Commande Robuste en Optique Adaptative

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard

INRIA - Septembre 2007

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard Commande Robuste en Optique Adaptative

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Principe Général

- Dispositif d'Optique Adaptative
- Analyseur de Surface d'Onde

Modélisation

- Miroir déformable
- Turbulence atmosphérique
- Formalisme d'état

Contrôle robuste en dimension infinie

- Application numérique
 - Passage à la dimension finie
 - Résultats

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Principe Général

- Dispositif d'Optique Adaptative
- Analyseur de Surface d'Onde

Modélisation

- Miroir déformable
- Turbulence atmosphérique
- Formalisme d'état

Contrôle robuste en dimension infinie

- Application numérique
 - Passage à la dimension finie
 - Résultats

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Principe Général

- Dispositif d'Optique Adaptative
- Analyseur de Surface d'Onde

Modélisation

- Miroir déformable
- Turbulence atmosphérique
- Formalisme d'état

Contrôle robuste en dimension infinie

- Application numérique
 - Passage à la dimension finie
 - Résultats

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Principe Général

- Dispositif d'Optique Adaptative
- Analyseur de Surface d'Onde

Modélisation

- Miroir déformable
- Turbulence atmosphérique
- Formalisme d'état
- Contrôle robuste en dimension infinie
- Application numérique
 - Passage à la dimension finie
 - Résultats

Principe Général Modélisation

Objectif d'un système d'optique adaptative :

Corriger en temps réel la netteté des images obtenues par des téléscopes terrestres

Contrainte :

La résolution d'un téléscope est limitée non par la diffraction mais par la turbulence atmosphérique

Solution existante :

Seuls des systèmes statiques et empiriques sont utilisés

Motivation :

Objectif d'un système d'optique adaptative :

Corriger en temps réel la netteté des images obtenues par des téléscopes terrestres

Contrainte :

La résolution d'un téléscope est limitée non par la diffraction mais par la turbulence atmosphérique

Solution existante :

Seuls des systèmes statiques et empiriques sont utilisés

Motivation :

Objectif d'un système d'optique adaptative :

Corriger en temps réel la netteté des images obtenues par des téléscopes terrestres

Contrainte :

La résolution d'un téléscope est limitée non par la diffraction mais par la turbulence atmosphérique

Solution existante :

Seuls des systèmes statiques et empiriques sont utilisés

Motivation :

Objectif d'un système d'optique adaptative :

Corriger en temps réel la netteté des images obtenues par des téléscopes terrestres

Contrainte :

La résolution d'un téléscope est limitée non par la diffraction mais par la turbulence atmosphérique

Solution existante :

Seuls des systèmes statiques et empiriques sont utilisés

Motivation :

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Principe général

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Analyseur de Surface d'Onde

l'Analyseur de Schack-Hartmann

mesure la déformation du miroir a posteriori.

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Correction apportée par un système d'OA

Galaxie NGC 7469

Surface de la lune

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard

Commande Robuste en Optique Adaptative

Modélisation du miroir déformable Modèle de type edp - C. Prieur, M. Lenczner.

- Avant homogénéisation :
 - Motif Y = plaque mince
 - Variables du problème

couche élastique réfléchissante couche de capteurs piézo couche d'actionneurs piézo

de taille ε

- $u^{\varepsilon}=$ tension imposée sur les inclusions actionneurs $e^{\varepsilon}=$ déplacement vertical de la plaque
- Convergence à deux échelles ($\varepsilon \to 0$) :
 - modèle microscopique localisé en Y
 - modèle macroscopique homogénéisé.
- Equation des plaques pour le déplacement transversal e :

$$\rho \ \partial_{tt}^2 e + Q_1 \Delta^2 e + Q_2 e = \widetilde{d}_{31} \Delta u$$

 $\rho =$ densité surfacique, $Q_1 =$ rigidité flexionnelle, $Q_2 =$ terme correctif

Modélisation du miroir déformable

Modèle de type edp - C. Prieur, M. Lenczner.

- Avant homogénéisation :
 - Motif Y = plaque mince (
 - Variables du problème

couche élastique réfléchissante couche de capteurs piézo couche d'actionneurs piézo

de taille ε

 $u^{\varepsilon}=$ tension imposée sur les inclusions actionneurs $e^{\varepsilon}=$ déplacement vertical de la plaque

- Convergence à deux échelles ($\varepsilon \rightarrow 0$) :
 - modèle microscopique localisé en Y
 - modèle macroscopique homogénéisé.
- Equation des plaques pour le déplacement transversal e :

$$\rho \ \partial_{tt}^2 e + Q_1 \Delta^2 e + Q_2 e = \widetilde{d}_{31} \Delta u$$

 $ho = {
m densit\acutee}$ surfacique, $Q_1 = {
m rigidit\acutee}$ flexionnelle, $Q_2 = {
m terme}$ correctif

Modélisation du miroir déformable

Modèle de type edp - C. Prieur, M. Lenczner.

- Avant homogénéisation :
 - Motif Y = plaque mince (
 - Variables du problème

couche élastique réfléchissante couche de capteurs piézo couche d'actionneurs piézo

de taille ε

 $u^{\varepsilon}=$ tension imposée sur les inclusions actionneurs $e^{\varepsilon}=$ déplacement vertical de la plaque

- Convergence à deux échelles ($\varepsilon \rightarrow 0$) :
 - modèle microscopique localisé en Y
 - modèle macroscopique homogénéisé.

