Towards Model-Based Estimation of the Cardiac Electro-Mechanical Activity from ECG Signals and 3D images

Frédérique Clément, Dominique Chapelle, Michel Sorine Inria Rocquencourt, ICEMA Research Project*

* « Images of Cardiac Electro-Mechanical Activity », Cooperative research initiative involving the Inria projects Epidaure, Macs, Sinus, Sosso.

See http://www-rocq.inria.fr/who/Frederique.Clement/icema.html

Outline

- ICEMA Project
- Images of the Cardiac Electro-Mechanical Activity
- Models of the Cardiac Electro-Mechanical Activity
- Simulation of the controlled Cardiac-Muscle Contraction (D. Chapelle)
- Conclusions and perspectives

1. ICEMA: Images of Cardiac Electro-Mechanical Activity

Scientific and clinical challenges:

- Combining 3D ultrasound images with N-channel ECG in order to:
 - obtain a dynamical representation of excitation-contraction coupling on the whole heart scale
 - obtain patient-specific local parameters assessing heart function
- Modeling: find a good balance between "model realism" and "well-posedness" of identification or observation problems.
- Simulation, Parameter Identification, State Observation

ICEMA Project is a first step (May 2000-May 2002) towards these objectives

Flow diagram of the ICEMA project

The identification problem

Towards Model-Based Estimation...

2. Images of the Cardiac Electro-Mechanical Activity

Towards Model-Based Estimation...

Deformation Imaging

Example of ultrasound Images (before/after processing)

Towards Model-Based Estimation...

4D Echocardiography

Echocard3D Images : 9 frames, 8 instants

Model-Based Image Segmentation

Method:

A simple "shape to ultrasound" model is inverted:

A uniform surface potential (interaction potential between computed shapes and measured ultrasound-images) is minimized under regularity constraints on shapes and motions).

Result:

A sequence of 3D surfaces following 3D ultrasound-images. May be used as input data to estimate stress and strain.

Epidaure project/ATL/Philips Collaboration

Montagnat-Delingette-MICCAI'00

ECG Imaging

Noninvasive ElectroCardioGraphic Imaging can reconstruct Cardiac Surface Potentials from Body Surface Potentials (Rudy et al, van Oosterom,...).

Method: Realistic "Electrostatic Torso-Models" are inverted (Least-Square Pseudo-Inverse)

Result:

Sequences of Cardiac Surface Potentials, equivalent to the Cardiac Electric Activity. May be used as input data to estimate Cardiac Volume Potentials.

3. Models of the Cardiac Electro-Mechanical Activity

Towards Model-Based Estimation...

Heart-scale Modeling

Towards Model-Based Estimation...

Example of Electro-Mechanical Model

- E-output : $ecg(d, t) = L(\nabla u(t), d)$ (ECG along direction d), u (AP) M-output : $\Omega^{Heart}(t) = \bigcup \{\underline{y}(t)\}$ (Image), $\underline{\varepsilon}(\underline{y})$, $\underline{\sigma}$ (strain and stress tensors)
- Measurements : $ecg^*(d_j, t), \quad \Omega^{Heart^*}(t_i)$
- (with $\underline{F}(y)$ deformation gradient)

A key feature: the controlled constitutive law

Towards Model-Based Estimation...

A Multi-Scale Modeling Approach

Towards Model-Based Estimation...

Mechanical Behavior: Multi-Scale Modeling Approach

Myofibre scale:

$$\begin{cases} \dot{k}_c = -(|u| + |\dot{\varepsilon}|)k_c + k_0|u|_+ \\ \dot{\sigma}_c = -(|u| + |\dot{\varepsilon}|)\sigma_c + k_c\dot{\varepsilon} + \sigma_0|u|_+ \\ \sigma = k_c\xi_0 + \sigma_c + \eta\dot{\varepsilon} \end{cases}$$

Resulting from an Huxley model on the sarcomere scale (Bestel, MS,2000):

$$\begin{cases} \partial_t n + \dot{\varepsilon} \partial_{\xi} n = f(1-n) - gn \\ \int_{-\infty}^{+\infty} \partial_{\xi} n &= f(1-n) - gn \end{cases}$$

 $\begin{bmatrix} \sigma(t) = \int_{-\infty} \partial_{\xi} W_1(\xi) n(\xi, t) d\xi + \eta \dot{\varepsilon} \\ \text{which represents the collective behavior,} \\ \text{on the molecular scale, of 2-state myosin} \\ \text{nanomotors (Jülicher, Adjari et Prost, 97)} \end{bmatrix}$

$$\eta \dot{x} = -\partial_x W(x,t) + \sqrt{2\eta k_B T} b + F$$

Structure des muscles striés aux diverses échelles

Electrical Behavior: Multi-Scale Modeling Approach

Service Cell

Cardiac fibre

Action Potential

Models of various complexities: Luo-Rudy (with ionic currents) , ... Or, FitzHugh-Nagumo (simple model of the Action Potential).

4. Application: Simulation of controlled Cardiac Muscle Contraction

D. Chapelle

Towards Model-Based Estimation...

