Quantum binary quadratic form reduction

A $\boldsymbol{O}(n \log n)$ depth circuit and application to lattice reduction

Nicolas David Thomas Espitau Akinori Hosoyamada

Inria, NTT
September 20, 2022

Human Context

Nicolas David
PHD student at Inria Paris Symmetric Cryptography and Quantum Cryptanalysis

Thomas Espitau
Postdoc at NTT in Tokyo Lattice Based Crytpography

Akinori Hosoyamada
Researcher at NTT in Tokyo Symmetric Cryptography and Quantum Cryptography

Lattice

Scientific Context

Lattice

- Lattice based cryptography is based on the difficulty of finding a reduced basis
- LLL is an algorithm that computes a reduced basis

Quantum Cryptanalysis

- With the help of quantum computer it is possible to break some cryptographic primitives

How it all started

How it all started

Efficient reversible shallow circuits

Designing efficient shallow circuits is a new domain of research. It mainly consists in

- Designing efficient circuit for basic operations
- Give its precise complexity allowing to derive precise costs in applications

State of the art

Some previous work

- Addition
- Multiplication
- GCD

Today we will look into Binary quadratic form reduction

- first circuit designed for quadratic form reduction
- Application to LLL

[^0]
Outline

(1) Preliminaries

- Quantum Circuits
- Binary quadratic form

(2) Quantum Quadratic form reduction

(3) Quantum multiplication by 2^{x}

Outline

(1) Preliminaries

- Quantum Circuits

(2) Quantum Quadratic form reduction
(3) Quantum multiplication by 2^{x}

Quantum circuit

Qubit

A qubit is the basic unit of quantum information

- pure states: $|0\rangle,|1\rangle$ (extended to $|00\rangle,|01\rangle,|11\rangle$ etc.)
- superposition : $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $\alpha, \beta \in \mathbf{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$

Some Quantum Gates

- NOT.

$$
|x\rangle-\mathbb{(1)} \quad|\bar{x}\rangle
$$

- Bitwise addition (CNOT).

- Toffoli (CCNOT).

Some Quantum Gates

- Swap.

Quantum circuit and complexity measures

$|0\rangle^{k}$ are called Ancilae qubits

Quantum circuit and complexity measures

$|0\rangle^{k}$ are called Ancilae qubits

- Depth: Related to the speed of the execution.
- Width: Related to the memory ($\#$ Ancilae).
- Volume: Total number of operations.

Outline

(1) Preliminaries

- Quantum Circuits
- Binary quadratic form

(2) Quantum Quadratic form reduction

(3) Quantum multiplication by 2^{x}

Binary quadratic form : Definition

Definition

An (integral) Binary quadratic form $\mathcal{Q}=[A, B, C]$ is a polynomial $\left(A X^{2}+B X Y+C Y^{2}\right) \in[X, Y]$. The integer $\Delta=B^{2}-4 A C$ is called the discriminant of \mathcal{Q}. The form is said to be:

- Degenerate when $\Delta=0$
- Positive (resp. Negative) Definite when $\Delta<0$ and

$$
\mathcal{Q}(x, y) \geq 0(\text { resp. } \mathcal{Q}(x, y) \leq 0) \text { for any }(x, y) \in \mathbf{R}^{2}
$$

Associated matrix: $Q=\left(\begin{array}{cc}A & B / 2 \\ B / 2 & C\end{array}\right)$

Binary quadratic form : Class

Definition (Class)

Let \mathcal{Q} be a Binary quadratic form, the following set define the class of \mathcal{Q}

$$
\langle\mathcal{Q}\rangle=\left\{S^{\top} Q S: S \in \operatorname{Sl}(2, \mathbf{Z})\right\}
$$

Some notes:

- The determinant is invariant
- Every class contains a reduced binary quadratic form

Reduced Binary quadratic form

Definition (Reduced form)

A binary quadratic form $[A, B, C]$ is reduced if

$$
\left\{\begin{array}{c}
|B| \leq A \leq C \\
B \geq 0 \text { if }|B|=A \text { or } C
\end{array}\right\}
$$

when $[A, B, C]$ is positive definite

Quadratic form: Link with lattices

	Lattice formalism	Quadratic form formalism				
Object	Basis $M=(u, v)$	Gram matrix $G=M^{t} M$				
Step operation	$M \leftarrow M S_{\lambda}$	$G \leftarrow S_{\lambda}^{t} G S_{\lambda}$				
Reduceness condition	$\\|v\\|^{2} \geq\\|u\\|^{2} \geq 2\|\langle u, v\rangle\|$	$C \geq A \geq\|B\|$				

Outline

(1) Preliminaries

- Quantum Circuits
- Binary quadratic form
(2) Quantum Quadratic form reduction
(3) Quantum multiplication by 2^{x}

Gauss Reduction

```
Algorithm 1 Gauss reduction
    1: Compute \(\Delta\)
    while \(Q\) is not reduced do
    3: \(\quad\) if \(|C| \leq \sqrt{|\Delta|}\) then
    4: \(\quad t \leftarrow-\operatorname{sgn}(C) \cdot\left\lfloor\frac{B}{2|C|}\right\rceil\)
    5: else
    6: \(\quad t \leftarrow-\operatorname{sgn}(C) \cdot\left\lfloor\frac{\sqrt{|\Delta|}+B}{2|C|}\right\rceil\)
    7: end if
    8: \(\quad S \leftarrow\left(\begin{array}{ll}0 & 1 \\ 1 & t\end{array}\right)\)
    9: \(\quad Q \leftarrow S^{T} Q S\)
10: end while
11: return \(Q\)
```


