			Ongoing Work	
		000 000000		

Mathematical modeling of the dynamic allocation of resources by a bacterium

Jana Zaherddine

イロト イロト イヨト イヨト

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

A joint work with:

Vincent Fromion (INRAE) and Philippe Robert (INRIA)

イロト イロト イモト イモト 一日

Gene Expression: Stochastic Process			Ongoing Work	
•				
		000 000000		

Bacterium

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ • のへ⊙

Gene Expression: Stochastic Process	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Bacterium

Macromolecules:

- DNA: no nucleus
- proteins, RNAs
- ribosomes,polymerases

• •••

イロト イタト イヨト イヨト 一日

Gene Expression: Stochastic Process	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Bacterium

Macromolecules:

- DNA: no nucleus
- proteins, RNAs
- ribosomes,polymerases
- ...

Disorganized medium: All macromolecules collide in cytoplasm

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

4/2

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Production of Proteins: A fundamental process of "life"

Process consuming most of resources of the cell

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Production of Proteins: A fundamental process of "life"

Process consuming most of resources of the cell

Bacterium capacities:

- Adaptation to changes in the environment
- Adaptation of proteins production to available resources

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Production of Proteins: A fundamental process of "life"

Process consuming most of resources of the cell

Bacterium capacities:

- Adaptation to changes in the environment
- Adaptation of proteins production to available resources

Regulatory mechanisms are complex

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Production of Proteins: A fundamental process of "life"

Process consuming most of resources of the cell

Bacterium capacities:

- Adaptation to changes in the environment
- Adaptation of proteins production to available resources

Regulatory mechanisms are complex

Objective: Investigation of an important global regulatory mechanism

A D > A B > A B > A B

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Different types of RNAs:

- Messenger RNAs (mRNAs): \simeq 600-900 nucleotides
 - Proteins Production
- Ribosomal RNAs (rRNAs): \simeq 5000 nucleotides
 - Ribosomes Composition
- Small RNAs (sRNAs): ≃ 10-200 nucleotides
 - Regulation Mechanisms

• . . .

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Different Regimes: Exponential Phase with large growth rate

Exponential Phase:

lot of resources in the environment

- time division of cells \sim 30mn. (E. Coli)
- Production of a large number of ribosomes
- Large Transcription rate of rRNAs
- Large Translation rate of proteins

Figure: Binary fission: Prokaryotic cell division

A D > A B > A B > A B

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Different Regimes: Exponential Phase with large growth rate

Exponential Phase:

lot of resources in the environment

- time division of cells ~ 30mn. (E. Coli)
- Production of a large number of ribosomes
- Large Transcription rate of rRNAs
- Large Translation rate of proteins
- \Rightarrow Most of polymerases are in

transcription phase

Figure: Binary fission: Prokaryotic cell division

A D > A B > A B > A B

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Different Regimes: Stationary Phase

Stationary Phase: Few resources for the cell

- Small growth rate
- O No production of proteins
- No production of rRNA
- Large number of inactive polymerases

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

A small RNA '6S RNA'

In stationary phase:

Large number of 6S RNAs

イロト イロト イヨト イヨト

	Production of Proteins	Transcription Regulation ●○○		Ongoing Work O	
			000 000000		

A small RNA '6S RNA'

In stationary phase:

- Large number of 6S RNAs
- Similar 3D structure as a promoter of a gene

イロト イロト イヨト イヨト

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

A small RNA '6S RNA'

In stationary phase:

- Large number of 6S RNAs
- Similar 3D structure as a promoter of a gene

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

6S RNA: A Global Regulator of Transcription

Stationary Phase:

- Small growth rate of the cell
- O No production of proteins
- No transcription of rRNAs

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Stationary Phase:

- Small growth rate of the cell
- O No production of proteins
- No transcription of rRNAs
 - ⇒ Large number of free polymerases
 - Sequestration of polymerases by 6S RNAs

Number of free polymerases \(\ncore \)

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

イロト イクト イヨト イヨト 一日

Objectives of Mathematical Models

Estimate the efficiency of the 6S RNA regulatory mechanism

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Objectives of Mathematical Models

- Estimate the efficiency of the 6S RNA regulatory mechanism
- Study the evolution of the number of free, sequestered and in transcription polymerases

(a)

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Objectives of Mathematical Models

- Estimate the efficiency of the 6S RNA regulatory mechanism
- Study the evolution of the number of free, sequestered and in transcription polymerases
- Study the impact of sequestration on the production of mRNAs and rRNAs

イロト イポト イヨト イヨト

	Production of Proteins	Transcription Regulation		Ongoing Work O	
			000 000000		

Objectives of Mathematical Models

- Estimate the efficiency of the 6S RNA regulatory mechanism
- Study the evolution of the number of free, sequestered and in transcription polymerases
- Study the impact of sequestration on the production of mRNAs and rRNAs
- O Describe the transition

from exponential phase to stationary phase and vice versa

イロト イポト イヨト イヨト

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

Stochastic Assumptions:

Disorganized medium: randomness everywhere !

