Algebraic Attacks against Some Arithmetization-Oriented Hash Functions

Augustin Bariant

Inria Paris, COSMIQ team

September 20, 2022

- Introduction to symmetric cryptography
 - Cryptographic Hash Functions
 - The sponge construction and the CICO problem
 - Arithmetization-oriented Ciphers
- 2 Algebraic Cryptanalysis
 - Modelling the CICO Problem
 - An Efficient GCD Algorithm
 - Algebraic cryptanalysis of Feistel-MiMC and Poseidon

Cryptographic Hash Functions

Cryptographic Hash Function

Deterministic function with the following security properties:

- Pre-image resistance: Difficult to invert.
- Second pre-image resistance: Given a message and its digest, difficult to find a second message with the same digest.
- Collision resistance: Difficult to find any two messages with the same digest.

Cryptographic Hash Functions: Insights

- Brute-force preimage attack: Hash random messages until the given digest is found. Complexity in $O(2^n)$ for a *n*-bit digest.
- Brute-force collision attack: Hash random messages and store their digest in a hashtable, until a collision is found. Complexity in $O(2^{n/2})$ for a *n*-bit digest.
- Usually, the digest size is \geq 256.

Cryptographic Hash Functions: Applications (1)

Famous Hash Algorithms: SHA1 (broken), MD5 (broken), SHA256, SHA3...

Cryptographic Hash Functions: Applications (1)

Famous Hash Algorithms: SHA1 (broken), MD5 (broken), SHA256, SHA3...

• Password storage: Databases store passwords hash instead of clear passwords: in case of a database leak, it doesn't fully compromise the users credentials.

Cryptographic Hash Functions: Applications (1)

Famous Hash Algorithms: SHA1 (broken), MD5 (broken), SHA256, SHA3...

- Password storage: Databases store passwords hash instead of clear passwords: in case of a database leak, it doesn't fully compromise the users credentials.
- File integrity verification: Comparing a downloaded-file hash to a certified hash ensures that the correct file has been downloaded.
 - Ex: the TLS protocol in HTTPS verifies the data integrity and authenticity with hash functions.

Cryptographic Hash Functions: Applications (1)

Famous Hash Algorithms: SHA1 (broken), MD5 (broken), SHA256, SHA3...

- Password storage: Databases store passwords hash instead of clear passwords: in case of a database leak, it doesn't fully compromise the users credentials.
- File integrity verification: Comparing a downloaded-file hash to a certified hash ensures that the correct file has been downloaded.
 - Ex: the TLS protocol in HTTPS verifies the data integrity and authenticity with hash functions.
- Proof of work (blockchain): Finding a message with a constrained digest (e.g. starting with k zeros) is costly (e.g. $O(2^k)$ hashs), so that a malicious user needs an excessively huge computational power to attack the blockchain.

Cryptographic Hash Functions: Applications (2)

Coin Flipping protocol:

- Alice and Bob don't trust each other.
- They wish to agree on an unbiased random number.
- Alice commits *a* using the hash function *H*.
- r = a ⊕ b can't be biased by either party if H is a secure cryptographic hash function.

Cryptographic Hash Functions The sponge construction and the CICO problem Arithmetization-oriented Ciphers

A Hash function framework: the sponge construction

The sponge construction

- **Parameters:** A public permutation *P*, a rate *r* and a capacity *c*.
- Input: A message split into *n* blocks *M_i* of *r* bits.
- Output: An arbitrarily long hash sequence Z_i.

Towards an ideal public permutation

- An ideal permutation is a permutation that looks like a random permutation.
- It is often constructed using an iterated round function:

$$P = f \circ f \circ \cdots \circ f = f^{(R)}$$

• An ideal permutation should be strong against the CICO problem:

The Constrained Input Constrained Output (CICO) Problem

Find x, y such that P(x||0) = (y||0).

The CICO problem against the sponge construction

- Suppose that we know a *r*-bit M_0 and *C* such that $P(M_0||0) = 0||C$.
- M_0 is a preimage of the *r*-bit digest Z = 0 (one output block):

Cryptanalysis of a public permutation

How do we know if a public permutation behaves like an ideal permutation?

Cryptanalysis of a public permutation

How do we know if a public permutation behaves like an ideal permutation?

• We don't.

Cryptanalysis of a public permutation

How do we know if a public permutation behaves like an ideal permutation?

