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"The noisy brain"

I Brain is a collection of noisy firing neurons
I Microscopically neurons are random but they collectively

resemble interesting stochastic processes
I Mean-field analysis of underlying stochastic processes in the

brain sheds light into
I decision-making
I attention
I brain dysfunctions such as schizophrenia
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Evolution of computational neural networks

McCulloch-Pitts Neuron MLP Convolutional networks

Figure: Images credit: Alfredo Canziani et. al.
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Noisy computational networks

I Historical neural networks do not work well with random weights
I Modern computational neural networks perform surprisingly well

with random weights if the neurons are wired well together1.

Why?

1Frankle, J., Schwab, D. J. & Morcos, A. S. Training batchnorm and only batchnorm:
On the expressive power of random features in CNNs. ICLR (2021).
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Historical single-layer MLPs

H1 =
1√

batchsize
F (W0H0)

I H0 ∈ Rwidth×batchsize is a deterministic matrix
I W0 ∈ Rwidth×width is a random Gaussian matrix
I Empirical eigenvalue distribution (e.e.d): 1

width

∑width
i=1 δ(λi (H>1 H1))

I Given the first two moments of H1,2 characterizes e.e.d. of H1 as
batchsize and width tends to∞ denoted by p

2Louart, C., Liao, Z., Couillet, R., et al. A random matrix approach to neural
networks. The Annals of Applied Probability (2018).
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Historical single-layer MLPs

I Stieltjes transformation of density p on interval I:

Sp(z) =

∫

I

p(t)dt
z − t

, z ∈ C\I

I Given G = E
[
H>1 H1

]
, the following holds3

Sp(z) =
1

batchsize
Tr




width
batchsize

G
1 + s(z)

− zI
︸ ︷︷ ︸

M(s)




−1

I s(z) is the solution of

s(z) =
1

batchsize
Tr
(
GM−1(s(z))

)

3Louart, C., Liao, Z., Couillet, R., et al. A random matrix approach to neural
networks. The Annals of Applied Probability (2018).
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Historical random deep networks

I Let x` ∈ Rwidth be representation of input x0 at layer `
I The representations make a Markov chain as:

x`+1 =
W`x`
‖W`x`‖

I Suppose the elements of W` ∈ Rwidth×width are i.i.d. Gaussian.
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Coupled representations

x`+1 =
W`x`+1

‖W`x`+1‖
, y`+1 =

W`y`+1

‖W`y`+1‖

The chains contracts to a random directions independent from the
starting state.
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Product of random matrices

I Consider the product of Gaussian matrix as S` = W` . . .W1

I Claim: S`/‖S`‖ becomes rank one in limit.
I Therefore, (S`x)/‖S`‖ becomes independent from x as `→∞.
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Lyapunov exponents

I Definition:

λk = lim
`→∞

1
2`

log
(
k th largest eigenvalue ofS>` S`

)

I Computation4: λk = 1
2 (log(2) + Ψ

( d−k+1
2

)
)
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I λ1 − λ2 < 0 implies S`/‖S`‖ becomes rank one in limit.

4Newman, C. M. The distribution of Lyapunov exponents: Exact results for random
matrices. Communications in mathematical physics (1986).
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Modern NN with Batch normalization (BN)

I BN is one of the main building block of modern neural networks5

I Representation H`:width × batchsize.

H`+1 = F (BNα,β(W`H`)) (1)

I BNα,β : Rwidth×batchsize → Rwidth×batchsize

[BNα,β(M)]: = αicentered(Mi:) + βi

I Learning only parameters α and β (per unit) leads to surprisingly
good performance6

5Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. in ICML (2015).

6Frankle, J., Schwab, D. J. & Morcos, A. S. Training batchnorm and only batchnorm:
On the expressive power of random features in CNNs. ICLR (2021).
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The Markov chain of representations

We study the following Markov chain of matrices78.

I BN(M) normalizes M row-wise
I Representations:

H`+1 =
(

1√
width

)
BN(W`H`)

I W`: (width × width) with Gaussian
elements

7Daneshmand, H., Joudaki, A. & Bach, F. Batch Normalization Orthogonalizes
Representations in Deep Random Networks. NeurIPS21. Spotlight presentation
(among top %3 of submissions).

8Daneshmand, H. et al. Batch Normalization Provably Avoids Rank Collapse for
Randomly Initialised Deep Networks. NeurIPS20.
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Theoretical results

I E

[
orthogonality gap(H`)

]
= O

(
(1− α)` + batchsize

α
√

width

)

I Wasser.2(W`H`,Gaussian)2 = O
(

(1− α)` (batchsize) + (batchsize)2

α
√

width

)
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Orthogonalization

I Orthogonality gap(H) :=
∥∥∥
(

1
‖H‖2

F

)
H>H −

(
1
‖In‖2

F

)
In
∥∥∥

F

I E

[
orthogonality gap(H`)

]
= O

(
(1− α)` + batchsize

α
√

width

)
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I α is the minimum of smallest singular value of {H1, . . . ,H`}.
I To get a non-vacuous bound, we need an α independent from `.
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Modern NN vs. historical NN

BN Without BN

E

[
orth. gap(H∞)

]
= O

(
batch size
α
√

width

)
E

[
orth. gap(H ′∞)

]
= Θ(1)
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The orthogonality influences training
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significantly high. In fact, for any given network architecture, one can predict which normalizer will251

enable the fastest convergence without even training the model. Thus, normalizers which result in252

more discriminative representations at initialization are likely to be more useful for training DNNs.253

Figure 6: Mean Train Accuracy vs.
average Cosine Similarity at initial-
ization: Normalizers which result
in less similar activations converge
faster. Instance Normalization was
removed due to training instability
(explained in section 5).

