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e EXcitation-contraction myofibre model

e 3D non-linear constitutive and equilibrium equations

e Coupling with blood circulation

e Preliminary 1D simulations
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EXxcitation-contraction myofibre model
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Hill-Maxwell rheological model

e I/; and E,: series and parallel elements— elastic (Wong 71, Mirsky &
Parmley 73);

e FE.. contractile (electrically activated) element.
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E. as proposed in (Bestel & Sorine 2000; Bestel, Clément & Sorine 2001)

(.LTC = —(|gc| + [u])ge + kg + oolul+,
ke = —(|ec] + |ul)ke + kolul|+ (1)
Oc = kcgo + 0+ Véca

w (Input): electrical excitation related to chemical quantities (in particular
calcium concentration).

Note:

e (1) based on sliding filament model of Huxley (57) and distribution-moment
approach of Zahalak (81).

e Compatible with molecular nanomotor theory (Prost 94).
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3D constitutive and equilibrium equations

We need to address 3D behaviour and large displacements/strains.
Use of rheological model with 3D non-linear problem:

e Parallel branches

* Addition of (2nd Piola-Kirchhoff) stresses
0=0pT01DNX N,

n. unit vector tangent to muscle fibre direction.

* Equality of (Green-Lagrange) strains

Ep—=6&, 51D:E EqjMiTy .
,J
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e Series branch (*1D”)

1+eip=(14+¢e)(1+es),

(composition of deformations)
Oc  Og

l4+e, 1+¢&.

01D =

(formal thermodynamical considerations).

With o, = 04(es), o p = a () and (1) the behaviour is defined: “c = a(y)".

— Equation of dynamics: div(F'-0) —pij =0

(' deformation gradient).
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Geometrical data
Based on data from Auckland Bioengineering Institute

Mesh refinement performed by using:

e Surface mesh refinement: YAMS (INRIA-GAMMA);
e 3D automatic mesh generation: GHS3D (INRIA-GAMMA);

e Interpolation of fiber data.
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Refined mesh
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Streamline representation of fibers
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Focus on (typically) left ventricle: internal volume V, pressure p,.Note: p,
assumed uniform inside cavity.
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Electrical analogy for circulation

External circulation: f = Cp, + %, (simplified “windkessel”);

Behaviour of valve: f = v [p, — pal+;

Fluid conservation: f = —V, (systolic and isovolumetric phases).
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Note:

e In practice: v “big” (p, ~ pa)-

e During isovolumetric stages (f = 0, p, < py). constrained deformation—
p, Lagrange multiplier.

e In fact R and C' vary: controlled by nervous system.
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Objective: experiment with (1D) contractile constitutive equations—
“pre-identify” parameters.
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Use linearized elasticity (large displacements non-linearities “standard”).

[ pij— %(kp‘S +o0c) =0,

(T:C = —(ge| + [ul)oc + kcéc + oolul+,
ke = —(|éc| + u])ke + kolul+,

0. = ks(e —e¢),
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t (ms)
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Electrical excitation (propagating from right to left)

Global stress o Contractile stress o,
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