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Who am I?

• PhD Student in my 2nd year

• Co-organiser of the Junior Seminar

• Part of the Cambium team

Supervisor: François Pottier

Thesis title:

”Osiris : a Separation Logic Verification Framework for OCaml”
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Who are we?

Cambium

Programming Languages

• Design: Programming Constructs, Type Systems

• Implementation: Compilers, Parsing, Memory Models

• Formalisation: Proof assistants, Logic, Specification

Keywords: Functional, Strongly Typed, Concurrent, Garbage Collected
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In this talk

1. Mathematically modelling program behaviour

2. Reasoning on our Model
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A programming language is a set of instructions that “do things”

Syntax Semantics
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An example of a programming language
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An example of a programming language

Python is defined in natural language in the Python Language Reference:

“The if statement is used for conditional execution:

It selects exactly one of the suites by evaluating the expressions one by

one until one is found to be true; then that suite is executed.”

It also has a Reference Implementation called CPython (probably

installed on your computer)
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Natural language isn’t enough

c lass D ( dic t ) :

def __getitem__ (self , key ) :

return "overridden"

c lass A ( object ) :

pass

a = A ( )

a . __dict__ = D ( )

a . foo = "not overridden"

pr int (a . foo )

CPython: "not overridden"

PyPy: "overridden"
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A programming language is a set of instructions that “do things”
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Defining Meaning - Semantics of the Syntax

while b ! = 0 :

i f a > b :

a = a - b

else :

b = b - a

return a

We will refer to the nodes of the AST

as expressions, and say that they

evaluate to values
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Operational Semantics

If e1 −→ n1 and e2 −→ n2 then

EAdd e1 e2 −→ ??
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Operational Semantics

If eb −→ True and e1 −→ n1 then

EIf eb e1 e2 −→ ??

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2
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Modelling Computation

i f b :

x = x + 1

return x

else :

return x

EIf
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Modelling Computation

i f b :

x = x + 1

return x

else :

return x

x+1
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Modelling Computation

i f b :

x = x + 1

return x

else :

return x
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Progam Verification

Once we have a model, we can reason on it

Properties we can verify:

• Runtime safety

• Functional correctness

• Resource usage

• Effectful behaviour
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Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb,

if b then

e1 respects P

else

e2 respects P

) =⇒

EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!
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Proof Assistants

Don’t write out formal proofs by hand, use proof assistants instead
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Large scale verification projects:

• CompCert: An optimizing C compiler

• Catala: A formalisation of the French tax code

• HACL*: A cryptographic algorithm library
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