Equation des plaques pour le déplacement transversal e :

$$\rho \ \partial_{tt}^2 e + Q_1 \Delta^2 e + Q_2 e = \widetilde{d}_{31} \Delta u$$

 $\rho =$ densité surfacique, $Q_1 =$ rigidité flexionnelle, $Q_2 =$ terme correctif

Modélisation du miroir déformable

Modèle de type edp - C. Prieur, M. Lenczner.

- Avant homogénéisation :

 - Variables du problème

de taille ε

 $u^{\varepsilon} =$ tension imposée sur les inclusions actionneurs $e^{\varepsilon} = december placement vertical de la plaque$

- Convergence à deux échelles ($\varepsilon \rightarrow 0$) :
 - modèle microscopique localisé en Y
 - modèle macroscopique homogénéisé.
- Equation des plagues pour le déplacement transversal e :

$$\rho \ \partial_{tt}^2 e + Q_1 \Delta^2 e + Q_2 e = \widetilde{d}_{31} \Delta u$$

 $\rho = \text{densité surfacique}, Q_1 = \text{rigidité flexionnelle}, Q_2 = \text{terme correctif}$

Principe Général Modélisation

▶ e = e(t, x) avec $x \in \Omega$ et le miroir Ω est un disque de rayon a.

▶ Conditions de bord libre pour $e \in H^2_{bc}(\Omega)$ en coord. polaire :

$$\frac{\partial^2 e}{\partial r^2} + \nu \left(\frac{1}{r} \frac{\partial e}{\partial r} + \frac{1}{r^2} \frac{\partial^2 e}{\partial \theta^2} \right) \Big|_{r=a} = 0$$
$$\frac{\partial}{\partial r} \left(\Delta e \right) + \frac{1}{r} (1 - \nu) \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial e}{\partial \theta} \right) \Big|_{r=a} = 0$$

▶ Produit scalaire en coord. cartésiennes $(x_1, x_2) \in \Omega$:

$$\begin{split} < u, v >_{H^2_{\mathrm{bc}}(\Omega)} &= \int_{\Omega} \Delta u \Delta v - (1-\nu) \left(\frac{\partial^2 u}{\partial x_1^2} \frac{\partial^2 v}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_2^2} \frac{\partial^2 v}{\partial x_1^2} \right) \\ &+ 2(1-\nu) \left(\frac{\partial^2 u}{\partial x_1 \partial x_2} \frac{\partial^2 v}{\partial x_1 \partial x_2} \right) \, dx_1 dx_2. \end{split}$$

Principe Général Modélisation

▶ e = e(t, x) avec $x \in \Omega$ et le miroir Ω est un disque de rayon a.

▶ Conditions de bord libre pour $e \in H^2_{bc}(\Omega)$ en coord. polaire :

$$\frac{\partial^2 e}{\partial r^2} + \nu \left(\frac{1}{r} \frac{\partial e}{\partial r} + \frac{1}{r^2} \frac{\partial^2 e}{\partial \theta^2} \right) \Big|_{r=a} = 0$$
$$\frac{\partial}{\partial r} \left(\Delta e \right) + \frac{1}{r} (1 - \nu) \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial e}{\partial \theta} \right) \Big|_{r=a} = 0$$

▶ Produit scalaire en coord. cartésiennes $(x_1, x_2) \in \Omega$:

$$\begin{split} < u, v >_{H^2_{\mathrm{bc}}(\Omega)} &= \int_{\Omega} \Delta u \Delta v - (1-\nu) \left(\frac{\partial^2 u}{\partial x_1^2} \frac{\partial^2 v}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_2^2} \frac{\partial^2 v}{\partial x_1^2} \right) \\ &+ 2(1-\nu) \left(\frac{\partial^2 u}{\partial x_1 \partial x_2} \frac{\partial^2 v}{\partial x_1 \partial x_2} \right) \, dx_1 dx_2. \end{split}$$

Principe Généra Modélisation

Modélisation de la turbulence atmosphérique

Phénomène aléatoire générant ϕ_{tur} :

Théorie de Kolmogorov : densité spectrale de puissance

$$W_{\phi_{\text{tur}}}(f) = 7.2 \times 10^{-3} \left(\frac{D}{r_0}\right) f^{-\frac{11}{3}}$$

Equation Stochastique pour un modèle dynamique représentant $\phi_{\rm tur}$:

$$\partial_t \phi_{\rm tur} = F \phi_{\rm tur} + G \omega_{\rm tur}$$

- Décomposition sur les modes de Zernike
- Utilisation d'un filtre formeur

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

i	$Z_i(r, \theta)$	Name
0	1	Piston
1	$2\frac{r}{a}\cos\theta$	y tilt
2	$2\frac{T}{a}\sin\theta$	x tilt
3	$\sqrt{3}(2(\frac{r}{a})^2 - 1)$	Focus
4	$\sqrt{6}(\frac{r}{a})^2 \cos 2\theta$	Astigmatism
5	$\sqrt{6}(\frac{\ddot{r}}{a})^2 \sin 2\theta$	Astigmatism
6	$\sqrt{8}(3(\frac{r}{a})^3 - 2\frac{r}{a})\cos\theta$	Pure coma
7	$\sqrt{8}(3(\frac{\bar{r}}{a})^3 - 2\frac{\bar{r}}{a})\sin\theta$	Pure coma
8	$\sqrt{5}(6(\frac{r}{a})^4 - 6(\frac{r}{a})^2 + 1)$	Spherical

$$\phi_{\rm tur}(r,\theta,t)\approx \sum_{i=3}^{N_Z}\phi_i(t)Z_i(r,\theta)$$

Construction d'une représentation d'état :

$$\partial_t \phi = F\phi + Gw.$$

 $\phi = (\phi_3, \cdots, \phi_{N_Z}), w = (w_3, \cdots, w_{N_Z})$ un bruit blanc gaussien de moyenne nulle. Filtre formeur de la forme :

