Assembly Planning from Observations under Physical Constraints

Thomas Chabal1 Robin Strudel1 Etienne Arlaud1 Jean Ponce1,2 Cordelia Schmid1

1INRIA and Département d’Informatique de l’ENS, Paris 2Center for Data Science, New York University
Willow team

- Originally, **computer vision and image processing** team
- More recently, moving towards **robotics**
- Based in building C, 4th floor
Espace Robotique (Building C, 5th floor)
The subject:

Assembly Planning from Observations under Physical Constraints
Assembly planning?

- Put **primitives together with a robot**
Assembly planning from observations?
Not a new topic

Winston et al., early 1970s
“Minsky Copy Demo”
Difficulties

Both cases: **errors to handle**
Our problem
First step: understand the target

- **Target** = set of rigid objects
- **Contacts** between objects
- Objects have **6D poses**

⇒ **6D object pose estimation**

CosyPose on assemblies

- But often **failures due to occlusions**
Method overview

Inputs

(a) Object detection + 6D Pose estimation

Target Image

Available primitives

Poses of visible objects V
Task planning: STRIPS

Predicates
- `OnTable(a)`
- `Clear(a)`
- `Rot(a)`
- `On(a, b)`
- `OnAlongX(a, b, c)`
- `OnAlongY(a, b, c)`

Operators
- `PutOn(a, b)`
 - **Precond:** `Clear(a) □ Clear(b) □ OnTable(a)`
 - **Postcond:** `Clear(a) □ On(a, b)`
- `PutOnAlongX(a, b, c)`
 - **Pre:** `Clear(a) □ OnTable(a)`
 - **Post:** `Clear(a) □ OnAlongX(a, b, c)`
- `PutOnAlongY(a, b, c)`
 - **Pre/Post:** …
- `Rotate(a)`
 - **Pre/Post:** …
From operators to equilibrium constraints

Poses of primitives $\{q^P_i\}_{i \in P} \Rightarrow$ Set of constraints $C(q^P_1, \ldots, q^P_N) \leq 0$
Formulating the goal

\[
\begin{align*}
\min & \quad \sum_{i \in V} \| q_i^P - q_i^V \|_2^2 \\
\text{s.t.} & \quad C(q_1^P, \ldots, q_N^P) \leq 0
\end{align*}
\]

- Poses of all available objects
- Only previously seen objects
- Pose errors

Match the reconstruction with the target

Ensure we build a stable structure

Equilibrium constraints
Method overview

Inputs

Object detection + 6D Pose estimation

Poses of visible objects V

Available primitives

Physically-constrained assembly

State → Physical constraints → Opti Solver + Interpenetration Removal → Completed poses
Method overview

Inputs

Target Image

Available primitives

Object detection + 6D Pose estimation

Poses of visible objects V

Physically-constrained assembly

State \rightarrow \text{Physical constraints} \rightarrow \text{Opti Solver + Interpenetration Removal} \rightarrow \text{Completed poses}

Reward computation

4 / 4 Reward
Monte-Carlo tree search
Summary of the method

(a) Object detection + 6D Pose estimation

(b) Monte Carlo tree search

(c) Physically-constrained assembly

(d) Reward computation
Results
Some reconstructions
Evaluation on the robot

Assembly Planning from Observations under Physical Constraints

Thomas Chabal1 Robin Strudel1 Etienne Arlaud1 Jean Ponce1,2 Cordelia Schmid1

1 Inria and DIENS (ENS-PSL, CNRS, Inria), Paris, France
2 Center for Data Science, New York University, New York, USA
Conclusion

- Method connecting **several fields**:
 - Task planning
 - 6D Pose estimation
 - Convex optimization
- Combine vision and robotics with **robustness**
 - Provide **guarantees, interpretable** model
- Still, robotics is tough
 - ⇒ **Hence our research**
Thank you for your attention!

https://www.di.ens.fr/willow/research/assembly-planning/
thomas.chabal@inria.fr