Mathematical model of the human colon

Rafael Muñoz Tamayo and Béatrice Laroche

UEPSD(UR910), MIA(UR341), L2S (UMR 8506)

Seminar of SISYPHE-INRIA ROCQUENCOURT 19th may 2008

The Context

Thèse

- Director: Eric Walter (L2S)
- Supervisors:
 Béatrice Laroche (L2S)
 Marion Leclerc (UEPSD-INRA Jouy en Josas)
 Kiên Kiêu (MIA-INRA Jouy en Josas)
- Partner: Jean Philippe Steyer (LBE-INRA Narbonne)
- Project: AlimIntest ANR

Capital: Bogotá

Population: 45 millions

Language: Spanish

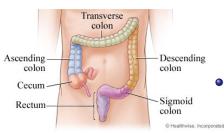
Surface: 1 141 748 km²

- My Background
 - Chemical Engineer.
 Universidad Nacional de Colombia. 2004
 - Master in Automatic Control.Universidad Nacional de Colombia. 2006
- Now: PhD student in Physics (2nd year. 27th november). Université Paris-Sud INRA Jouy en Josas L2S-Supélec

Plan

- The Human Colon
- 2 Motivation
- Mathematical model
 - Phenomena
 - Hydraulic Representation
 - Transport Flux
 - Biological Reactions
 - State equations
 - Model Characterization
- Validation framework
 - Modelling of invitro homoacetogenesis
- 5 Perspectives and Conclusions

Physiology



- Function target: get energy through Anaerobic Degradation of complex carbohydrates:
 - Alimentary fibers
 - Mucus: endogenous source, secreted by epithelial cells
- Microbial community: + 800 species.
 Two diferents microhabitats: Lumen and Mucus

- Interactions host-bacterial: starting to be understood
- Microbiota: role on human health
- Limitations in the experimentation:
 - Uncultured bacteria
 - Samples in some cases can not be representative: Ethical considerations

An *in silico* model would be useful to:

- Improve the understanding of :
 - Carbohydrate fermentation
 - the stability of the digestive system
 - Role of the microbiota on IBD, Obesity
- Study the influence of dietary regimes on human gastrointestinal microbiota
- Design experiments both in vivo and in vitro

- Interactions host-bacterial: starting to be understood
- Microbiota: role on human health
- Limitations in the experimentation:
 - Uncultured hacteria
 - Samples in some cases can not be representative: Ethical considerations

An *in silico* model would be useful to:

- Improve the understanding of :
 - Carbohydrate fermentation
 - Impact of the microbiota on the stability of the digestive system
 - Role of the microbiota on IBD, Obesity
- Study the influence of dietary regimes on human gastrointestinal microbiota
- Design experiments both in vivo and in vitro

- Interactions host-bacterial: starting to be understood
- Microbiota: role on human health
- Limitations in the experimentation:
 - Uncultured bacteria
 - Samples in some cases can no be representative: Ethical considerations

An *in silico* model would be useful to:

- Improve the understanding of :
 - Carbohydrate fermentation
 Impact of the microbiota on
 - Impact of the microbiota on the stability of the digestive system
 - Role of the microbiota on IBD, Obesity
- Study the influence of dietary regimes on human gastrointestinal microbiota
- Design experiments both in vivo and in vitro

Related works

- Microbial competition [Ballyk et al, 2001]
- VFA absorption [Minekus et al, 1999]
- Interaction Host vs Microbiota [Wilkinson, 2002]
- Fermentation in vivo and in vitro models: [Leclerc et al, 1997], [Macfarlane et al, 1998]
- Effect of transit time: [Child et al, 2006]

None of these models integrate the physiology, the bioreactions, the transport flux with the functional microbial diversity

- The microbiota can be functionally represented
- The colon can be defined as a high-rate system:
 - High biomass concentration: formation of aggregates in the mucus
 - Resistance to hydrodynamic forces

- In spite of its geometry, there are some factors that produce mixing:
 - Peristaltic movement
 - Shed of epithelial cells
 - Gas production
- The colon can be represented by a series of chemostats