From Multiplication to 2^{x} operations

Algorithm 2 Positive Definite Reduction
1: $m \leftarrow 0, \epsilon \leftarrow \operatorname{sgn}(B)$
2: if $C<A$ then
3: $\quad(C, A) \leftarrow(A, C)$
4: end if
5: if $\neg(|B| \leq 2 A)$ then
6: $\quad m \leftarrow 2^{\left\lfloor\log _{2}|B|\right\rfloor-\left\lfloor\log _{2} A\right\rfloor-1}$
7: else
8: $\quad m \leftarrow\left\lfloor\frac{|B|}{2 A}\right\rceil$
9: end if
10: if $m=0$ then
11: return $\left[A,(-1)^{\delta(A=-B)} B, C\right]$
12: else
13: \quad Reduce $\left(C-\epsilon m B+m^{2} A, B-\epsilon 2 m A, A\right)$

14: end if

More global optimisations

Some more optimisations can be done:

- Iterative version : independance from the input
- Fewer conditions branches : reduce the quantum cost

We now focus on implementing the following subroutines:

- 2^{x} multiplication
- (Integer logarithm)

Outline

(1) Preliminaries

- Quantum Circuits
- Binary quadratic form

(2) Quantum Quadratic form reduction

(3) Quantum multiplication by 2^{x}

Aimed Circuit

Figure: The quantum circuit for bit rotation.

Simplified circuit

Figure: The quantum circuit $c S_{m}\left(A \in\{0,1\}^{n}\right.$ and $\left.b \in\{0,1\}\right)$.

Even more simplified circuit

Figure: The quantum circuit $S_{m}\left(A \in\{0,1\}^{n}\right)$.

Example of 1-bit rotation

Example of Constant time 1-(qu)bit rotation

Constant time i-(qu)bit rotation

efficient i-(qu)bit rotation

The cyclic permutation on n qubits of parameter 2^{i} can be implemented :

- Depth: O (1)
- Ancilae: none
- Volume: O (n)

$$
\sigma_{0}=\left((1,0) \prod_{i=1}^{n / 2-1}(i+1, n-i)\right) \cdot\left(\prod_{i=0}^{n / 2-2}(i+1, n-i-1)\right)
$$

From circuit to controlled circuit

Controlled Version

Building a controlled version of $S_{j}: c S_{j}$ can be done in with

- Depth: O $(\log n)$
- Ancilae: O (n)
- Volume : O (n)

[^1]
Overall circuit for multiplication by 2^{x}

- $i=\sum_{i} i_{j} 2^{j}$
- $A \lll i=A \lll i_{0} 2^{0} \lll i_{1} 2^{1} \lll \cdots<i_{\log _{2}(n-1)} 2^{\log _{2}(n-1)}$
- The j-th bit of the decomposition of i in base $2: i_{j}$ acts as the control bit of the circuit $c S_{j}$.

Complexity

Fine grain complexity analysis

The multiplication by a power of 2 can be inplemented on a circuit with:

- Depth : $12\lceil\log n\rceil$
- Ancilae: $n\lceil\log n\rceil$
- Volume : $12 n\lceil\log n\rceil$

Results

Algorithm	Toffoli depth	\sharp Ancilae	\sharp Toffoli gates
Modular Addition	$\mathrm{O}(\log n)$	$\mathrm{O}\left(\frac{n}{\log n}\right)$	$\mathrm{O}(n)$
Multiplication	$\mathrm{O}\left(n^{1.143}\right)$	$\mathrm{O}\left(n^{1.404}\right)$	$\mathrm{O}\left(n^{1.55}\right)$
GCD	$\mathrm{O}(n \log n)$	$\mathrm{O}(n)$	$\mathrm{O}\left(n^{2}\right)$
Bit rotation	$12 \log n$	$n \log n$	$12 n \log n$
Logarithm	$4 \log n$	$4 n$	$4 n$
Binary quadratic form Reduction	$568 n \log n+896 n$	$7 n^{2}+26 n$	$144 n^{2} \log n+2834 n^{2}$

Conclusion

We designed the first quantum circuit that

- generalizes GCD and is very important for number theory
- performs the core step of LLL Algorithm

We also derived a fine grain complexity analysis allowing a fine estimation for applications.
Article on eprint: https://eprint.iacr.org/2022/466.pdf

Conclusion

Thank you for your attention

[^0]: ${ }^{0}$ Yasuhiro Takahashi and Noboru Kunihiro. "A fast quantum circuit for addition with few qubits. Quantum Information Computation" Srijit Dutta, Debjyoti Bhattacharjee, and Anupam Chattopadhyay. "Quantum circuits for toom-cook multiplication." Mehdi Saeedi and Igor L Markov. "Quantum Circuits for GCD Computation with O(nlogn) Depth and O(n) Ancillae."

[^1]: ${ }^{0}$ Cristopher Moore and Martin Nilsson "Parallel quantum computation and quantum codes"