We now note another interesting pattern in Figure 6: Lay-254

erNorm results in significantly high similarity of activations,255

while BatchNorm does not. This is, in fact, a known property of256

BatchNorm. As shown by Daneshmand et al. [4], BatchNorm257

provably ensures activations generated by a randomly initial-258

ized network have high rank–i.e., by using BatchNorm, one259

can be certain different samples will have sufficiently differ-260

ent representations. To derive this result, the authors consider261

the activations for different samples at the penultimate layer262

Y�1 2 Rwidth⇥N and define the covariance matrix Y�1Y
T
�1,263

whose rank is equal to that of the similarity matrix Y T
�1Y�1.264

The authors then show that in a zero-mean, randomly initial-265

ized network with BatchNorm layers, the covariance matrix266

will have a rank at least as large as ⌦(
p

width). That is, there267

are at least ⌦(
p

width) distinct directions that form the basis268

of the similarity matrix, hence indicating the model is capa-269

ble of extracting useful, discriminative representations. In the270

following, we propose a conjecture that extends this result to271

activation-based normalization layers.272

Conjecture 1. For a zero-mean, randomly initialized network273

with GroupNorm [3] layers, the penultimate layer activations274

have a rank of at least ⌦(
p

width/G), where width is the layer-width (number of channels in a CNN)275

and G is the number of groups used for GroupNorm.276

The intuition for the above conjecture is based on the proof by Daneshmand et al. [4]. In their work,277

the authors extend a prior result from random matrix theory which suggests multiplication of several278

zero-mean, randomly initialized gaussian matrices will result in a rank-one matrix [10]. The use of279

BatchNorm ensures that on multiplication with a randomly initialized weight matrix, the values of280

on-diagonal elements of the covariance matrix Y�1Y
T
�1 are preserved, while the off-diagonal elements281

are suppressed. This leads to a lower bound of the order of ⌦(
p

width) on the stable rank [40] of the282

covariance matrix. Now, if one directly considers the similarity matrix Y T
�1Y�1 and uses GroupNorm283

instead of BatchNorm, then a similar preservation and suppression of on- and off- diagonal matrix284

blocks should occur. Here, the block size will be equal to the Group size used for GroupNorm. This285

indicates the lower bound should change as ⌦(
p

width/G).286

For now, we provide empirical verification of this conjecture and leave a formal proof for future287

work. We use a similar setup as Daneshmand et al. [4], randomly initializing a CNN with constant288

layer-width (64) and 30 layers. A GroupNorm layer is placed before every ReLU layer and the289

number of groups is sweeped from 1 to 64. As shown in Figure 7a, we find a perfect linear fit between290

the stable rank and the value of
p

width/G, hence validating our conjecture.291

To understand the significance of Conjecture 1, note that the result shows if the group size is292

large, then use of GroupNorm cannot prevent rank collapse (i.e., cannot result in discriminative293

representations). Thus, this result implies LayerNorm cannot be used to generate useful, discriminate294

representations as depth increases. To demonstrate this effect, we calculate the mean cosine similarity295

of activations between different samples of a randomly initialized network that uses GroupNorm.296

We sweep the group size from 1 to layer-width, thus covering the spectrum from LayerNorm to297

Instance Normalization. We analyze both a non-residual CNN with 20 layers and a ResNet-56.298

Results are shown in Figure 7b. We observe that by grouping the entire layer for normalization,299

LayerNorm results in highly similar representations and is unable to generate discriminative features.300

Meanwhile, if we reduce the group-size, similarity of representations keeps decreasing as well,301

indicating discriminative features. Thus, the main takeaway is that use of GroupNorm with group size302

greater than layer-width can help guarantee the model generates discriminative features. However,303

taking this result to the extreme should imply Instance Normalization is the best choice, but as we304

noted in both Figure 1 and Figure 6, Instance Normalization witnesses unstable training. Next, we305

7

Without normalization With Normalization9

9Lubana, E. S., Dick, R. P. & Tanaka, H. Beyond BatchNorm: Towards a General
Understanding of Normalization in Deep Learning. arXiv preprint arXiv:2106.05956
(2021).
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Replacing BN with orthogonalization

Saving training time by starting from orthogonal representations
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standard representations

MLPs with ReLU and without BN for classifying CIFAR-10
Red: standard initialization with low orthogonality gaps

Blue: novel initialization ensuring orthogonal representations
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Gaussian approximation

Wasserstein2(W`H`,Gaussian)2 = O
(

(1− α)` (batchsize) + (batchsize)2

α
√

width

)

(batchsize)2
√

width
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History of Gaussian approximation for NNs

∞-Width





1996 · · · · · ·• A single-layer MLP
(Neal).

2015 · · · · · ·• Going beyond one layer
(Hazan and Jaakkola).

2018 · · · · · ·• Finite-depth MLPs
(Matthews et. al. and Lee et. al.) .

2021 · · · · · ·•
Non-asymptotic
(in)finite width and depth
Linear MLPs.
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Applications of the Gaussian approximation

Gaussian Rep-
resentations

Activation design
[Klambauer17]

Gaussian processes
[Neal96 Matthews18

and many more]

Information prop-
agating [Yang19]

Sensitivity of random
networks [Palma19]

Mean field analysis [Pen-
nington18 and many more]
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Vision

Deepening our knowledge about representations in deep neural
networks will allow us to design more efficient neural networks.
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