Assembly Planning from Observations under Physical Constraints

Thomas Chabal¹ Robin Strudel¹ Etienne Arlaud¹ Jean Ponce^{1,2} Cordelia Schmid¹

¹INRIA and Département d'Informatique de l'ENS, Paris

²Center for Data Science , New York University

Center for Data Science

- Originally, **computer vision and image processing** team
- More recently, moving towards **robotics**
- Based in building C, 4th floor

Espace Robotique (Building C, 5th floor)

The subject:

Assembly Planning from Observations under Physical Constraints

Assembly planning ?

- Put primitives together with a robot

Assembly planning from observations ?

Target image

Reconstruction

Not a new topic

Winston et al., early 1970s "Minsky Copy Demo"

Difficulties

Images

Robotics

Both cases: errors to handle

Our problem

First step: understand the target

- Target = **set of rigid objects**
- **Contacts** between objects
- Objects have 6D poses

⇒ 6D object pose estimation

Yann Labbé et al. "Cosypose: Consistent multi-view multi-object 6d pose estimation." ECCV 2020

CosyPose on assemblies

- But often failures due to occlusions

Method overview

Predicates

OnTable(a)

Clear(a)

Rot(a)

On(a, b)

OnAlongX(a, b, c)

OnAlongY(a, b, c)

Operators

PutOn(a, b)

Precond: Clear(a) \Box Clear(b) \Box OnTable(a) Postcond: Clear(a) \Box On(a, b)

PutOnAlongX(a, b, c) Pre: Clear(a) \Box OnTable(a) Post: Clear(a) \Box OnAlongX(a, b, c)

PutOnAlongY(a, b, c) Pre/Post: ...

Rotate(a)
Pre/Post: ...

From operators to equilibrium constraints

Poses of primitives $\{q_i^{\mathcal{P}}\}_{i\in\mathcal{P}} \Rightarrow$ Set of constraints $\mathcal{C}(q_1^{\mathcal{P}},...,q_N^{\mathcal{P}}) \leq 0$

Formulating the goal

Method overview

Method overview

Monte-Carlo tree search

Summary of the method

Results

Some reconstructions

Evaluation on the robot

Assembly Planning from Observations under Physical Constraints

Thomas Chabal¹ Robin Strudel¹ Etienne Arlaud¹ Jean Ponce^{1,2} Cordelia Schmid¹

¹ Inria and DIENS (ENS-PSL, CNRS, Inria), Paris, France ² Center for Data Science, New York University, New York, USA

Center for Data Science

Conclusion

- Method connecting **several fields**:
 - Task planning
 - 6D Pose estimation
 - Convex optimization
- Combine vision and robotics with **robustness**
 - Provide guarantees, interpretable model
- Still, robotics is tough
 - ⇒ Hence our research

Thank you for your attention !

→ Chabal, T., Strudel, R., Arlaud, E., Ponce, J., & Schmid, C. (2022). Assembly Planning from Observations under Physical Constraints. *arXiv* preprint arXiv:2204.09616.

- $\blacksquare \rightarrow$ <u>https://www.di.ens.fr/willow/research/assembly-planning/</u>
- $\leq \rightarrow \underline{\text{thomas.chabal@inria.fr}}$