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Lattice

A lattice is a discrete
subgroup of Rn

u1, u2 is a reduced basis
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Scientific Context

Lattice

Lattice based cryptography
is based on the difficulty of
finding a reduced basis

LLL is an algorithm that
computes a reduced basis

Quantum Cryptanalysis

With the help of quantum
computer it is possible to
break some cryptographic
primitives
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How it all started
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Efficient reversible shallow circuits

Designing efficient shallow circuits is a new domain of research. It
mainly consists in

Designing efficient circuit for basic operations

Give its precise complexity allowing to derive precise costs in
applications
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State of the art

Some previous work

Addition

Multiplication

GCD

Today we will look into Binary quadratic form reduction

first circuit designed for quadratic form reduction

Application to LLL

0Yasuhiro Takahashi and Noboru Kunihiro. ”A fast quantum circuit for
addition with few qubits. Quantum Information Computation”
Srijit Dutta, Debjyoti Bhattacharjee, and Anupam Chattopadhyay. ”Quantum
circuits for toom-cook multiplication.” Mehdi Saeedi and Igor L Markov.
”Quantum Circuits for GCD Computation with O(nlogn) Depth and O(n)
Ancillae.”
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Quantum circuit

Qubit

A qubit is the basic unit of quantum information

pure states : |0⟩ , |1⟩ (extended to |00⟩ , |01⟩ , |11⟩ etc.)
superposition : |ψ⟩ = α |0⟩+ β |1⟩ with α,β ∈ C and
|α|2 + |β|2 = 1
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Some Quantum Gates

NOT.

|x⟩ |x̄⟩
Bitwise addition (CNOT).

|x⟩ |x⟩

|y⟩ |x ⊕ y⟩
Toffoli (CCNOT).

|b⟩ |b⟩
|x⟩ |x⟩

|y⟩ |b · x ⊕ y⟩
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Some Quantum Gates

Swap.

|x⟩ |y⟩

|y⟩ |x⟩
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Quantum circuit and complexity measures

|A⟩

U

|A⟩

|0⟩k |0⟩k

|b⟩ |b ⊕ U(A)⟩

|0⟩k are called Ancilae qubits

Depth : Related to the speed of the execution.

Width : Related to the memory (♯ Ancilae).

Volume: Total number of operations.
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Binary quadratic form : Definition

Definition

An (integral) Binary quadratic form Q = [A,B,C ] is a polynomial
(AX 2 + B XY + C Y 2) ∈ [X ,Y ]. The integer ∆ = B2 − 4AC is
called the discriminant of Q. The form is said to be:

• Degenerate when ∆ = 0

• Positive (resp. Negative) Definite when ∆ < 0 and
Q(x , y) ≥ 0 (resp. Q(x , y) ≤ 0) for any (x , y) ∈ R2.

Associated matrix : Q =

(
A B/2

B/2 C

)
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Binary quadratic form : Class

Definition (Class)

Let Q be a Binary quadratic form, the following set define the
class of Q

< Q >= {STQS : S ∈ Sl(2,Z)}

Some notes:

The determinant is invariant

Every class contains a reduced binary quadratic form
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Reduced Binary quadratic form

Definition (Reduced form)

A binary quadratic form [A,B,C ] is reduced if{
|B| ≤ A ≤ C

B ≥ 0 if |B| = A or C

}
when [A,B,C ] is positive definite
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Quadratic form: Link with lattices

Lattice formalism Quadratic form formalism

Object Basis M = (u, v) Gram matrix G = MtM
Step operation M ← MSλ G ← S t

λGSλ
Reduceness condition ||v ||2 ≥ ||u||2 ≥ 2| ⟨u, v⟩ | C ≥ A ≥ |B|
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Gauss Reduction

Algorithm 1 Gauss reduction

1: Compute ∆
2: while Q is not reduced do
3: if |C | ≤

√
|∆| then

4: t ← −sgn(C ) ·
⌊

B
2|C |

⌉
5: else

6: t ← −sgn(C ) ·
⌊√

|∆|+B

2|C |

⌉
7: end if

8: S ←
(
0 1
1 t

)
9: Q ← ST Q S

10: end while
11: return Q
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From Multiplication to 2x operations