- Calcul des matrices F et G
- Fréquence de coupure temporelle des Z_i

$$f_{c_i} = 0.3(n_i + 1)\frac{V}{2a}$$

 n_i ordre radial de Z_i , V vitesse moyenne du vent. On obtient

 $F = \operatorname{diag}_i(-2\pi f_{c_i})$

puis (Lyapunov - état stable)

GG' = -(FP + PF')

avec $P = \operatorname{cov}(\phi_i, \phi_j)$.

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

i	$Z_i(r, \theta)$	Name
0	1	Piston
1	$2\frac{r}{a}\cos\theta$	y tilt
2	$2\frac{\tilde{T}}{a}\sin\theta$	× tilt
3	$\sqrt{3}(2(\frac{r}{a})^2 - 1)$	Focus
4	$\sqrt{6}(\frac{r}{a})^2 \cos 2\theta$	Astigmatism
5	$\sqrt{6}(\frac{\bar{r}}{a})^2 \sin 2\theta$	Astigmatism
6	$\sqrt{8}(3(\frac{r}{a})^3 - 2\frac{r}{a})\cos\theta$	Pure coma
7	$\sqrt{8}(3(\frac{\bar{r}}{a})^3 - 2\frac{\bar{r}}{a})\sin\theta$	Pure coma
8	$\sqrt{5}(6(\frac{r}{a})^4 - 6(\frac{r}{a})^2 + 1)$	Spherical

$$\phi_{\text{tur}}(r, \theta, t) \approx \sum_{i=3}^{N_Z} \phi_i(t) Z_i(r, \theta)$$

Construction d'une représentation d'état :

$$\partial_t \phi = F\phi + Gw$$

 $\phi = (\phi_3, \cdots, \phi_{N_Z}), w = (w_3, \cdots, w_{N_Z})$ un bruit blanc gaussien de moyenne nulle. Filtre formeur de la forme :

- Calcul des matrices F et G
- Fréquence de coupure temporelle des Z_i

$$f_{c_i}=0.3(n_i+1)\frac{V}{2a}$$

 n_i ordre radial de Z_i , V vitesse moyenne du vent. On obtient

$$F = \operatorname{diag}_i(-2\pi f_{c_i})$$

puis (Lyapunov - état stable)

$$GG' = -(FP + PF')$$

avec $P = \operatorname{cov}(\phi_i, \phi_j).$

Formalisme d'état Contrôle Robuste en dimension infinie Application Numérique Principe Généra Modélisation

Modes de Zernike

Mode 1,($k = 2, j = 0$)	Mode 3, $(k = 0, j = 1)$	Mode 4, $(k = 3, j = 0)$
Mode 6, $(k = 1, j = 1)$	Mode 8, $(k = 4, j = 0)$	Mode 12, $(k = 2, j = 1)$
Mode 14,($k = 0, j = 2$)	Mode 17, $(k = 3, j = 1)$	Mode 19, $(k = 1, j = 2)$

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard

Equations Schéma d'asservissement Références

Formalisme d'état (en dimension infinie)

$$\begin{cases} x' = Ax + B_1w + B_2u\\ z = C_1x + D_{12}u\\ y = C_2x + D_{21}w \end{cases}$$

$$\begin{split} & x = (e, \partial_t e, \phi_{\text{tur}}) \text{ où } e = \text{déplacement vertical de la poutre} \\ & w = (w_{\text{mod}}, w_{\text{SH}}, w_{\text{tur}}, w_{\text{piezo}}) = \text{perturbations} \\ & u = \text{tension de contrôle} \\ & z = (\phi_{\text{res}}, u) = \text{sortie à contrôler} \\ & y = (y_{\text{pe}}, y_{\text{SH}}) = (\text{sortie piézoelectrique, sortie de l'analyseur}) \end{split}$$

$$A = \begin{pmatrix} 0 & I & 0 \\ -\frac{Q_1}{\rho} \Delta^2 - \frac{Q_2}{\rho} I & 0 & 0 \\ 0 & 0 & \mathcal{F} \end{pmatrix} B_2 = \begin{pmatrix} 0 \\ \frac{\tilde{d}_{31}}{\rho} \Delta \\ 0 \end{pmatrix} \qquad D_{12} = \begin{pmatrix} 0 \\ I \end{pmatrix}$$
$$C_2 = \begin{pmatrix} \tilde{e}_{31} \Delta & 0 & 0 \\ -\frac{4\pi}{\lambda} D & 0 & D \end{pmatrix}$$
$$B_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & \mathcal{G} & 0 \end{pmatrix} \qquad C_1 = \begin{pmatrix} -\frac{4\pi}{\lambda} I & 0 & I \\ 0 & 0 & 0 \end{pmatrix} \qquad D_{21} = \begin{pmatrix} 0 & 0 & 0 & d \\ 0 & c & 0 & 0 \end{pmatrix}$$