- We don't.
- Cryptographers try to find unwanted properties, such as CICO solutions.
- Study round-reduced versions $P_i = f^{(i)}$, $i \leq R$.
- Confidence in the permutation gained with a lot of cryptanalysis.

Cryptanalysis of a public permutation

How do we know if a public permutation behaves like an ideal permutation?

- We don't.
- Cryptographers try to find unwanted properties, such as CICO solutions.
- Study round-reduced versions $P_i = f^{(i)}$, $i \leq R$.
- Confidence in the permutation gained with a lot of cryptanalysis (or not).

In this presentation, we study public permutations of some non-traditional ciphers.

Traditional vs Arithmetization-oriented ciphers

Traditional ciphers

• Designed for bit-oriented platforms (computers, chips, ASIC...).

Arithmetization-oriented ciphers

• Designed for Zero-Knowledge Proofs and Multi Party Computation protocols.

Traditional vs Arithmetization-oriented ciphers

Traditional ciphers

- Designed for bit-oriented platforms (computers, chips, ASIC...).
- Operate on bit sequences. All operations are allowed.

Arithmetization-oriented ciphers

• Designed for Zero-Knowledge Proofs and Multi Party Computation protocols.

10/23

• Operate on large finite fields. + and × operations are allowed.

Traditional vs Arithmetization-oriented ciphers

Traditional ciphers

- Designed for bit-oriented platforms (computers, chips, ASIC...).
- Operate on bit sequences. All operations are allowed.
- Designed to minimize the resource consumption (time, memory...).

Arithmetization-oriented ciphers

- Designed for Zero-Knowledge Proofs and Multi Party Computation protocols.
- Operate on large finite fields. + and × operations are allowed.
- Designed to minimize the number of (sequential) multiplications.

Traditional vs Arithmetization-oriented ciphers

Traditional ciphers

- Designed for bit-oriented platforms (computers, chips, ASIC...).
- Operate on bit sequences. All operations are allowed.
- Designed to minimize the resource consumption (time, memory...).
- Several decades of cryptanalysis.

Arithmetization-oriented ciphers

- Designed for Zero-Knowledge Proofs and Multi Party Computation protocols.
- Operate on large finite fields. + and × operations are allowed.
- Designed to minimize the number of (sequential) multiplications.
- 5 years of cryptanalysis.

Arithmetization-oriented ciphers operate on finite fields.

But what is a finite field?

Finite fields

- A field is a set \mathbb{K} with:
 - A + operation (commutative, associative and all elements have an inverse) and a neutral element 0.
 - A \times operation (commutative, associative, and distributive for the addition) and a neutral element 1.
 - All elements of $\mathbb{K}\setminus\{0\}$ have an inverse for $\times.$
- Ex: \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ with p prime...

Finite fields

- A field is a set \mathbb{K} with:
 - A + operation (commutative, associative and all elements have an inverse) and a neutral element 0.
 - A \times operation (commutative, associative, and distributive for the addition) and a neutral element 1.
 - All elements of $\mathbb{K} \setminus \{0\}$ have an inverse for $\times.$
- Ex: \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ with p prime...
- For any prime p and integer $e \ge 1$, a field of size $q = p^e$ exists (called \mathbb{F}_q).

In this talk, Algorithms operate on \mathbb{F}_p with $p \approx 2^{64}$ prime: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

Goal: Study the CICO Problem on several permutations

We study permutations of \mathbb{F}_p^2 with $p = 18446744073709551557 = 2^{64} - 59$.

Constrained Input Constrained Output (CICO) Problem

Find $x, y \in \mathbb{F}_p$ such that P(x, 0) = (y, 0).

ZK Hash Function Cryptanalysis Challenge

- Challenge launched by the Ethereum Fundation in November 2021.
- 4 Arithmetization-oriented hash functions under study: Feistel-MiMC, Poseidon, Rescue-Prime and Reinforced Concrete.
- Goal: crack the CICO problem on reduced versions of them.

ZK Hash Function Cryptanalysis Challenge

- Challenge launched by the Ethereum Fundation in November 2021.
- 4 Arithmetization-oriented hash functions under study: Feistel-MiMC, Poseidon, Rescue-Prime and Reinforced Concrete.
- Goal: crack the CICO problem on reduced versions of them.

Total Bounty Budget: \$200 000.

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

Presentation of Feistel-MiMC

4

$$\begin{cases} x_{i+1} = (x_i + c_i)^3 + y_i \\ y_{i+1} = x_i \end{cases}$$

- Round function iterated R times.
- R = 80 in the full version.
- Challenges go from 6 to 40 rounds.
- How to we solve the CICO problem?

