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Decision support systems for

Anomaly detection clinical routine data

Ninon Burgos



High-dimensional multimodal data (genetic, environment,
imaging)

A é >
% &
& = R
< . &
() ) N
v % &
= S
% = 5 «
) (o
A ) 2 © X©
S O ) <O S
%, [ N N
(S [eS N a
e @) > S S
4 0, Z Qo
%, %, N\
2 % N
e % % ;
o (7 ¥
e, £ «\pﬁ\oﬂ
(0} WO
z % Q .\506\ o 0 al AY
Ys S ) )
coun\\f\
ubstance \
-\
/'7 use De\ v

F

ASR thought + attention + other I——| [l |Psychiatry '——l Spatial orientation - correct
) Delay,
Physical I-\/ ay dis :
" test counting g204
\ N .
Sy COLp 4

Og,
peid® . Y dis,
Demographics Unf
/0/01 g g,
o 4 90 5¢ 5
e \8\ r
\ 7
N & ey,
Q
"o\&

®
Other Age Sex Head size
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Computational pathology and high-content microscopy e > 7
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Stanley Durrleman
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Plague object in WSI patch Attention map

Daniel Racoceanu
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Anomaly detection for the diagnosis of brain disorders e o
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Structural MRI FDG PET Amyloid PET

Alzheimer’s disease
Neurodegenerative disorder
10% of people = 65 years old

Healthy

V — Alzheimer’s

D) —— disease In the future

Improved diagnosis and
treatment, with
neuroimaging?

Currently
Diagnosis from clinical
symptoms & cognitive tests

Research Gap. Onset of clinical symptoms is
preceeded by neurophysiological changes
(years or decades prior)

- How can we improve the analysis of neuroimaging data to aid the diagnosis of brain disorders?
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Supervised Learning

Classification + Highly accurate

mm Requires annotated
training data

I Difficult to
generalise to
different types of
anomalies

Segmentation
Model

Abnormal Pineapple mask Pineapple mask
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Unsupervised Learning

Generative
Model

Generative
Model

Abnormal

Trained on healthy data
No need for annotated training

data

Good generalization abilities

B Harder to train
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State of the Art in Medical Anomaly Detection

Normal Pineapple mask Abnormal

+ Trained on synthetic abnormal scans

B Difficult to generalise to different types of anomalies
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State of the Art in Medical Anomaly Detection

Supervised Learning

\ Normal Abnormal )

\ Abnormal Pineapple mas)

Pineapple mask

g REQuires annotated training data
Difficult to generalise

Unsupervised Learning

Training
phase

Inference

Trained on healthy data

No need for annotated training
data

Good generalization abilities

Harder to train
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Normal Pineapple mask ~ Abnormal Pineapple mask

Trained on synthetic abnormal
scans

Difficult to generalise to different
types of anomalies
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Reconstruction, an Example




Variational Autoencoder (VAE)

Input
X

Training

Healthy input image

Inference

&

Real image
(unknown diagnosis)

Encoder Latent Decoder
94(z|x) space po(x|z)
o(x)
— 5 > — ~N = = = =
z
p(x)
3D fully upsample +
convolution connected 3D convolution

ARAMIS
LAB 21

AAAAAAAAAAAAAAAA

‘
"

Healthy
reconstructed image

Pseudo-healthy
reconstructed image

Lo,p (x) = Eq, (z1x) [l0g pe (x|2)] — Dy1(q¢ (2|2)|Ipe (2))
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Global

Corruptions Medical Alterations Destructions Corruptions Pathologies
conditions
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1. Sample-level: label 1 or 0 if image is
out-of-distribution

2. Object-level: mask of anomalies

128 x 128 x 128: 0.461
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Research objectives:

1. Improve the quality of pseudo-
healthy images

2. Generate robust abnormality maps
by modelling uncertainty

3. Extend the detection of anomalies
to multimodal neuroimaging data

4. Validate the approach with the
support of clinicians

" Anomaly
Generative model — .
detection
Subject-specific

abnormality map

Subject-specific pseudo-
healthy image
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