- Hitting time of two given macromolecules is a random variable
- Repeated failures of binding attempts

Distribution of binding time is exponential

イロト イポト イヨト イヨト

Distribution of elongation times of RNAs is exponential

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

Stochastic Assumptions:

Disorganized medium: randomness everywhere !

- Hitting time of two given macromolecules is a random variable
- Repeated failures of binding attempts

Distribution of binding time is exponential

- Distribution of elongation times of RNAs is exponential
- Scaling Model: a large number of polymerases N (N~10000)

		Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
				• 00 000000		
Results for th	ne model with 6S RNA					

Model with 6S RNA

Assumption:

- Total number of polymerases = N
- Sequestration rate of a polymerase by a 6SRNA: λ
- Desequestration rate: η
- Production rate of 6S RNAs: β
- Degradation rate of free 6S RNAs: δ

A (1) > A (1) > A

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

A First Order Theorem

Total number of polymerases = N

Theorem 1

$$\left(\frac{F_N(Nt)}{N}\right) \xrightarrow{\mathcal{D}} (f(t)) \qquad as N \to +\infty$$

(ロ) (回) (三) (三) (三) (○)

such that $f'(t) = -\delta (\rho_0 + \rho_1) + \delta \rho_1 \frac{1}{f(t)}$ where, $\rho_0 = \frac{\beta}{\delta} , \quad \rho_1 = \frac{\eta}{\lambda}$

		Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
				000 000000		
Description of the	CONTRACTOR OF THE OF THE					

A First Order Theorem

Total number of polymerases = N

Theorem 1

$$\left(\frac{F_N(Nt)}{N}\right) \xrightarrow{\mathcal{D}} (f(t)) \qquad as N \to +\infty$$

such that $f'(t) = -\delta \left(\rho_0 + \rho_1\right) + \delta \rho_1 \frac{1}{f(t)}$ where,

$$\rho_0 = \frac{\beta}{\delta} \quad , \quad \rho_1 = \frac{\eta}{\lambda}$$

イロン イタン イヨン イヨン 三日

Free polymerases are of the order of **N**

000		Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
ÓÓÓOOO				000 000000		

Results for the model with 6S RNA

A First Order Theorem

Free polymerases are of the order of **N**

Equilibrium point

$$f_{\infty} = \frac{\rho_1}{\rho_0 + \rho_1}$$

(日)

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

A First Order Theorem

Free polymerases are of the order of **N**

Equilibrium point

$$f_{\infty} = rac{
ho_1}{
ho_0 +
ho_1}$$

Maximal Sequestration rate

$$\mathbf{s}_{\infty} = rac{
ho_0}{
ho_0 +
ho_1}$$

イロト イタト イヨト イヨト

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			00 ● 000000		

Results for the model with 6S RNA

A Functional Central Limit Theorem

Fluctuations of $\left(\frac{F_N(Nt)}{N}\right)$ are of the order of $\frac{1}{\sqrt{N}}$

▲□▶▲@▶▲≣▶▲≣▶ ≣ めぬぐ

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			00 000000		

Results for the model with 6S RNA

A Functional Central Limit Theorem

Fluctuations of
$$\left(\frac{F_N(Nt)}{N}\right)$$
 are of the order of $\frac{1}{\sqrt{N}}$

Theorem 1

$$\left(\widehat{F}_{N}(t)\right) \stackrel{\text{def}}{=} \left(\sqrt{N}\left(\frac{F_{N}(Nt)}{N} - f(t)\right)\right)$$
$$\left(\widehat{F}_{N}(t)\right) \stackrel{\mathcal{D}}{\longrightarrow} \left(\widehat{F}(t)\right) \qquad \text{as } N \to +\infty$$

 $\widehat{F}(t)$, a diffusion, solution of the SDE

$$d\widehat{F}(t) = -\sqrt{\delta}\sqrt{\rho_0 - \rho_1 + \frac{\rho_1}{f(t)}} dB(t) - \frac{\delta\rho_1}{f(t)^2} \widehat{F}(t) dt,$$

with $\hat{F}(0) = \hat{F}_0$, where (B(t)) is the standard Brownian motion in \mathbb{R} .