- The microbiota can be functionally represented
- The colon can be defined as a high-rate system:
 - High biomass concentration: formation of aggregates in the mucus
 - Resistance to hydrodynamic forces

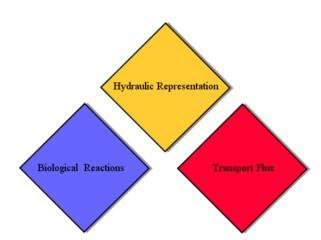
- In spite of its geometry, there are some factors that produce mixing:
 - Peristaltic movement
 - Shed of epithelial cells
 - Gas production
- The colon can be represented by a series of chemostats

- The microbiota can be functionally represented
- The colon can be defined as a high-rate system:
 - High biomass concentration: formation of aggregates in the mucus
 - Resistance to hydrodynamic forces

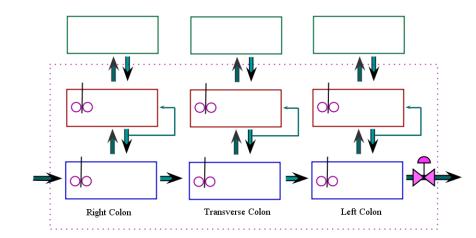
- In spite of its geometry, there are some factors that produce mixing:
 - Peristaltic movement
 - Shed of epithelial cells
 - Gas production
- The colon can be represented by a series of chemostats

- The microbiota can be functionally represented
- The colon can be defined as a high-rate system:
 - High biomass concentration: formation of aggregates in the mucus
 - Resistance to hydrodynamic forces

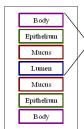
- In spite of its geometry, there are some factors that produce mixing:
 - Peristaltic movement
 - Shed of epithelial cells
 - Gas production
- The colon can be represented by a series of chemostats



Hydraulic Representation



Transport Flux

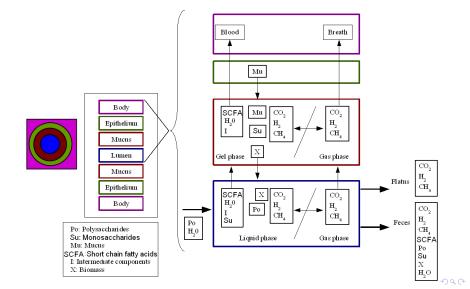


Po: Polysaccharides Su: Monosaccharides Mu: Mucus

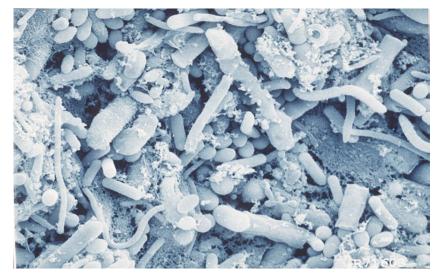
SCFA:Short chain fatty acids
I: Intermediate components

X: Biomass

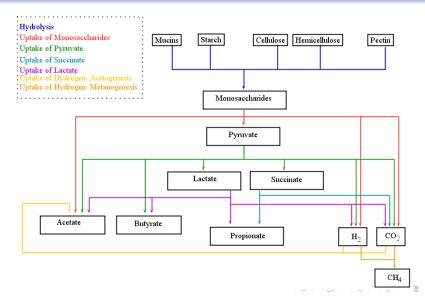
Transport Flux



Biological Reactions



Biological Reactions



For the Lumen

$$\dot{x}_i^l = \left(\frac{q_{in}}{V_l}\right) x_{i,in}^l - \left(\frac{q_{out}}{V_l}\right) x_i^l + b_i \left(\frac{V_m}{V_l}\right) x_i^m + \sum_{j=2}^{13} v_{i,j}^l \rho_j^l \tag{1}$$

$$\dot{s}_{i}^{I} = \left(\frac{q_{in}}{V_{I}}\right) s_{i,in}^{I} - \left(\frac{q_{out}}{V_{I}}\right) s_{i}^{I} - \gamma_{i}^{I} s_{i}^{I} + \sum_{i=1}^{7} v_{i,j}^{I} \rho_{i}^{I} - Q_{i}^{I}$$
 (2)

