
Finding Meaning: Semantics and Verification in

Programming Languages

Remy Seassau

8 December 2024

Cambium, Inria Paris

Who am I?

• PhD Student in my 2nd year

• Co-organiser of the Junior Seminar

• Part of the Cambium team

Supervisor: François Pottier

Thesis title:

”Osiris : a Separation Logic Verification Framework for OCaml”

1

Who are we?

Cambium

Programming Languages

• Design: Programming Constructs, Type Systems

• Implementation: Compilers, Parsing, Memory Models

• Formalisation: Proof assistants, Logic, Specification

Keywords: Functional, Strongly Typed, Concurrent, Garbage Collected

2

Who are we?

Cambium

Programming Languages

• Design: Programming Constructs, Type Systems

• Implementation: Compilers, Parsing, Memory Models

• Formalisation: Proof assistants, Logic, Specification

Keywords: Functional, Strongly Typed, Concurrent, Garbage Collected

2

Who are we?

Cambium

Programming Languages

• Design: Programming Constructs, Type Systems

• Implementation: Compilers, Parsing, Memory Models

• Formalisation: Proof assistants, Logic, Specification

Keywords: Functional, Strongly Typed, Concurrent, Garbage Collected

2

Who are we?

Cambium

Programming Languages

• Design: Programming Constructs, Type Systems

• Implementation: Compilers, Parsing, Memory Models

• Formalisation: Proof assistants, Logic, Specification

Keywords: Functional, Strongly Typed, Concurrent, Garbage Collected

2

In this talk

1. Mathematically modelling program behaviour

2. Reasoning on our Model

3

A programming language is a set of instructions that “do things”

Syntax Semantics

4

A programming language is a set of instructions that “do things”

Syntax

Semantics

4

A programming language is a set of instructions that “do things”

Syntax Semantics

4

An example of a programming language

5

An example of a programming language

Python is defined in natural language in the Python Language Reference:

“The if statement is used for conditional execution:

It selects exactly one of the suites by evaluating the expressions one by

one until one is found to be true; then that suite is executed.”

It also has a Reference Implementation called CPython (probably

installed on your computer)

5

An example of a programming language

Python is defined in natural language in the Python Language Reference:

“The if statement is used for conditional execution:

It selects exactly one of the suites by evaluating the expressions one by

one until one is found to be true; then that suite is executed.”

It also has a Reference Implementation called CPython (probably

installed on your computer)

5

An example of a programming language

Python is defined in natural language in the Python Language Reference:

“The if statement is used for conditional execution:

It selects exactly one of the suites by evaluating the expressions one by

one until one is found to be true; then that suite is executed.”

It also has a Reference Implementation called CPython (probably

installed on your computer)

5

Natural language isn’t enough

c lass D (dic t) :

def __getitem__ (self , key) :

return "overridden"

c lass A (object) :

pass

a = A ()

a . __dict__ = D ()

a . foo = "not overridden"

pr int (a . foo)

CPython: "not overridden"

PyPy: "overridden"

6

Natural language isn’t enough

c lass D (dic t) :

def __getitem__ (self , key) :

return "overridden"

c lass A (object) :

pass

a = A ()

a . __dict__ = D ()

a . foo = "not overridden"

pr int (a . foo)

CPython: "not overridden"

PyPy: "overridden"

6

Natural language isn’t enough

c lass D (dic t) :

def __getitem__ (self , key) :

return "overridden"

c lass A (object) :

pass

a = A ()

a . __dict__ = D ()

a . foo = "not overridden"

pr int (a . foo)

CPython: "not overridden"

PyPy: "overridden"

6

A programming language is a set of instructions that “do things”

7

Defining Meaning - Semantics of the Syntax

while b ! = 0 :

i f a > b :

a = a - b

else :

b = b - a

return a

We will refer to the nodes of the AST

as expressions, and say that they

evaluate to values

8

Defining Meaning - Semantics of the Syntax

We will refer to the nodes of the AST

as expressions, and say that they

evaluate to values

8

Defining Meaning - Semantics of the Syntax

We will refer to the nodes of the AST

as expressions, and say that they

evaluate to values

8

Operational Semantics

If e1 −→ n1 and e2 −→ n2 then

EAdd e1 e2 −→ ??

9

Operational Semantics

If e1 −→ n1 and e2 −→ n2 then

EAdd e1 e2 −→ n1 + n2

9

Operational Semantics

If e1 −→ n1

and e2 −→ n2 then

EAdd e1 e2 −→ n1 + n2

9

Operational Semantics

If e1 −→ n1 and e2 −→ n2 then EAdd e1 e2 −→ n1 + n2

9

Operational Semantics

If eb −→ True and e1 −→ n1 then

EIf eb e1 e2 −→ ??

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2

9

Operational Semantics

If eb −→ True and e1 −→ n1 then

EIf eb e1 e2 −→ n1

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2

9

Operational Semantics

If eb −→ True

and e1 −→ n1 then

EIf eb e1 e2 −→ n1

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2

9

Operational Semantics

If eb −→ True and e1 −→ n1 then EIf eb e1 e2 −→ n1

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2

9

Operational Semantics

If eb −→ True and e1 −→ n1 then EIf eb e1 e2 −→ n1

If eb −→ False and e2 −→ n2 then EIf eb e1 e2 −→ n2

9

Modelling Computation

i f b :

x = x + 1

return x

else :

return x

EIf

10

Modelling Computation

i f b :

x = x + 1

return x

else :

return x

EAdd

10

Modelling Computation

i f b :

x = x + 1

return x

else :

return x

x+1

10

Modelling Computation

i f b :

x = x + 1

return x

else :

return x

x

10

Modelling Computation

i f b :

x = x + 1

return x

else :

return x

10

Progam Verification

Once we have a model, we can reason on it

Properties we can verify:

• Runtime safety

• Functional correctness

• Resource usage

• Effectful behaviour

11

Progam Verification

Once we have a model, we can reason on it

Properties we can verify:

• Runtime safety

• Functional correctness

• Resource usage

• Effectful behaviour

11

Progam Verification

Once we have a model, we can reason on it

Properties we can verify:

• Runtime safety

• Functional correctness

• Resource usage

• Effectful behaviour

11

Progam Verification

Once we have a model, we can reason on it

Properties we can verify:

• Runtime safety

• Functional correctness

• Resource usage

• Effectful behaviour

11

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb,

if b then

e1 respects P

else

e2 respects P

) =⇒

EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb,

if b then

e1 respects P

else

e2 respects P

) =⇒

EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb,

if b then

e1 respects P

else

e2 respects P

) =⇒
EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb, if b then

e1 respects P

else

e2 respects P

) =⇒
EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb, if b then e1 respects P else e2 respects P) =⇒
EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Program Logics

c respects P :=

c is a value v s.t. P v

c can step, and ∀c′ s.t. c −→ c′, c′ respects P

eb respects (λb, if b then e1 respects P else e2 respects P) =⇒
EIf eb e1 e2 respects P

P describes functional correctness, we get runtime safety implicitly!

12

Proof Assistants

Don’t write out formal proofs by hand, use proof assistants instead

13

Large scale verification projects:

• CompCert: An optimizing C compiler

• Catala: A formalisation of the French tax code

• HACL*: A cryptographic algorithm library

15

