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1. Mathematically modelling program behaviour
2. Reasoning on our Model
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An example of a programming language

Python is defined in natural language in the Python Language Reference:

“The if statement is used for conditional execution:
It selects exactly one of the suites by evaluating the expressions one by
one until one is found to be true; then that suite is executed.”

It also has a Reference Implementation called CPython (probably
installed on your computer)



Natural language isn't enough

class D(dict):
def __getitem__(self, key):
return "overridden"

class A(object):

pass
a = A()
a.__dict__ = D()
a.foo = "not overridden"

print(a.foo)
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Natural language isn't enough

class D(dict):
def __getitem__(self, key):
return "overridden"

class A(object): CPython: "not overridden"
pass
PyPy: "overridden"
a = A()
a.__dict__ = D()
a.foo = "not overridden"

print(a.foo)



A programming language is a set of instructions that “do things”



Defining Meaning - Semantics of the Syntax

while b '= 0:

if a > b:
a=a-b>b
else:
b=Db-a
return a
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Defining Meaning - Semantics of the Syntax

We will refer to the nodes of the AST
as expressions, and say that they
evaluate to values

variable| varlab\e variable varlable
name: a name: b name: b name a
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Operational Semantics

If e, — True and e; — n4 then Elf e, e, e, — ny

If e, — False and e, — n, then Elf e, e; e, — Ny



Modelling Computation

EIf
if b: O
X = X + 1
return x
else:
return x
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if b:
X = X + 1
return x
else:
return x

10
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Program Logics
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Program Logics

cisavaluevst Pv
C respects P =

¢ can step, and V¢’ s.t. ¢ — ', ¢’ respects P

ey respects (Ab, if b then e, respects P else e, respects P) —
Elf ey eq e, respects P

P describes functional correctness, we get runtime safety implicitly!
12



Proof Assistants

Don't write out formal proofs by hand, use proof assistants instead

& LIV

THEOREM PROVER
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File Edit
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Options Buffers Tools Coq Proof-General Help
mma MergeSort_spec n:

(exists split, lookup_name n "split" = ret split /\ split_spec split) ->
= ret merge /\ merge_spec merge) ->

(exists merge, lookup_name n "merge"
mergesort_spec (VCloRec n __bindingsi2 "merge_sort").
oof.

(* Destruct the hypotheses on split and merge *)
destruct 1 as (split&8Hsplita_split_spec).
destruct 1 as (merge&Hmerged_merge_spec).

unfold mergesort_spec; intros 1 2.

eapply pure_rec_call with (P := mergesort_pre).
{ assumption. }

clear H 1.

intros mergesort 1 IH Hpre.

eepply pure_eval_match. { pure_path. }
pure_match; abstract_env.

{ pure_const. auto. } (* Branch: "[]" *)
{ pure_data. auto. } (* Branch: '[x]" *)

(* Branch: "_" *)

{ assert (exists m, length (x@) = S m) as [m Heql].
{ subst. destruct x0; [ congruence | eauto ]. }
eapply pure_eval_let_pair.
eapply pure_eval_app.

(* Use knowledge that [split] e [n] *)

eapply pure_eval path. simpl. rewrite Hsplit
pure_ret.

pure_path.

(* FIXME Remove *) Unshelve. 8 : exact (x :: x0@).
encode. 2-5:shelve.

(* Use knowledge that [split] & [split_spec] *)
eapply pure_nono. { apply _split_spec. }
intros [11 12] (HU1 & H12 & Hperm); simpl in *.
unfold mergesort_pre in Hpre;

rewrite <- Hperm in Hpre; apply Forall_app in Hpre as [?7].

simpl_extend; simpl.

eapply pure_eval_let.

{ eapply pure_eval_app. pure_path. pure_path.
encode. (* FIXME *)
(* Use the induction hypothesis on [11] *)D

merge.veosiris> 69%  (328,48) Git-master (Coq Script(3-) Holes Trim)

*goals*

2%
25

!

Hmerge : lookup_name n "merge"
_merge_spec i merge_spec merge

n

split_spec : split_spec split

erge : val

ergesort : val

Hpre : mergesort_pre []
IH : Vy: list Z,
wf_relation y []
— mergesort_pre y — { call mergesort #y ensures mergesort_post y raises 1 }
0= "1 ~> #[];
"merge_sort" ~> mergesort;

n

n

n

0 ~ { ocaml "]

goal 2 (ID 606) is:
n@ ~ { ocaml "[x]"
goal 3 (ID 608) is:
n® + { ocaml "let 11, 12 = sp...n nerge 11" 12'"
ensures mergesort_post (x :: x0) raises L }

U @%%-
19 let rec merge_sort 1 =
match 1 with

20

I

SiEer-

*goals*

list (var * val)

ret merge

ensures mergesort_post [] raises L }

ensures mergesort_post [x] raises L }

Bot

(6,32)

(Coq Goals Trim)

[ [1->1]

| [x] -> [x]

| _ >
let 11,
let 11"
let 12'

merge 11' 12'

merge.nl

1

2 =

Bot

split 1 in
merge_sort 11 in
merge_sort 12 in

(28,0)

Git-master

(Fundamental +2 Trim)



Large scale verification projects:

- CompCert: An optimizing C compiler
- Catala: A formalisation of the French tax code
- HACL*: A cryptographic algorithm library
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