Equations Schéma d'asservissement Références

Formalisme d'état (en dimension infinie)

$$\begin{cases} x' = Ax + B_1w + B_2u\\ z = C_1x + D_{12}u\\ y = C_2x + D_{21}w \end{cases}$$

$$\begin{split} &x = (e, \partial_t e, \phi_{\mathsf{tur}}) \text{ où } e = d\acute{e} placement \text{ vertical de la poutre} \\ &w = (w_{\mathsf{mod}}, w_{\mathsf{SH}}, w_{\mathsf{tur}}, w_{\mathsf{piezo}}) = perturbations \\ &u = tension \ de \ contrôle \\ &z = (\phi_{\mathsf{res}}, u) = \textit{sortie} \ a \ contrôler \\ &y = (y_{\mathsf{pe}}, y_{\mathsf{SH}}) = (\textit{sortie piézoelectrique, sortie de l'analyseur}) \end{split}$$

$$A = \begin{pmatrix} 0 & I & 0 \\ -\frac{Q_1}{\rho} \Delta^2 - \frac{Q_2}{\rho} I & 0 & 0 \\ 0 & 0 & \mathcal{F} \end{pmatrix} B_2 = \begin{pmatrix} 0 \\ \frac{\tilde{d}_{31}}{\rho} \Delta \\ 0 \end{pmatrix} \qquad D_{12} = \begin{pmatrix} 0 \\ I \end{pmatrix}$$
$$C_2 = \begin{pmatrix} \tilde{e}_{31} \Delta & 0 & 0 \\ -\frac{4\pi}{\lambda} D & 0 & D \end{pmatrix}$$
$$B_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & \mathcal{G} & 0 \end{pmatrix} \qquad C_1 = \begin{pmatrix} -\frac{4\pi}{\lambda} I & 0 & I \\ 0 & 0 & 0 \end{pmatrix} \qquad D_{21} = \begin{pmatrix} 0 & 0 & 0 & d \\ 0 & c & 0 & 0 \end{pmatrix}$$

Equations Schéma d'asservissement Références

- Perturbation du modèle w_{mod} et w_{tur}, des mesures de l'analyseur w_{SH} et des capteurs w_{piezo}.
- ► Equation des poutres : $\partial_{tt}e + Q_1\Delta^2 e + Q_2e = d_{31}\Delta u + b\rho w_{mod}$ Turbulence atmosphérique : $\partial_t \phi_{tur} = \mathcal{F}\phi_{tur} + \mathcal{G}w_{tur} \implies A, B_1$
- Sortie optique à contrôler : $\phi_{\text{res}} = -\frac{4\pi}{\lambda}e + \phi_{\text{tur}}$ Amplitude du contrôle : u
- Sortie piézoelectrique du modèle : $y_{\text{Pe}} = \tilde{e}_{31}\Delta e + dw_{\text{piezo}}$ Sortie de l'analyseur de Schack Hartmann : $y_{\text{SH}} = -\frac{4\pi}{\lambda}e + \phi_{\text{tur}} + cw_{\text{SH}}$

Equations Schéma d'asservissement Références

- Perturbation du modèle w_{mod} et w_{tur}, des mesures de l'analyseur w_{SH} et des capteurs w_{piezo}.
- ► Equation des poutres : $\partial_{tt}e + Q_1\Delta^2 e + Q_2e = \tilde{d}_{31}\Delta u + b\rho w_{mod}$ Turbulence atmosphérique : $\partial_t \phi_{tur} = \mathcal{F}\phi_{tur} + \mathcal{G}w_{tur} \implies A, B_1 \text{ et } B_2.$
- Sortie optique à contrôler : $\phi_{\text{res}} = -\frac{4\pi}{\lambda}e + \phi_{\text{tur}}$ Amplitude du contrôle : $u \Rightarrow C_1$ et D_{12} .
- Sortie piézoelectrique du modèle : $y_{pe} = \tilde{e}_{31}\Delta e + dw_{piezo}$ Sortie de l'analyseur de Schack Hartmann : $y_{SH} = -\frac{4\pi}{\lambda}e + \phi_{tur} + cw_{SH}$

Equations Schéma d'asservissement Références

 $\Rightarrow C_1 \text{ et } D_{12}.$

- Perturbation du modèle w_{mod} et w_{tur}, des mesures de l'analyseur w_{SH} et des capteurs w_{piezo}.
- ► Equation des poutres : $\partial_{tt}e + Q_1\Delta^2 e + Q_2e = \tilde{d}_{31}\Delta u + b\rho w_{mod}$ Turbulence atmosphérique : $\partial_t \phi_{tur} = \mathcal{F}\phi_{tur} + \mathcal{G}w_{tur} \implies A, B_1 \text{ et } B_2.$
- Sortie optique à contrôler : $\phi_{\text{res}} = -\frac{4\pi}{\lambda}e + \phi_{\text{tur}}$ Amplitude du contrôle : u

Sortie piézoelectrique du modèle :
$$y_{pe} = \tilde{e}_{31}\Delta e + dw_{piezo}$$

Sortie de l'analyseur de Schack Hartmann : $y_{SH} = -\frac{4\pi}{\lambda}e + \phi_{tur} + cw_{SH}$