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

Presentation of Feistel-MiMC

- Round function iterated R times.
- R = 80 in the full version.
- Challenges go from 6 to 40 rounds.
- How to we solve the CICO problem?

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

$$x_0 = X \qquad y_0 = 0$$

• Define a variable X representing x_0 .

• Set
$$y_0 = 0$$
 (Contrained Input).

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

$$x_0 = X \qquad y_0 = 0$$

$$x_0 = x \qquad y_0 = 0$$

$$x_0 = x \qquad x^3 \qquad \qquad$$

• Define a variable X representing x_0 .

• Set
$$y_0 = 0$$
 (Contrained Input).

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

$$T_1(X) = \begin{array}{c} X \\ c_0 \\ \hline \\ T_2(X) \\ \end{array}$$

- Define a variable X representing x_0 .
- Set $y_0 = 0$ (Contrained Input).
- Define $T_i(X)$ with the following:

 $\begin{cases} T_0(X) = y_0 = 0 \\ T_1(X) = x_0 = X \\ T_{i+1}(X) = (T_i(X) + c_{i-1})^3 + T_{i-1}(X) \end{cases}$

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

$$T_{1}(X) = X \qquad T_{0}(X) = 0$$

$$T_{2}(X) \qquad T_{1}(X)$$

$$T_{3}(X) \qquad T_{2}(X)$$

- Define a variable X representing x_0 .
- Set $y_0 = 0$ (Contrained Input).
- Define $T_i(X)$ with the following:

 $\begin{cases} T_0(X) = y_0 = 0 \\ T_1(X) = x_0 = X \\ T_{i+1}(X) = (T_i(X) + c_{i-1})^3 + T_{i-1}(X) \end{cases}$

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

- Define a variable X representing x_0 .
- Set $y_0 = 0$ (Contrained Input).
- Define $T_i(X)$ with the following:

 $\begin{cases} T_0(X) = y_0 = 0 \\ T_1(X) = x_0 = X \\ T_{i+1}(X) = (T_i(X) + c_{i-1})^3 + T_{i-1}(X) \end{cases}$

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

- Define a variable X representing x_0 .
- Set $y_0 = 0$ (Contrained Input).
- Define $T_i(X)$ with the following:

 $\begin{cases} T_0(X) = y_0 = 0 \\ T_1(X) = x_0 = X \\ T_{i+1}(X) = (T_i(X) + c_{i-1})^3 + T_{i-1}(X) \end{cases}$

• By induction, T_R is of degree 3^{R-1} .

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Feistel-MiMC

- Define a variable X representing x_0 .
- Set $y_0 = 0$ (Contrained Input).
- Define $T_i(X)$ with the following:

 $\begin{cases} T_0(X) = y_0 = 0 \\ T_1(X) = x_0 = X \\ T_{i+1}(X) = (T_i(X) + c_{i-1})^3 + T_{i-1}(X) \end{cases}$

- By induction, T_R is of degree 3^{R-1} .
- Find a root r of T_R .
- $(r, 0) \rightarrow (T_{R+1}(r), 0)$ solves CICO.
- How much does it cost to find r?

Remarks on polynomials in \mathbb{F}_{p}

- Some polynomials have no root in \mathbb{F}_p (\mathbb{F}_p is not algebraically closed, like \mathbb{R}).
- All elements of \mathbb{F}_{ρ} are roots of $X^{\rho} X$ (= $\prod_{\omega \in \mathbb{F}_{\rho}} (X \omega)$).
- Therefore, T(X) has a root in \mathbb{F}_p iff T(X) and $X^p X$ have a common factor.

Remarks on polynomials in \mathbb{F}_{p}

- Some polynomials have no root in \mathbb{F}_p (\mathbb{F}_p is not algebraically closed, like \mathbb{R}).
- All elements of \mathbb{F}_{ρ} are roots of $X^{\rho} X$ (= $\prod_{\omega \in \mathbb{F}_{\rho}} (X \omega)$).
- Therefore, T(X) has a root in \mathbb{F}_p iff T(X) and $X^p X$ have a common factor.

Idea of the root-finding algorithm on T(X) (of degree $d \ll p$):

- Compute the Greatest Common Divisor (GCD) of $X^p X$ and T(X).
 - \rightarrow The GCD is of low degree in average.
- Factorize it if needed.