For the mucus

$$\dot{x}_{i}^{m} = -b_{i}x_{i}^{m} + \sum_{i=2}^{13} v_{i,j}^{m} \rho_{j}^{m}$$
(3)

$$\dot{S}_{i}^{m} = \gamma_{i}^{l} S_{i}^{l} \left(\frac{V_{l}}{V_{m}} \right) - \gamma_{i}^{m} S_{i}^{m} + \Gamma_{i} + \sum_{j=1}^{7} v_{i,j}^{m} \rho_{j}^{m} - Q_{i}^{m}$$
 (4)

Gas phase

$$\dot{s}_{i}^{g} = \left(\frac{q_{gin}}{V_{g}}\right) s_{i,in}^{g} - \left(\frac{q_{gout}}{V_{g}}\right) s_{i}^{g} + Q_{i} \left(\frac{V_{l/m}}{V_{g}}\right)$$
 (5)

$$Q_i = k_L a(S_{L,i} - M_i K_{H,i} p_{gas,i})$$
 (6)

Kinetic rates

Process ↓ j	Kinetic rate
1 Hydrolysis	$ \rho_1 = k_{hyd} s_1 $
2 Uptake sugars	$\rho_2 = \mu_{max_2} \frac{s_2}{Ks_2 + s_2} x_2$
3 Uptake pyruvate	$ ho_3 = \mu_{ extit{max}_3} rac{s_3}{Ks_3 + s_3} x_3$
4 Uptake succinate	$\rho_4 = \mu_{max_4} \frac{s_4}{Ks_4 + s_4} x_4$
5 Uptake lactate	$ ho_5 = \mu_{max_5} rac{s_5}{Ks_5 + s_5} x_5$
6 Uptake hydrogen: Ac	$\rho_6 = \mu_{max_6} \frac{s_6}{Ks_6 + s_6} x_6$
7 Uptake hydrogen: CH ₄	$ ho_7 = \mu_{max_7} rac{s_7}{Ks_7 + s_7} x_7$
8 Decay of x _{su}	$\rho_8 = k_{d_8} x_2$
9 Decay of x _{py}	$\rho_9 = k_{d_9} x_3$
10 Decay of x_{sc}	$ \rho_{10} = k_{d_{10}} x_4 $
11 Decay of x _{la}	$\rho_{11} = k_{d_{11}} x_5$
12 Decay of x_{h2-ac}	$\rho_{12} = k_{d_{12}} x_6$
13 Decay of <i>x</i> _{<i>h</i>2_{<i>c</i>}<i>h</i>₄}	$\rho_{13} = k_{d_{13}} x_7$

- Number of state variables for each subsystem (Lumen / Mucus): 20 (17 liquid phase + 3 gas phase)
- Number of state variables for each partition: 40 (2x20)
- Number of states variables for the whole system: 120 (40x3)
- Measuring variables
 - Measures: related with the last section
 - All the variables can not be measured at the same time
 - Some variables: measured once
- Parameters: 321
 - Reduction: 94. (Knowledge)
 - Prior information
 - Estimation

- Phenonema not well defined, e.g transport of components between the subsystems, rheology
- Difficulty of measurements
- Availability of data is limited
- Limitations for in vitro experiments: most of the bacteria are uncultured
- Many studies are based on the microbiota in fecal matter

- Microsensors and FISH in mucus: spatial distribution
- Studies on artificial systems
- Study of state observers
- Bayesian approach for parameter estimation
- 16SrRNA and FISH techniques
- in vivo models: inoculated axenic rodents, biopsy in mucus

- Phenonema not well defined, e.g transport of components between the subsystems, rheology
- Difficulty of measurements
- Availability of data is limited
- Limitations for in vitro experiments: most of the bacteria are uncultured
- Many studies are based on the microbiota in fecal matter