Equations Schéma d'asservissement Références

- Perturbation du modèle w_{mod} et w_{tur}, des mesures de l'analyseur w_{SH} et des capteurs w_{piezo}.
- ► Equation des poutres : $\partial_{tt}e + Q_1\Delta^2 e + Q_2 e = \tilde{d}_{31}\Delta u + b\rho w_{mod}$ Turbulence atmosphérique : $\partial_t \phi_{tur} = \mathcal{F}\phi_{tur} + \mathcal{G}w_{tur} \implies A, B_1 \text{ et } B_2.$
- Sortie optique à contrôler : $\phi_{\text{res}} = -\frac{4\pi}{\lambda}e + \phi_{\text{tur}}$ Amplitude du contrôle : $u \Rightarrow C_1 \text{ et } D_{12}$.
- Sortie piézoelectrique du modèle : $y_{pe} = \tilde{e}_{31}\Delta e + dw_{piezo}$ Sortie de l'analyseur de Schack Hartmann : $y_{SH} = -\frac{4\pi}{\lambda}e + \phi_{tur} + cw_{SH}$ $\Rightarrow C_2 \text{ et } D_{21}$

Equations Schéma d'asservissement Références

Schéma d'asservissement

Références

Modèle mathématique

- LIONS et DUVAUT, 1972 Les inéquations en Méca. et Phys.
- LIONS et MAGENES, 1968 Pb aux Limites non Homogènes
- Contrôle H_{∞} en dimension infinie
 - Bensoussan et Bernhard, 1993
 - VAN KEULEN, 1994
- Optique Adaptative
 - RODDIER, 1999 Adaptive Optics in Astronomy
 - PASCHALL et ANDERSON, 1993
 - MILLER et GROCOTT, 1999
 - Frazier, Tyson, Smith et Roche, 2004

Références

Modèle mathématique

- LIONS et DUVAUT, 1972 Les inéquations en Méca. et Phys.
- LIONS et MAGENES, 1968 Pb aux Limites non Homogènes
- ▶ Contrôle H_{∞} en dimension infinie
 - Bensoussan et Bernhard, 1993
 - VAN KEULEN, 1994
- Optique Adaptative
 - RODDIER, 1999 Adaptive Optics in Astronomy
 - PASCHALL et ANDERSON, 1993
 - MILLER et GROCOTT, 1999
 - Frazier, Tyson, Smith et Roche, 2004

Références

Modèle mathématique

- LIONS et DUVAUT, 1972 Les inéquations en Méca. et Phys.
- LIONS et MAGENES, 1968 Pb aux Limites non Homogènes
- ▶ Contrôle H_{∞} en dimension infinie
 - BENSOUSSAN et BERNHARD, 1993
 - VAN KEULEN, 1994
- Optique Adaptative
 - RODDIER, 1999 Adaptive Optics in Astronomy
 - PASCHALL et ANDERSON, 1993
 - MILLER et GROCOTT, 1999
 - FRAZIER, TYSON, SMITH et ROCHE, 2004

Théorème Application

Contrôle Robuste en dimension infinie

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard Commande Robuste en Optique Adaptative

Théorème : Cadre

- X, U, W, Z et Y sont des Hilberts séparables
- A generateur infinitesimal d'un C_0 -semi-groupe sur X ie Si $x_0 \in X$ alors il existe une solution unique $x \in C([0, T]; X) \cap C^1(0, T; X)$ pour l'équation x' = Ax avec donnée initiale $x(0) = x_0$.

$$B_1 \in \mathcal{L}(W, X), B_2 \in \mathcal{L}(U, X), C_1 \in \mathcal{L}(X, Z), D_{12} \in \mathcal{L}(U, Z), \dots$$

Système avec retour de mesure

$$\begin{cases} x'(t) = Ax(t) + B_1w(t) + B_2u(t), & x(0) = x_0\\ z(t) = C_1x(t) + D_{12}u(t), & \\ y(t) = C_2x(t) + D_{21}w(t), & t \ge 0. \end{cases}$$

On cherche un contrôleur ${\cal K}$ qui stabilise ce système et garantisse $\|w\mapsto z\|<\gamma.$ Il prend la forme :

$$\begin{cases} p'(t) &= Mp(t) + Ny(t), \quad p(0) = p_0 \\ u(t) &= Lp(t) + Ry(t), \quad t \ge 0. \end{cases}$$

Théorème : Cadre

- X, U, W, Z et Y sont des Hilberts séparables
- A generateur infinitesimal d'un C_0 -semi-groupe sur X ie Si $x_0 \in X$ alors il existe une solution unique $x \in C([0, T]; X) \cap C^1(0, T; X)$ pour l'équation x' = Ax avec donnée initiale $x(0) = x_0$.

$$\blacktriangleright B_1 \in \mathcal{L}(W, X), B_2 \in \mathcal{L}(U, X), C_1 \in \mathcal{L}(X, Z), D_{12} \in \mathcal{L}(U, Z), \dots$$

Système avec retour de mesure

$$\begin{cases} x'(t) = Ax(t) + B_1w(t) + B_2u(t), \quad x(0) = x_0\\ z(t) = C_1x(t) + D_{12}u(t),\\ y(t) = C_2x(t) + D_{21}w(t), \quad t \ge 0. \end{cases}$$

On cherche un contrôleur \mathcal{K} qui stabilise ce système et garantisse $||w \mapsto z|| < \gamma$. Il prend la forme :

$$\begin{cases} p'(t) = Mp(t) + Ny(t), \quad p(0) = p_0 \\ u(t) = Lp(t) + Ry(t), \quad t \ge 0. \end{cases}$$

