
Will my Table be Large Enough
for so Many Ingredients?

Or: Formal Verification of Heap Space Bounds

Alexandre Moine (Cambium)
PhD Pizza Seminar

14/05/24

If We Haven’t Met

I’m a 3rd year PhD student working with:

● François Pottier
● Arthur Charguéraud (remotely)

● I work at office C332 (third floor, building C)
● In front of the coffee machine

2

● I co-organize the seminar with Jakob.
● I will defend in September,
● we need someone to take over: talk to me if you are interested!

Computer Science
cs.AI (Artificial Intelligence)

cs.AR (Hardware Architecture)

cs.CC (Computational Complexity)

cs.CE (Computational Engineering, Finance, and Science)

cs.CG (Computational Geometry)

cs.CL (Computation and Language)

cs.CR (Cryptography and Security)

cs.CV (Computer Vision and Pattern Recognition)

cs.CY (Computers and Society)

cs.DB (Databases)

cs.DC (Distributed, Parallel, and Cluster Computing)

cs.DL (Digital Libraries)

cs.DM (Discrete Mathematics)

cs.DS (Data Structures and Algorithms)

cs.ET (Emerging Technologies)

cs.FL (Formal Languages and Automata Theory)

cs.GL (General Literature)

cs.GT (Computer Science and Game Theory)

cs.HC (Human-Computer Interaction)

cs.IR (Information Retrieval)

cs.IT (Information Theory)

cs.LG (Machine Learning)

cs.LO (Logic in Computer Science)

cs.MA (Multiagent Systems)

cs.MM (Multimedia)

cs.MS (Mathematical Software)

cs.NA (Numerical Analysis)

cs.NE (Neural and Evolutionary Computing)

cs.NI (Networking and Internet Architecture)

cs.OH (Other Computer Science)

cs.OS (Operating Systems)

cs.PF (Performance)

cs.PL (Programming Languages)

cs.RO (Robotics)

cs.SC (Symbolic Computation)

cs.SD (Sound)

cs.SE (Software Engineering)

cs.SI (Social and Information Networks)

cs.SY (Systems and Control)

3

Programs are Pizza Recipes

We study the art of writing pizza recipes!

4

1. In which language do we even write our recipes?

Can we imagine a language that does not have the word “pineapple”?

Cambium study these questions!

2. How to guess if this recipe will make a good pizza?

 Are we sure that the absence of the word “pineapple” is enough?

3. Can we prove that our guess is correct?

Are we sure that we did not miss a “pineapple” in this 27M LOC recipe (Linux)?

Cambium 1: Designing and Implementing PL

● A functional programming language,
● with concurrency,
● strong types,
● a cool module system,
● and a garbage collector (more later).

5

Adopted by the industry!

Cambium 2: Reasoning about Programs

● Testing gives confidence, but it is not enough.
● We want to prove that programs have no bugs!

● Therac 25 (1981)
A bug in radiation therapy machine gave radiation overdose

6

How to ensure that a program has no bug?

● Ariane 5 (1996)
A bug in the autopilot of the rocket led to its destruction. Loss: 300M$

● “The DAO” (2016)
A bug in a smart contract on the Ethereum blockchain led to a 50M$ robbery

Cambium 3: Reasoning About Proofs

How to ensure that a proof has no bug?

How to prove that a proof is correct?

● Pen-and-paper proofs are not satisfactory.
● There exists proofs assistants.

7

We then have to trust the proof assistant…

Focus on: Reasoning about Programs

8

How to prove that a program has no bug?

How to prove that a program satisfies its specification?

Mostly automatic approach Mostly manual approach

● Type systems
● Abstract Interpretation
● Model Checking

● Proof assistant as PL
● Program logics!

The CompCert Compiler

● A compiler for (a large subset) of C, written inside Coq
● and entirely verified!

9

Main Theorem:
The compiler preserves the semantics of the program.