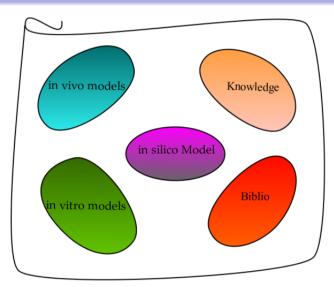
- Microsensors and FISH in mucus: spatial distribution
- Studies on artificial systems
- Study of state observers
- Bayesian approach for parameter estimation
- 16SrRNA and FISH techniques
- in vivo models: inoculated axenic rodents, biopsy in mucus

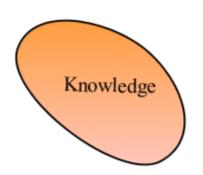
- Phenonema not well defined, e.g transport of components between the subsystems, rheology
- Difficulty of measurements
- Availability of data is limited
- Limitations for in vitro experiments: most of the bacteria are uncultured
- Many studies are based on the microbiota in fecal matter

- Microsensors and FISH in mucus: spatial distribution
- Studies on artificial systems
- Study of state observers
- Bayesian approach for parameter estimation
- 16SrRNA and FISH techniques
- in vivo models: inoculated axenic rodents, biopsy in mucus

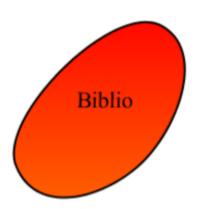
- Phenonema not well defined, e.g transport of components between the subsystems, rheology
- Difficulty of measurements
- Availability of data is limited
- Limitations for in vitro experiments: most of the bacteria are uncultured
- Many studies are based on the microbiota in fecal matter

- Microsensors and FISH in mucus: spatial distribution
- Studies on artificial systems
- Study of state observers
- Bayesian approach for parameter estimation
- 16SrRNA and FISH techniques
- in vivo models: inoculated axenic rodents, biopsy in mucus





- Microbiology
- Bioprocess engineering
- Mathematics
- Control theory
- Statistics

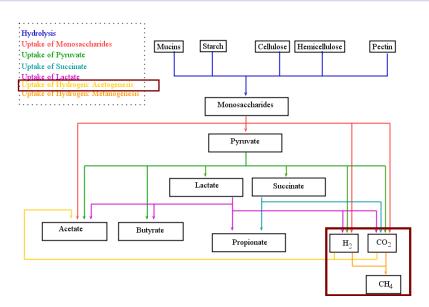


- Experimental data
- Prior information: Bayesian estimation

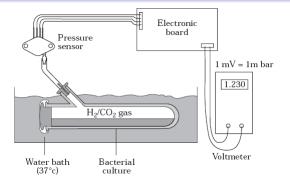
- Experimental data
- Parameter estimation

- Axenic rats: inoculated with minimal microbiota
- Fed with different fiber diets, similar to human

Modelling of invitro homoacetogenesis



invitro model



Homoacetogenesis reaction

$$4H_2 + 2CO_2 \Rightarrow CH_3COOH + 2H_2O \tag{7}$$

A. Bernalier, A. Willems, M. Leclerc, V. Rochet V. and M.D. Collins, *Ruminococcus hydrogenotrophicus sp. nov.*, a new H₂/CO₂ - utilizing bacterium isolated from human feces, *Arch Microbial*, vol. 166, 1996, pp 176-183.

Modelling of invitro homoacetogenesis

invitro model

Measured variables:

- Concentration of H₂ in gas phase. Manometric sensor and gas cromatography. mM
- Concentration of Acetate. Enzymatic assay. mM
- Optical density at 600nm. OD₆₀₀

Mathematical model equations

$$\dot{x} = \mu_{\text{max}} \frac{s_{H_2}^l}{K + s_{H_2}^l} x - k_d x,$$
 (8)

$$\dot{z} = k_d x - k_i z,\tag{9}$$

$$\dot{s}_{H_2}^g = k_L a (s_{H_2}^I - K_H R T s_{H_2}^g) \frac{V_I}{V_g}, \tag{10}$$

$$\dot{s}_{ac} = \frac{1 - Y_H}{Y_H} \mu_{\text{max}} \frac{s_{H_2}^l}{K + s_{H_2}^l} x, \tag{11}$$

$$\dot{s}_{H_2}^I = -\frac{\mu_{\text{max}}}{Y_H} \frac{s_{H_2}^I}{K + s_{H_2}^I} x - k_L a (s_{H_2}^I - K_H R T s_{H_2}^g). \tag{12}$$

$$-\frac{\mu_{\text{max}}}{Y_H} \frac{s_{H_2}^l}{K + s_{H_2}^l} x - k_L a (s_{H_2}^l - K_H R T s_{H_2}^g) = 0.$$
 (13)

$$y = (\alpha(x+z), s_{H_2}^g, s_{ac})^{\mathsf{T}}$$
(14)