Théorème : Cadre

- ► X, U, W, Z et Y sont des Hilberts séparables
- A generateur infinitesimal d'un C_0 -semi-groupe sur X ie Si $x_0 \in X$ alors il existe une solution unique $x \in C([0, T]; X) \cap C^1(0, T; X)$ pour l'équation x' = Ax avec donnée initiale $x(0) = x_0$.

$$\blacktriangleright B_1 \in \mathcal{L}(W, X), B_2 \in \mathcal{L}(U, X), C_1 \in \mathcal{L}(X, Z), D_{12} \in \mathcal{L}(U, Z), \dots$$

Système avec retour de mesure

$$\begin{cases} x'(t) = Ax(t) + B_1w(t) + B_2u(t), & x(0) = x_0 \\ z(t) = C_1x(t) + D_{12}u(t), \\ y(t) = C_2x(t) + D_{21}w(t), & t \ge 0. \end{cases}$$

On cherche un contrôleur ${\mathcal K}$ qui stabilise ce système et garantisse $\|w\mapsto z\|<\gamma.$ Il prend la forme :

$$\begin{cases} p'(t) &= Mp(t) + Ny(t), \quad p(0) = p_0 \\ u(t) &= Lp(t) + Ry(t), \quad t \ge 0. \end{cases}$$

Théorème Application

Théorème

Il existe un contrôleur \mathcal{K} qui stabilise ce système tq $||w \mapsto z|| < \gamma$ \Leftrightarrow il existe deux opérateurs définis positifs P et $Q \in \mathcal{L}(X)$ vérifiant

$$\begin{array}{ll} (i) & A^*P + PA + P(\gamma^{-2}B_1B_1^* - B_2B_2^*)P + C_1^*C_1 = 0 \\ \text{et} \ A + (\gamma^{-2}B_1B_1^* - B_2B_2^*)P & \text{genère un semi-groupe stable,} \\ (ii) & AQ + QA^* + Q(\gamma^{-2}C_1^*C_1 - C_2^*C_2)Q + B_1B_1^* = 0 \\ \text{et} \ A^* + (\gamma^{-2}C_1^*C_1 - C_2^*C_2)Q & \text{genère un semi-groupe stable,} \\ (iii) & r_{\sigma}(PQ) < \gamma^2. \end{array}$$

Dans ce cas, le contrôleur K est donné par

$$M = A + (\gamma^{-2}B_1B_1^* - B_2B_2^*)P - Q(I - \gamma^{-2}PQ)^{-1}C_2^*C_2$$

$$N = -Q(I - \gamma^{-2}PQ)^{-1}C_2^*$$

$$L = B_2^*P$$

$$R = 0.$$

Théorème Application

Théorème

Il existe un contrôleur \mathcal{K} qui stabilise ce système tq $||w \mapsto z|| < \gamma$ \Leftrightarrow il existe deux opérateurs définis positifs P et $Q \in \mathcal{L}(X)$ vérifiant

$$\begin{array}{ll} (i) & A^*P + PA + P(\gamma^{-2}B_1B_1^* - B_2B_2^*)P + C_1^*C_1 = 0 \\ et \, A + (\gamma^{-2}B_1B_1^* - B_2B_2^*)P & \text{genère un semi-groupe stable,} \\ (ii) & AQ + QA^* + Q(\gamma^{-2}C_1^*C_1 - C_2^*C_2)Q + B_1B_1^* = 0 \\ et \, A^* + (\gamma^{-2}C_1^*C_1 - C_2^*C_2)Q & \text{genère un semi-groupe stable,} \\ (iii) & r_{\sigma}(PQ) < \gamma^2. \end{array}$$

Dans ce cas, le contrôleur \mathcal{K} est donné par

$$M = A + (\gamma^{-2}B_1B_1^* - B_2B_2^*)P - Q(I - \gamma^{-2}PQ)^{-1}C_2^*C_2$$

$$N = -Q(I - \gamma^{-2}PQ)^{-1}C_2^*$$

$$L = B_2^*P$$

$$R = 0.$$

Application

Ce théorème s'applique à notre situation :

> On a existence et unicité d'une solution d'énergie finie :

méthodes standard de semi-groupes : *A* est la somme d'un opérateur autoadjoint, surjectif et dissipatif et d'un opérateur borné...

► Les opérateurs *B*₁, *B*₂, *C*₁, *D*₁₂, *C*₂ et *D*₂₁ sont bornés : *inégalité de Poincaré*

On travaille dans les espaces fonctionnels suivants :

- Espace d'état : $X = H^2_{bc}(\Omega) \times L^2(\Omega)$
- $\blacktriangleright W = \left(L^2(\Omega) \right)^4$
- $\blacktriangleright \ U = H^2(\Omega) \cap H^1_0(\Omega)$
- $\blacktriangleright Y = Z = \left(L^2(\Omega)\right)^2$

Application

Ce théorème s'applique à notre situation :

> On a existence et unicité d'une solution d'énergie finie :

méthodes standard de semi-groupes : *A* est la somme d'un opérateur autoadjoint, surjectif et dissipatif et d'un opérateur borné...