Soundness Theorem:
If holds, then if the initial state satisfies P, the execution
of e is safe and, if it terminates, the end state satisfies Q v.

Separation Logic (≈ 2000)

10

● e is the verified program
● P describes the state before executing e (its precondition)
● v is a name for returned value
● Q v describes the state after executing e (its postcondition)

Separation Logic: Basics

● New connector: the separating conjunction

11

● Ground assertion: the points-to

The two locations must be different!

Separation Logic: Reasoning Rules

12

Beyond Functional Correctness

● Base Separation Logic guarantees safety:

a verified program will not crash due to (correctness) bug

● We can extend Separation Logic to guarantee other properties!

13

We want to prove that a program does not use too much resources.

Time
(2011)

Space
(2022)

Entropy
(2024)

Energy
(????)

Space Credits for Heap Space

14

For heap space we use space credits.

● Let 1 be one space credit.◇
● A space credit represents the right to allocate one memory word.
● Credits are splittable and joinable:

Heap Space Bounds, with Manual Memory Management

15

What do we Prove in the End?

16

Soundness Theorem:
If holds, then running the program e is safe and cannot
generate an “Out of Memory” error with a heap of size ≥ S.

The Garbage Collector Enters the Scene

● OCaml (and many other languages) comes with a Garbage Collector (GC).
● There is no free operation.
● Instead, if space is needed, the GC will free unreachable locations.

17

● The GC simplifies the life of the programmer:
○ No more “use after free” bug
○ No more “double free” bug

● But reasoning about space becomes difficult: where space is recovered?

Going Back to Pizzas

● In standard recipes, there is no “put this ingredient away” instruction.
● Instead, if we ever lack space on our table,
● we have to lookup if an ingredient will be used again or not.

18

Formal Verification of Heap Space Bounds with GC

≈

Will my Table be Large Enough for so Many Ingredients?

What is the Minimal Heap Space Usage of this Program?

19

● The allocation of a consumes 101 free memory words.
● The allocation of b consumes 101 free memory words.
● The allocation of c does not need new space!

The GC can deallocate a, and the allocator can reuse its space.

Reachability and Unreachability

How does the GC compute the set of reachable locations?

● First it determines the set of roots (≈ local variables)
● Then the GC “walks the heap”
● Parts of the heap that cannot be reached by this process can be freed.

20

Hence, a location is unreachable if:
● It is not a root.
● It is not pointed-by any reachable heap block.

Contribution: A Separation Logic for Heap Space with GC

21

Soundness Theorem:
If holds, then running the program e with a GC is safe
and cannot generate an “Out of Memory” error with a heap of size ≥ S.

Key idea: 1 is one free ◇ or freeable memory word

Conclusion

What I did not show (ask me details during the pizza break (at your own risk)):

● The various assertions of the logic
● The details on concurrency
● The reasoning on first-class functions (a.k.a closures)
● Case studies: the logic can be used on small programs
● Everything is mechanized in Coq

22

Takeaway: we can reason about heap space in the presence of a GC.

Main Takeaway: we can reason about unreachability.

Thank you for your attention!

23

Do not ask an AI for “a smiling pizza”:

	Diapo 1
	If We Haven’t Met
	Computer Science
	Programs are Pizza Recipes
	Cambium 1: Designing and Implementing PL
	Cambium 2: Reasoning about Programs
	Cambium 3: Reasoning About Proofs
	Focus on: Reasoning about Programs
	The CompCert Compiler
	Separation Logic (≈ 2000)
	Separation Logic: Basics
	Separation Logic: Reasoning Rules
	Beyond Functional Correctness
	Space Credits for Heap Space
	Heap Space Bounds, with Manual Memory Management
	What do we Prove in the End?
	The Garbage Collector Enters the Scene
	Going Back to Pizzas
	What is the Minimal Heap Space Usage of this Program?
	Reachability and Unreachability
	Contribution: A Separation Logic for Heap Space with GC
	Conclusion
	Diapo 23

