Can we find a short path, without a map?
Can we parallelize maze-solving?

Romain Cosson

Based on joint works with Laurent Massoulié & Laurent Viennot

PhD Seminar

Keywords: collaborative exploration, trees, competitive analysis

20 slides / 20 mins
Online framework: the science of decision-making

Online problem = Information arrives over time. Examples:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Search</td>
<td>(Where should I search for my lost wallet?)</td>
</tr>
<tr>
<td>Learning with expert advice</td>
<td>(Who should I trust?)</td>
</tr>
<tr>
<td>Metrical Task Systems</td>
<td>(When should I move out to another city?)</td>
</tr>
<tr>
<td>Secretary problem</td>
<td>(When should I stop a hiring process?)</td>
</tr>
<tr>
<td>Bandit problems</td>
<td>(Should I be safe (exploitation) or be bold (exploration)?)</td>
</tr>
<tr>
<td>List Update Problem</td>
<td>(How should I organize my bookshelf?)</td>
</tr>
<tr>
<td>Collective Tree Exploration</td>
<td>(How to solve a maze, with a team?)</td>
</tr>
<tr>
<td>Layered Graph Traversal</td>
<td>(How to find a short path, without a map?)</td>
</tr>
</tbody>
</table>
A simple example: **Linear Search**

Where should I look for my lost wallet?

- Introduced by Bellman in the 1950s
 - You start from $0 \in \mathbb{Z}$ in an infinite street, your Cost = #steps
 - Wallet is lost at $x \in \mathbb{Z}$ at distance $|x| = \text{OPT}$ (unknown)
 - Your strategy has competitive ratio α if you always find your wallet with at most

\[
\text{Cost} \leq \alpha \cdot \text{OPT}
\]

The doubling strategy is 9-competitive
Another example: **Learning with Expert advice**

Who should I trust when there are many self-claimed « experts »?

- Introduced independently in many fields in the late 20th century.
 - Each day $t \in \{1, \ldots, T\}$ there are n experts forecasting rain ($y_{t,n} = 1$) or sun ($y_{t,n} = 0$)
 - $\text{OPT} =$ number of mistakes made by the most accurate forecaster
 - $\text{Cost} =$ the number of mistakes that you make
 - Your strategy has regret $R(n,T)$ if it satisfies

\[
\text{Cost} \leq \text{OPT} + R(n,T)
\]

The multiplicative weights strategy has $R(n,T) = O(\sqrt{T \log n})$ regret
Recap: on online problems

- **OPT**: the optimal possible cost, if you had all the information!
- **Cost**: the actual cost you pay, $\text{Cost} \geq \text{OPT}$
- A strategy acheives:
 - Competitive ratio α if $\text{Cost} \leq \alpha \times \text{OPT}$
 - Regret R if $\text{Cost} \leq \text{OPT} + R$
Main dish!

• Layered Graph Traversal
 - Can you find the shortest path, when you don’t have a map?
 - Papadimitriou and Yannakakis, 1991 (online algorithms)

• Collective Tree Exploration
 - Is maze-solving parallelizable?
 - Fraigniaud, Gasieniec, Kowalski and Pelc, 2004 (distributed algorithms)
Layered Tree Traversal

Can you find the shortest path, Without a map?
Can you find the shortest path, without a map?

Notation: \(n = \#\text{nodes} = \#\text{edges}+1 \) and \(D = \text{depth} \) and \(w = \text{width} \)

- « the width »: max # nodes at given combinatorial depth
- « a layer »: set of nodes at the given combinatorial depth

Online Problem: Layers are revealed one after the other!

- \(\text{OPT} = D \) so an « \(\alpha(w) \)-competitive path » has length

\[
\text{Cost} \leq \alpha(w)D
\]

15 moves, i.e. 3-competitive

Example with width w = 3, depth D = 5

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Is layered-feedback realistic?
The unweighted variant

✓ Observation: In unweighted tree $n = wD$
 ✓ Depth-First Search is thus $O(w)$-competitive

✓ Question: Can we do better than Depth-First Search?

Our work [CM]
✓ Yes! There is a $O(\sqrt{w})$-competitive strategy
 ✓ For a more general formulation of the problem
 ✓ Uses random choices!
Collective Tree Exploration

Is maze-solving parallelizable?
Is solving a (tree) maze parallelizable?

Notation: $n = \#\text{nodes} = \#\text{edges} + 1$ and $D = \text{depth}$

- With 1 agent: right-hand on wall (RHW, aka DFS) $\leq 2n$ moves
- With 2 agents: right+left-hand on wall (RHW+LHW) $\leq n$ moves each
- What about $k \geq 3$ agents? Moving synchronously at each round
- Exploration \leftrightarrow Finding exit

Tic-tac-toe tree game

Silver coin of Knossos (Crete, 400 BC)

A computer-generated (tree) maze

Collective Tree Exploration
VOUS NE SORTIREZ JAMAIS D'ICI, ÉTRANGERS! CE TOMBEAU SERA VOTRE TOMBEAU!
Collective Tree Exploration

Goal: Traverse all edges of unknown tree $T = (V, E)$ with n nodes and depth D

- With $k \in \mathbb{N}$ agents moving synchronously at each round

Communication Models:
- Centralized (full « complete » communication)
- Distributed (restricted « write-read » communication)

Main result [FGKP 2004]:
- Distributed algorithm SPLIT in which explorers split evenly at intersections
- Runtime $\text{SPLIT} \leq O\left(\frac{2n}{\log k} + D\right)$
The Competitive Ratio approach

What runtime could we hope for, had we know the tree in advance?

- **Offline variant**: $\text{OPT} = \text{Exploration time if tree were known in advance}

 $D \leq \text{OPT}$ and $\frac{n}{k} \leq \text{OPT}$ in fact, $\frac{n}{k} + D \approx \text{OPT}$

- **Consequence**: SPLIT has a **competitive ratio** in $O\left(\frac{k}{\log k}\right)$

 $\text{Runtime}_{\text{SPLIT}} = O\left(\frac{n}{\log k} + D\right) \leq O\left(\frac{k}{\log k}\right)\text{OPT}$
Recent results

✓ Continuous analysis of online algorithms (online convex optimization)

✓ New idea: the explorers behave like electrons in an electric network

Latest results [C., Massoulié]

• Regret: $O(kD)$

• Competitive Ratio: $O(\sqrt{k})$
Open Questions
Open Question 1: Is there a competitive collective graph exploration algo
(competitive ratio) \[c(k) \left(\frac{m}{k} + D \right) \]
or in \[\frac{2m}{k} + f(k, D) \]
(regret)
where \(m \) is # of edges, \(D \) is graph diameter, and \(f(\cdot, \cdot) \) is some arbitrary function.

Open Question 2: Is there a (competitive) gap between distributed and centralized collective tree exploration?
Thank you!
Feel free to reach out
Office # C320
Why log \(k \) appears in SPLIT?

\[\log_2 k \]

We need \(\frac{D}{\log_2(k)} \) such steps

This means \(\approx \frac{D^2}{2\log_2 k} \) rounds

At least \(\Omega \left(\frac{n}{\log_2 k} \right) \) rounds

\[n \approx \frac{D^2}{2} \]

The « comb »

[HKLT 2014] This lower-bound applies to any « greedy » algorithm.

def. « Greedy » = a robot never goes upwards, if there is an unexplored edge below