A Greatest Common Divisor (GCD) algorithm

- Common divisors are given with the Euclidian GCD algorithm:
 - Given U, V two polynomials of degrees d_u, d_v such that $d_u \ge d_v$, find Q, R such that:

$$\boldsymbol{U} = \boldsymbol{Q} \cdot \boldsymbol{V} + \boldsymbol{R}$$

with deg(R) < d_v .

- Set U, V = V, R and iterate.
- If R = 0, return U.

A Greatest Common Divisor (GCD) algorithm

- Common divisors are given with the Euclidian GCD algorithm:
 - Given U, V two polynomials of degrees d_u, d_v such that $d_u \ge d_v$, find Q, R such that:

$$\boldsymbol{U} = \boldsymbol{Q} \cdot \boldsymbol{V} + \boldsymbol{R}$$

with deg(R) < d_v .

- Set U, V = V, R and iterate.
- If R = 0, return U.
- Apply the algorithm with $U(X) = X^p X$ and V(X) = T(X) (degree $d \ll p$).
- Q from the first step is of degree $p d \approx 2^{64}$ and cannot be computed.
- Observation: We only need *R* of the first step.

An improved first step of the Euclidian GCD algorithm

Goal: find R such that $X^p - X = QT + R$ and deg(R) < deg(T).

- Equivalently, $R = X^p X \mod T$.
- We compute $X^{p} \mod T$ recursively using fast exponentation:

$$\begin{cases} X^{k} = 1 & \text{if } k = 0\\ X^{k} = (X^{\frac{k}{2}})^{2} & \text{mod } T & \text{if } k \text{ is even} \\ X^{k} = (X^{\frac{k-1}{2}})^{2} \times X & \text{mod } T & \text{if } k \text{ is odd} \end{cases}$$

• $\log_2(p)$ steps to compute $X^p \mod T$. Deduce $R = X^p - X \mod T$.

Root-finding Algorithm of a Polynomial in \mathbb{F}_p

Goal: Find the roots of T(X) of degree $d \ll p$ in \mathbb{F}_p .

- Compute $R(X) = X^p X \mod T(X)$ using fast exponentiation.
- Compute G(X) = gcd(T, R) using efficient euclidian GCD algorithm.
- Factorize G(X).
- In total, it costs $O(d \log(d) \log(p))$, and is practical up to $d = 2^{32}$.
 - \rightarrow We can break 21 rounds of Feistel-MiMC experimentally (out of 80 rounds).

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

Summary of the CICO cryptanalysis on Feistel-MiMC

• Low degree round function (degree 3).

Summary of the CICO cryptanalysis on Feistel-MiMC

- Low degree round function (degree 3).
- Modelize CICO with a root-finding problem.

Summary of the CICO cryptanalysis on Feistel-MiMC

- Low degree round function (degree 3).
- Modelize CICO with a root-finding problem.
- The solve complexity is quasi-linear in the degree $(O(d \log(d) \log(p))).$

Summary of the CICO cryptanalysis on Feistel-MiMC

- Low degree round function (degree 3).
- Modelize CICO with a root-finding problem.
- The solve complexity is quasi-linear in the degree $(O(d \log(d) \log(p))).$
- The degree depends on the number of rounds: $d = 3^{R-1}$.

For a security level of 64 bits, 40 rounds are necessary.

Modelling the CICO Problem An Efficient GCD Algorithm Algebraic cryptanalysis of Feistel-MiMC and Poseidon

The CICO Problem with Poseidon (over \mathbb{F}_p^3)

- Low degree round function.
- Set Y to a constant (e.g. 0) and solve T(X, 0) = 0.
- It works because T is of degree $d \ll p$.

Conclusion

- We study public permutations on big finite fields with the CICO problem.
- The CICO problem is a root-finding problem.
- We estimate the complexity of the attack with the best root-finding algorithm.
- We deduce a lower bound on the number of rounds for a given security level.
- Lead to the publication of a paper in Transactions on Symmetric Cryptography with Clémence Bouvier, Gaëtan Leurent & Léo Perrin.

Conclusion

- We study public permutations on big finite fields with the CICO problem.
- The CICO problem is a root-finding problem.
- We estimate the complexity of the attack with the best root-finding algorithm.
- We deduce a lower bound on the number of rounds for a given security level.
- Lead to the publication of a paper in Transactions on Symmetric Cryptography with Clémence Bouvier, Gaëtan Leurent & Léo Perrin.

Thank you for your attention.