Algorithm 2 Positive Definite Reduction

1: m← 0 ,ϵ← sgn(B)
2: if C < A then
3: (C ,A)← (A,C )
4: end if
5: if ¬(|B| ≤ 2A) then
6: m← 2⌊log2 |B|⌋−⌊log2 A⌋−1

7: else
8: m←

⌊
|B|
2A

⌉
9: end if

10: if m = 0 then
11: return [A, (−1)δ(A=−B)

B,C ]
12: else
13: Reduce(C − ϵmB +m2A,B − ϵ2mA,A)
14: end if
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More global optimisations

Some more optimisations can be done:

Iterative version : independance from the input

Fewer conditions branches : reduce the quantum cost

We now focus on implementing the following subroutines:

2x multiplication

(Integer logarithm)
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Aimed Circuit

|A⟩

Rotation

|A⟩

|i⟩ |i⟩
|0⟩ |0⟩

|0⟩ |A ≪ i⟩

Figure: The quantum circuit for bit rotation.
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Simplified circuit

|A⟩
cSm

|A ≪ (2m · b)⟩

|b⟩ |b⟩

Figure: The quantum circuit cSm (A ∈ {0, 1}n and b ∈ {0, 1}).
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Even more simplified circuit

|A⟩ Sm |A ≪ 2m⟩

Figure: The quantum circuit Sm (A ∈ {0, 1}n).
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Example of 1-bit rotation

x0

x1

x2

x3

x4

x5

x6

x7
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Example of Constant time 1-(qu)bit rotation

x0

x1

x2

x3

x4

x5

x6

x7
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Constant time i-(qu)bit rotation

efficient i-(qu)bit rotation

The cyclic permutation on n qubits of parameter 2i can be
implemented :

Depth : O (1)

Ancilae: none

Volume : O (n)

σ0 =

(1, 0)

n/2−1∏
i=1

(i + 1, n − i)

 ·
n/2−2∏

i=0

(i + 1, n − i − 1)


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From circuit to controlled circuit

Controlled Version

Building a controlled version of Sj : cSj can be done in with

Depth : O (log n)

Ancilae : O (n)

Volume : O (n)

0Cristopher Moore and Martin Nilsson ”Parallel quantum computation and
quantum codes”
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Overall circuit for multiplication by 2x

|A ≪ i⟩|A⟩

cS0 · · · cSlog2 n−1 cS−1
log2 n−1 · · · cS−1

0

|A⟩

|i⟩ |i⟩

|0⟩ |A ≪ i⟩

i =
∑

i ij2
j

A ≪ i = A ≪ i02
0 ≪ i12

1 ≪ · · ·≪ ilog2(n−1)2
log2(n−1)

The j-th bit of the decomposition of i in base 2 : ij acts as the
control bit of the circuit cSj .
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Complexity

Fine grain complexity analysis

The multiplication by a power of 2 can be inplemented on a
circuit with:

Depth : 12⌈log n⌉
Ancilae: n⌈log n⌉
Volume : 12n⌈log n⌉
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Results

Algorithm Toffoli depth ♯ Ancilae ♯ Toffoli gates

Modular Addition O (log n) O
(

n
log n

)
O (n)

Multiplication O
(
n1.143

)
O
(
n1.404

)
O
(
n1.55

)
GCD O (n log n) O (n) O

(
n2
)

Bit rotation 12 log n n log n 12n log n
Logarithm 4 log n 4n 4n

Binary quadratic form Reduction 568n log n + 896n 7n2 + 26n 144n2 log n + 2834n2
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Conclusion

We designed the first quantum circuit that

generalizes GCD and is very important for number theory

performs the core step of LLL Algorithm

We also derived a fine grain complexity analysis allowing a fine
estimation for applications.
Article on eprint : https://eprint.iacr.org/2022/466.pdf
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Conclusion

Thank you for your attention
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