Parameters

Known Parameters:

•
$$kLa = 8.33 h^{-1}$$

•
$$K_H = 0.00078 \frac{M_{lig}}{bar_{gas}}$$

•
$$\alpha = 5.9472 \frac{kgCOD/m^3}{OD_{600}}$$

Unknown Parameters:

- \bullet μ_{max}
- K
- Y_h
- k_d
- k_i

Modelling of invitro homoacetogenesis

Identifiability

Global identifiability

A model is said to be globally identifiable if all of its unknown parameters could be estimated uniquely from idealized (noise-free) observations.

Modelling of invitro homoacetogenesis

Identifiability

Denis Vidal and Joly-Blanchard (2004). Sufficient condition for uncontrolled non linear models

The model is theorically identifiable

Identification

Vector of data collected:

$$\mathbf{y}(t_i) = \mathbf{y}_{\rm m}(t_i, \theta^*) + \varepsilon_i, i = 1,...,n_{\rm t},$$
 (15)

$$\varepsilon_i \sim N(0, \Sigma).$$
 (16)

Maximum likelihood:

$$\pi_{y}(\mathbf{y}^{s}|\theta) \tag{17}$$

- Criterion 1: Least Squares on normalized errors (C1)
- Criterion 2: ∑ from the experimenetal data (C2)
- Criterion 3: ∑ unknown for synchronous data (C3)
- Criterion 4: Σ unknown for non-synchronous data (C4)

Identification

Vector of data collected

$$\mathbf{y}(t_i) = \mathbf{y}_{m}(t_i, \theta^*) + \varepsilon_i, i = 1, ..., n_t,$$
 (15)

$$\varepsilon_i \sim N(\mathbf{0}, \mathbf{\Sigma}).$$
 (16)

Maximum likelihood:

$$\pi_{V}(\mathbf{y}^{\mathrm{S}}|\theta) \tag{17}$$

- Criterion 1: Least Squares on normalized errors (C1)
- Criterion 2: Σ from the experimenetal data (C2)
- Criterion 3: Σ unknown for synchronous data (C3)
- Criterion 4: Σ unknown for non-synchronous data (C4)

Analysis

$$\mathbf{F}(\widehat{\theta}) = \sum_{i=1}^{n_t} \left[\frac{\partial \mathbf{y}_{\mathbf{m}}(t_i, \theta)}{\partial \theta} \right]_{t=\widehat{\theta}}^{\mathrm{T}} \Sigma^{-1} \left[\frac{\partial \mathbf{y}_{\mathbf{m}}(t_i, \theta)}{\partial \theta} \right]_{t=\widehat{\theta}}$$
(18)

$$P \ge \mathbf{F}(\widehat{\boldsymbol{\theta}})^{-1} \tag{19}$$

For a mathematical model in its state space representation:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \theta), \ \mathbf{x}(0) = \mathbf{x}_0(\theta), \tag{20}$$

$$\mathbf{y}_{\mathrm{m}} = \mathbf{C}\mathbf{x} \tag{21}$$

the sensitivity of \mathbf{y}_{m} with respect to the parameter $\theta_{i}\left(\frac{\partial \mathbf{y}_{\mathrm{m}}}{\partial \theta_{i}}\right)$, is given by:

$$\frac{\partial \mathbf{y}_{\mathbf{m}}}{\partial \theta_{i}} = \mathbf{C} \frac{\partial \mathbf{x}}{\partial \theta_{i}} \tag{22}$$

with $\frac{\partial \mathbf{x}}{\partial \theta_i}$ the sensitivity of \mathbf{x} with respect to θ_i , named \mathbf{s}_i .