► Les opérateurs *B*₁, *B*₂, *C*₁, *D*₁₂, *C*₂ et *D*₂₁ sont bornés : *inégalité de Poincaré*

On travaille dans les espaces fonctionnels suivants :

- Espace d'état : $X = H^2_{bc}(\Omega) \times L^2(\Omega)$
- $\blacktriangleright W = \left(L^2(\Omega)\right)^4$
- $\blacktriangleright \ U = H^2(\Omega) \cap H^1_0(\Omega)$
- $\blacktriangleright Y = Z = \left(L^2(\Omega)\right)^2$

Théorème Application

Application

Ce théorème s'applique à notre situation :

> On a existence et unicité d'une solution d'énergie finie :

méthodes standard de semi-groupes : *A* est la somme d'un opérateur autoadjoint, surjectif et dissipatif et d'un opérateur borné...

► Les opérateurs *B*₁, *B*₂, *C*₁, *D*₁₂, *C*₂ et *D*₂₁ sont bornés : *inégalité de Poincaré*

On travaille dans les espaces fonctionnels suivants :

• Espace d'état :
$$X = H^2_{bc}(\Omega) \times L^2(\Omega)$$

$$\blacktriangleright W = \left(L^2(\Omega)\right)^4$$

$$\blacktriangleright \ U = H^2(\Omega) \cap H^1_0(\Omega)$$

$$\blacktriangleright Y = Z = \left(L^2(\Omega)\right)^2$$

Introduction Passage à la dimension fini Formalisme d'état Cadre numérique Contrôle Robuste en dimension infinie Résultats Application Numérique Conclusion

Application Numérique

Base Hilbertienne de $H^2_{bc}(\Omega)$

Formée des vecteurs propres de Δ^2 (avec bord $\mathcal{C}(0, a)$ libre) :

$$z_{kj}^{1}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \cos k\theta$$

$$z_{kj}^{2}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \sin k\theta$$

▶ J_k (*resp.* I_k) : fonction de Bessel (*resp.* modifiée) de 1^{ère} espèce et d'ordre k

λ_{kj} et c_{kj} : coefficients liés aux conditions de bord du miroi

 a_{kj} : coefficients de normalisation

Les
$$\left(rac{\lambda_{kj}}{a}
ight)^4$$
 sont les valeurs propres associeés.

On fixe $k_{\max} \Rightarrow$ on peut classer les modes propres selon les λ_{kj} croissants On note alors $z_{kj} = B_i$ et :

$$\forall e \in H^2_{\mathsf{bc}}(\Omega), \ e(t, r, \theta) = \sum_{i \ge 1} \alpha_i B_i(t, r, \theta).$$

Base Hilbertienne de $H^2_{bc}(\Omega)$

Formée des vecteurs propres de Δ^2 (avec bord $\mathcal{C}(0, a)$ libre) :

$$z_{kj}^{1}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \cos k\theta$$
$$z_{kj}^{2}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \sin k\theta$$

- ▶ *J_k* (*resp. I_k*) : fonction de Bessel (*resp.* modifiée) de 1^{ère} espèce et d'ordre *k*
- λ_{kj} et c_{kj} : coefficients liés aux conditions de bord du miroir
- $a_{kj} : coefficients de normalisation$

Les
$$\left(rac{\lambda_{kj}}{a}
ight)^4$$
 sont les valeurs propres associeés.

On fixe $k_{\max} \Rightarrow$ on peut classer les modes propres selon les λ_{kj} croissants On note alors $z_{kj} = B_i$ et :

$$\forall e \in H^2_{\mathsf{bc}}(\Omega), \ e(t, r, \theta) = \sum_{i \ge 1} \alpha_i B_i(t, r, \theta).$$

Base Hilbertienne de $H^2_{bc}(\Omega)$

Formée des vecteurs propres de Δ^2 (avec bord $\mathcal{C}(0,a)$ libre) :

$$z_{kj}^{1}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \cos k\theta$$
$$z_{kj}^{2}(r,\theta) = a_{kj} \left(J_{k} \left(\frac{\lambda_{kj}r}{a} \right) + c_{kj}I_{k} \left(\frac{\lambda_{kj}r}{a} \right) \right) \sin k\theta$$

- ▶ J_k (resp. I_k) : fonction de Bessel (resp. modifiée) de 1^{ère} espèce et d'ordre k
- λ_{kj} et c_{kj} : coefficients liés aux conditions de bord du miroir
- \blacktriangleright a_{kj} : coefficients de normalisation

Les
$$\left(rac{\lambda_{kj}}{a}
ight)^4$$
 sont les valeurs propres associeés.

On fixe $k_{\max} \Rightarrow$ on peut classer les modes propres selon les λ_{kj} croissants On note alors $z_{kj} = B_i$ et :

$$\forall e \in H^2_{\mathrm{bc}}(\Omega), \; e(t,r,\theta) = \sum_{i \geq 1} \alpha_i B_i(t,r,\theta).$$

Introduction Passage à la dimension fini Formalisme d'état Cadre numérique Contrôle Robuste en dimension infinie Résultats Application Numérique Conclusion

Modèle tronqué

$$\begin{cases} x'_N = A_N x_N + B_{1N} w_N + B_{2N} u_N \\ z_N = C_{1N} x_N + D_{12N} u_N \\ y_N = C_{2N} x_N + D_{21N} w_N \end{cases}$$

Matrices A_N , B_{1N} ,... calculées :

► sur la base tronquée des N_B premiers vecteurs propres de $-\frac{Q_1}{\rho}\Delta^2 - \frac{Q_2}{\rho}I$

$$B_i$$
, $\lambda_i = -\frac{Q_1}{\rho} \left(\frac{\lambda_{kj}}{a}\right)^4 - \frac{Q_2}{\rho}$

• et sur les N_Z premiers modes de Zernike utilisés pour la modélisation de ϕ_{tur} .

