? ∈ (0, 1] and z? is a stable solution, i.e. f ′W (z?) > 0, then

τ?n
p−→ − ln z?.
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LLN of the final structure

Theorem 2
The final fraction of defaulted institutions satisfies:

(i) If z? = 0 then asymptotically almost all institutions default during the
cascade and

Dn(τ?n ) = n − op(n).

(ii) If z? ∈ (0, 1] and f ′W (z?) > 0, then

Dn(τ?n )

n

p−→ fD(z?).

Further,

S
(n)
x,θ,`(τ

?
n )

n

p−→ µxqx(θ)b
(
d+
x , 1− z?, `

)
.
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Quantifying Systemic Risk

Use some aggregation functions to measure the systemic risk:

• Number of solvent banks: Γ#
n (t) := Sn(t) = n − Dn(t).

• External wealth: Let Γ̄�n denotes the total external wealth to society if
there is no default in the financial system.

Γ�n (t) := Γ̄�n −
∑
x∈X

L̄�x D
(n)
x (t),

where we assume a bounded constant type-dependent societal loss L̄�x
over each defaulted institution.
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• System-wide wealth : Let Γ̄♦
n denotes the total wealth in the financial

system if there is no default in the system. We define the system-wide
aggregation function as

Γ♦
n (t) := Γ̄♦

n −
∑
x∈X

L̄�x D
(n)
x (t)−

∑
x∈X

L̄♦
x

d+x∑
θ=1

θ−1∑
`=1

`S
(n)
x,θ,`(t),

where we assume a bounded fixed (host institutions’ type-dependent) cost
L̄♦
x over each defaulted links. Assume that Γ̄♦

n /n→ Γ̄♦ when the size of
network n→∞.
The corresponding limit function should be:

f♦(z) := Γ̄♦ −
∑
x∈X

L̄�x fDx (z)−
∑
x∈X

L̄♦
x

d+x∑
θ=1

θ−1∑
`=1

`sx,θ,`(z),

where fDx (z) := µx

(
1−

∑d+x
θ=1 qx(θ)β(d+

x , e
−t , d+

x − θ + 1)
)
.
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Theorem 6 (LLN for systemic risk)

Let Assumptions before hold and τn ≤ τ?n be a stopping time such that
τn

p−→ t0 for some t0 > 0. Then, as n→∞,

sup
t≤τn

∣∣Γ♦
n (t)

n
− f♦(e−t)

∣∣ p−→ 0.

Further, the final (system-wide) aggregation functions satisfy:

(i) If z? = 0 then asymptotically almost all institutions default during the
cascade and

Γ♦
n (τ?n )

n

p−→ Γ̄♦ −
∑
x∈X

µx L̄
�
x .

(ii) If z? ∈ (0, 1] and z? is a stable solution, i.e. f ′W (z?) > 0, then

Γ♦
n (τ?n )

n

p−→ f♦(z?).
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Intervention Mechanism

Consider a planner (lender of last resort or government) who seeks to minimize
the systemic risk at the beginning of the financial contagion, after an
exogenous macroeconomic shock ε, subject to a budget constraint.

• The planner only has information regarding the type of each institution
and, consequently, the institutions’ threshold distributions.

• The planner’ decision is only based on the type of each institution.

• Intervene an infected link means save an infected link (or remove this link
from the financial network).

• These interventions will be type-dependent and at random over all
defaulted links leading to the same type institutions.

• Denote by α
(n)
x the planner intervention decision on the fraction of the

saved links leading to any institution of type x ∈ X .

• The cost to save an infected link of type x is Cx .
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Let us define

f
(α)
W (z) := λz −

∑
x∈X

µxd
−
x

d+x∑
θ=1

qx(θ)β
(
d+
x , αx + (1− αx)z , d+

x − θ + 1
)
,

and,

z?α := sup
{
z ∈ [0, 1] : f

(α)
W (z) = 0

}
.

• Intuitively, in the intervened network, we have a different probability that a
link is infected compared with the original network. Namely, in the original
network, the links that come from a defaulted institution is infected with
probability 1, while in the intervened one, the probability is (1− α(n)

x ).

• Save an infected link means that we let an in ball which should have died
remain alive.

• each in ball has a probability α
(n)
x + (1− α(n)

x )e−t to stay alive before time
t.

23 / 26



Model Limit theorems Quantifying Systemic Risk Targeting Interventions in Financial Networks

LLN for planner
Let Assumptions hold and αn → α as n→∞. If z?α is a stable solution,

(i) For all x ∈ X , θ = 1, . . . , d+
x and ` = 0, . . . , θ − 1, the final fraction of

solvent institutions with type x , threshold θ and ` defaulted neighbors
under intervention αn converges to

S
(n)
x,θ,`(αn)

n

p−→ s
(α)
x,θ,`(z

?
α) := µxqx(θ)b

(
d+
x , (1− αx)(1− z?α), `

)
.

(ii) The total number of defaulted institutions under intervention αn

converges to:

Dn(αn)

n

p−→ f
(α)
D (z?α) := 1−

∑
x∈X

µx

d+x∑
θ=1

qx(θ)β
(
d+
x , αx + (1− αx)z?α, d

+
x − θ + 1

)
.

(iii) The system-wide wealth under the intervention decision αn converges to

Γ♦
n (αn)

n

p−→ f
(α)
♦ (z?α) := Γ̄♦ −

∑
x∈X

L̄�x f
(α)
D (z?α)−

∑
x∈X

L̄♦
x

d+x∑
θ=1

θ−1∑
`=1

`s
(α)
x,θ,`(z

?
α).

(iv) The total cost of interventions αn for the planner converges to

Φn(αn)

n

p−→ φ(z?α) :=
∑
x∈X

µxαxCx

d+x∑
`=1

`b
(
d+
x , 1− z?α, `

)
.
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Planner optimal decision

max
α

f
(α)
♦ (z?α) :=Γ̄♦ −

∑
x∈X

L̄�x f
(α)
D (z?α)−

∑
x∈X

L̄♦
x

d+x∑
θ=1

θ−1∑
`=1

`s
(α)
x,θ,`(z

?
α),

subject to φ(z?α) :=
∑
x∈X

µxαxCx

d+x∑
`=1

`b
(
d+
x , 1− z?α, `

)
≤ C ,

for some budget constraint C > 0.
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Thank you
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