5. Conclusions and perspectives

Results:

- Image-segmentation techniques
- An electrically-controlled constitutive law for cardiac myofibres. It is currently being embedded into a 3D macroscopic model.
- This model is consistent with (Multiscale EM-Modeling):
 - (Mechanics) The ``sliding filament hypothesis" and current nanomotor theory.
 - (Electricity) Different control levels: AP-control (tissue) and Ca²⁺ (cells).

Perspectives:

- Joint processing of 3D ultrasound images and N-channels ECG based on EM-Models could reduce ill-posedness of some "inverse problems", could give more insight...
 - \Rightarrow We need EM-Signals, E-preprocessing techniques for ICEMA...
- Multiscale EM-modeling could allow zooming where needed ?
 - From the tissue scale "Simple AP-Propagation/Complex Geometry"
 - To the cell scale "Complex Ionic-currents/Simple Geometry"
 Useful for studying inhomogeneous domains (locally fatty or fibrous tissue) ?
- Useful for the diagnosis of ARVD (Arrhytmogenic Right Ventricular Dysplasia) ?

More on the Micro-Macro Approach

Molecular motor scale

(Funhouse Films)

Towards Model-Based Estimation...

Crossbridges: 4-stroke nanomotors

Towards Model-Based Estimation...

Motion of a myosin head

Langevin equation

$$\eta \dot{x} = -\partial_x W_i(x) + \sqrt{2\eta k_B T} b(t,\omega) + F_{ext}$$

Fokker Planck equation

$$\partial_t p_i - \frac{1}{\eta} \Big\{ k_B T \partial_x p_i + \big[\partial_x W_i(x) - F_{ext} \big] p_i \Big\} = \Pi_i$$
$$\Pi_{AM} = -\Pi_M = f p_M - g p_{AM} \qquad i = M, \ AM$$

u troponin-bound $[Ca^{++}]$ ion

Sarcomere-Scale Modeling

Geometrical properties:

Myosin heads rest sites lie a distance l away from one another Actin binding sites lie a distance s away from one another

 $W_{AM}(x+l) = W_{AM}(x)$ (s/l not a rational number)

Statistical properties: from molecular to sarcomere scale 1 The collective behaviour of motors is equivalent to that of a unique motor, with $P_{AM}(\xi, t) = l < \rho_{AM}(x, \xi) >_N$, $\xi = x \mod l$

2
$$n(\xi,t) = l P_{AM}(\xi,t)$$
 and $P_M(\xi,t) = 1/l - P_{AM}(\xi,t) + O(1/N)$

where
$$\rho_{AM}(x,\xi) = \frac{1}{N} \sum_{j=1}^{N} \delta_{AM,I_j} \delta(x+j \cdot s-\xi), \quad I_j = M, AM$$

$$<
ho>_N=\lim_{m\to\infty}rac{1}{2m}\int_{-ml}^{ml}dx\sum_{I_1,...,I_N}
ho(\xi;x,I_1,\ldots,I_N)p(x,I_1,\ldots,I_N)$$

Huxley-like sliding filament model

$$egin{array}{rcl} \partial_t n &+& \dot{arepsilon} \ \partial_\xi n = f(1-n) - gn \ \sigma(t) &=& - \int_{-\infty}^{+\infty} \partial_\xi W_{AM}(\xi) n(\xi,t) d\xi + \eta \dot{arepsilon} \end{array}$$

 $\begin{aligned} f(\xi,t) &= |u(t)|_{+} \text{ for } \xi \in [0,1] \ (=0 \text{ elsewhere}) \\ g(\xi,t) &= |u(t)|_{+} |\dot{\varepsilon}(t)|_{-} f(\xi,t) \end{aligned}$

u intracellular $[Ca^{++}]$

Cardiac Fibre-Scale Modeling

From sarcomere to myofibre scale

Summing parallel behaviour of crossbridges

$$egin{array}{rll} k_c(t)&=&k_0\int_{-\infty}^{+\infty}n(\xi,t)d\xi \ \sigma_c(t)&=&\sigma_0\int_{-\infty}^{+\infty}\xi n(\xi,t)d\xi \end{array}$$

 $nd\xi$ proportion of actin-myosin crossbridges whose deformation belongs to $[\xi, \xi + d\xi]$ here $-\partial_{\xi}W_{AM}(\xi) = \sigma_0\xi$

Controlled constitutive law for the contractile elements

$$egin{array}{rll} \dot{k}_c &=& - \left(|u| + |\dot{arepsilon}|
ight) \, k_c \, + \, k_0 \, |u|_+ \ \dot{\sigma}_c &=& - \left(|u| + |\dot{arepsilon}|
ight) \, \sigma_c \, + \, k_c \, \dot{arepsilon} \, + \, \sigma_0 \, |u|_+ \ \sigma &=& k_c \xi_0 + \sigma_c + \eta \dot{arepsilon} \, \, visco-elasto-plastic \, type \end{array}$$

u electro-chemical input: action potential

- u > 0 contraction
- u < 0 active relaxation
- u = 0 passive relaxation