$$\dot{\mathbf{s}}_{i} = \frac{\partial \mathbf{f}(\mathbf{x}, \theta)}{\partial \mathbf{x}} \mathbf{s}_{i} + \frac{\partial \mathbf{f}(\mathbf{x}, \theta)}{\partial \theta_{i}}, \ \mathbf{s}_{i}(0) = \frac{\partial \mathbf{x}(0)}{\partial \theta_{i}}, \ i = 1, ..., n_{p}$$
(23)

Analysis

Problem of practical identifiability

K and μ_{max} are strongly correlated Standard deviations are very high

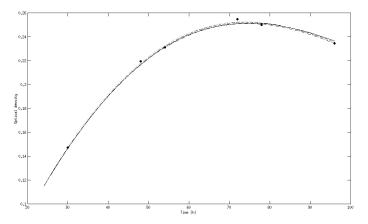
Solution

Modification on the kinetics:

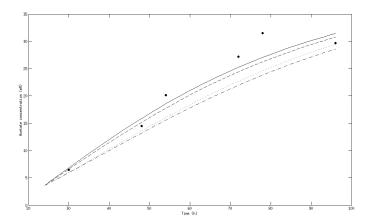
$$\mu_{max} \frac{s_{H_2}^{I}}{K + s_{H_2}^{I}} x \Rightarrow k_r s_{H_2}^{I} x, \qquad (24)$$

$$k_r = \frac{\mu_{max}}{K}. \qquad (25)$$

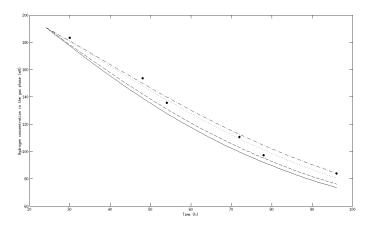
$$k_r = \frac{\mu_{max}}{\kappa}.$$
 (25)



Optical density. •: experimental data, dash: C1, solid: C2, dash-dot: C3, dot: C4.



Acetate concentration. •: experimental data, dash: C1, solid: C2, dash-dot: C3, dot: C4.



Hydrogen concentration. •: experimental data, dash: C1, solid: C2, dash-dot: C3, dot: C4.

Table: Estimated parameters

Crit.	C1	C2	C3	C4
k _r	5.50	5.71	5.10	5.41
(s.d.)	(1.34)	(1.40)	$(1.12 10^{-1})$	$(2.13 10^{-1})$
Y_H	$3.04 \ 10^{-2}$	2.79 10 ⁻²	3.55 10 ⁻²	$3.75 10^{-2}$
(s.d.)	$(1.05 \ 10^{-2})$	$(7.67 10^{-3})$	$(5.66 10^{-3})$	$(6.02 10^{-3})$
k_d	2.93 10 ⁻²	3.16 10 ⁻²	2.77 10 ⁻²	2.71 10 ⁻²
(s.d.)	$(1.78 \ 10^{-2})$	$(1.33 \ 10^{-2})$	$(3.74 10^{-3})$	$(2.76 10^{-3})$
k_i	3.42 10 ⁻²	$2.63 \ 10^{-2}$	$4.80\ 10^{-2}$	$6.37 10^{-2}$
(s.d.)	$(5.08 \ 10^{-2})$	$(2.33 \ 10^{-2})$	$(3.34 \ 10^{-2})$	$(4.73 10^{-2})$

Conclusions

- A model structure of carbohydrate degradation in human colon has been proposed, including:
 - Transport phenomena
 - Reaction mechanisms: functional diversity
 - Hydraulic representation
 - Physiology
- Identification of an invitro model for the homoacetogenesis
 - The mathematical model was satisfactory
 - The best results were obtained when Σ was assumed unknown
 - The estimates are consistent with the literature and biological knowledge
 - The practical identifiability problem found led to a modification on the kinetics
 - This work can be extended to the complete model structure

Future work

- Definition of the minimal functional microbiota
- Animal experiments
- Bayesian estimation

MERCI rafael.munoztamayo@jouy.inra.fr