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work	
	00000	000	0 000 000000		

FULL MODEL OF TRANSCRIPTION

16/2

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 0●0000		
Full Model					

イロト イロト イヨト イヨト

Assumptions:

- Sequestration
- Production/Degradation of 6S RNAs
- Transcription of J types of rRNAs
- Transcription of *C*^{*N*} types of mRNAs

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		
Eull Model					

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

18/24

Sequestration

		Mathematical Models	Ongoing Work	
		000000		

18/2

Full Model

Production and Degradation of 6S RNA

		Mathematical Models	Ongoing Work	
		000 000000		

rRNA Transcription

		Mathematical Models	Ongoing Work	
		000 000000		

mRNA Transcription

18/24

		Mathematical Models	Ongoing Work	
		000 000000		

Repartition of polymerases during the Stationary Phase

$$\alpha_{r,j} < \beta_{r,j} \quad \forall j \in \{1,\ldots,J\}$$

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

Repartition of polymerases during the Stationary Phase

		Mathematical Models	Ongoing Work	
		000 000000		

Full Model

Repartition of polymerases during the Exponential Phase

$$\alpha_{r,j} > \beta_{r,j} \quad \forall j \in \{1,\ldots,J\}$$

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

Repartition of polymerases during the Exponential Phase

	Production of Proteins	Transcription Regulation	Mathematical Models	Ongoing Work O	
			000 000000		

Repartition of polymerases

Stationary Phase:

- Free, Sequestered and in mRNA Transcription polymerases : of the order of N
- Polymerases in rRNA Transcription : O(1)
- Exponential Phase:
 - Polymerases in rRNA and mRNA Transcription : of the order of N
 - Free, Sequestered Polymerases : O(1)

(日)

		Mathematical Models	Ongoing Work	
		000 000000		

Repartition of polymerases

Stationary Phase:

• Free, Sequestered and in mRNA Transcription polymerases : of the order of N

(日)

Polymerases in rRNA Transcription : O(1)

Exponential Phase:

- Polymerases in rRNA and mRNA Transcription : of the order of N
- Free, Sequestered Polymerases : O(1)

			Ongoing Work	
			•	
		000 000000		

イロト イタト イヨト イヨト 二日 -

Ongoing Work: The Translation Model with Ribosomes

			Ongoing Work	
			•	
		000 000000		

Ongoing Work: The Translation Model with Ribosomes

			Ongoing Work	
			•	
		000 000000		

Ongoing Work: The Translation Model with Ribosomes

	Production of Proteins	Transcription Regulation		Ongoing Work O	Conclusion ●O
			000 000000		

Conclusion

Sequestration model with:

- Creation and Degradation of 6S RNAs: Free polymerases are of the order of N
- Importance of the initiation rate of transcription of rRNA in the transition from exponential to stationary phase
- Transcription Model: Repartition of polymerases during the Exponential and Stationary phases

イロト イポト イヨト イヨト

	Production of Proteins	Transcription Regulation		Ongoing Work O	Conclusion ●O
			000 000000		

- Sequestration model with:
 - Creation and Degradation of 6S RNAs: Free polymerases are of the order of N
- Importance of the initiation rate of transcription of rRNA in the transition from exponential to stationary phase

• Transcription Model: Repartition of polymerases during the Exponential and Stationary phases

	Production of Proteins	Transcription Regulation		Ongoing Work O	Conclusion ●O
			000 000000		

- Sequestration model with:
 - Creation and Degradation of 6S RNAs: Free polymerases are of the order of N
- Importance of the initiation rate of transcription of rRNA in the transition from exponential to stationary phase
- Transcription Model: Repartition of polymerases during the Exponential and Stationary phases

	Production of Proteins	Transcription Regulation		Ongoing Work O	Conclusion ●O
			000 000000		

Conclusion

- Sequestration model with:
 - Creation and Degradation of 6S RNAs: Free polymerases are of the order of N
- Importance of the initiation rate of transcription of rRNA in the transition from exponential to stationary phase
- Transcription Model: Repartition of polymerases during the Exponential and Stationary phases

Ongoing work: Study the Translation model with several flows of amino-acids

イロト イポト イヨト イヨト

	Production of Proteins	Transcription Regulation		Ongoing Work O	Conclusion O
			000 000000		

Thank You!

24/2