L'état x_N est un vecteur à $2N_B + N_Z$ coordonnées

Introduction Contrôle Robuste en dimension infinie Application Numérique

Modèle trongué

$$\begin{cases} x'_N = A_N x_N + B_{1N} w_N + B_{2N} u_N \\ z_N = C_{1N} x_N + D_{12N} u_N \\ y_N = C_{2N} x_N + D_{21N} w_N \end{cases}$$

Matrices A_N , B_{1N} ,... calculées :

sur la base tronquée des N_B premiers vecteurs propres de $-\frac{Q_1}{
ho}\Delta^2-\frac{Q_2}{
ho}I$

$$B_i$$
, $\lambda_i = -\frac{Q_1}{\rho} \left(\frac{\lambda_{kj}}{a}\right)^4 - \frac{Q_2}{\rho}$

 $\blacktriangleright \text{ et sur les } N_Z \text{ premiers moues occurs}$ L'état x_N est un vecteur à $2N_B + N_Z$ coordonnées $\begin{pmatrix} (e, B_i)_{H^2_{bc}} \\ (e', B_i)_{H^2_{bc}} \\ (\phi_{\text{tur}}, Z_n)_{L^2} \end{pmatrix}_{\substack{1 \le i \le N_B \\ 1 \le n \le N_Z}}$ et sur les N_Z premiers modes de Zernike utilisés pour la modélisation de ϕ_{tur} .

Introduction Passage à la dimension fini Formalisme d'état Cadre numérique Contrôle Robuste en dimension infinie Application Numérique Conclusion

Modèle tronqué

$$\begin{cases} x'_N = A_N x_N + B_{1N} w_N + B_{2N} u_N \\ z_N = C_{1N} x_N + D_{12N} u_N \\ y_N = C_{2N} x_N + D_{21N} w_N \end{cases}$$

Matrices A_N , B_{1N} ,... calculées :

► sur la base tronquée des N_B premiers vecteurs propres de $-\frac{Q_1}{\rho}\Delta^2 - \frac{Q_2}{\rho}I$

$$B_i$$
, $\lambda_i = -\frac{Q_1}{\rho} \left(\frac{\lambda_{kj}}{a}\right)^4 - \frac{Q_2}{\rho}$

• et sur les N_Z premiers modes de Zernike utilisés pour la modélisation de ϕ_{tur} .

L'état
$$x_N$$
 est un vecteur à $2N_B + N_Z$ coordonnées $\begin{pmatrix} e' \\ e' \end{pmatrix}$

nnées
$$\begin{pmatrix} (e', B_i)_{h_{bc}} \\ (\phi_{tur}, Z_n)_{L^2} \end{pmatrix}_{\substack{1 \le i \le N_B \\ 1 \le n \le N_Z}}$$

 $(e, B_i)_{\pi^2}$

Et avec la matrice $N_B \times N_Z$ de projection Q des "Zernike" sur les "Bessel"

$$A_{N} = \begin{bmatrix} 0 & I_{N_{B}} & 0 \\ \lambda_{i}I_{N_{B}} & 0 & 0 \\ 0 & 0 & F \end{bmatrix} \qquad C_{1N} = \begin{bmatrix} -4\pi \\ \lambda \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} B_{1N} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & G & 0 \end{bmatrix} \qquad C_{2N} = \begin{bmatrix} \operatorname{block}_{ij}\left(\tilde{e}_{31}(\Delta B_{i}, B_{j})_{H_{\mathrm{bc}}^{2}}\right) & 0 & 0 \\ -4\pi \\ \lambda \\ I_{N_{B}} \\ I_{N_{B}} \\ I_{N_{B}} \\ I_{N_{B}} \\ I_{N_{B}} \end{bmatrix} C_{2N} = \begin{bmatrix} 0 & 0 & 0 & d \\ -4\pi \\ \lambda \\ I_{N_{B}} \\ I_{N_{B}} \\ I_{N_{B}} \end{bmatrix} D_{21N} = \begin{bmatrix} 0 & 0 & 0 & d \\ 0 & c & 0 & 0 \end{bmatrix}$$

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard

Introduction Passage à la dimension finie Formalisme d'état Cadre numérique Contrôle Robuste en dimension infinie Application Numérique Conclusion

Et avec la matrice $N_B \times N_Z$ de projection Q des "Zernike" sur les "Bessel" :

$$A_{N} = \begin{bmatrix} 0 & I_{N_{B}} & 0 \\ \lambda_{i}I_{N_{B}} & 0 & 0 \\ 0 & 0 & F \end{bmatrix} \qquad C_{1N} = \begin{bmatrix} -4\pi \\ \lambda \\ I_{N_{B}} & 0 & Q \\ 0 & 0 & 0 \end{bmatrix}$$
$$B_{1N} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & G & 0 \end{bmatrix} \qquad C_{2N} = \begin{bmatrix} \operatorname{block}_{ij} \left(\tilde{e}_{31}(\Delta B_{i}, B_{j})_{H_{\mathrm{bc}}^{2}} \right) & 0 & 0 \\ -4\pi \\ I_{N_{B}} & 0 & Q \end{bmatrix}$$
$$B_{2N} = \begin{bmatrix} 0 \\ \operatorname{block}_{ij} \left(\frac{\tilde{d}_{31}}{\rho} (\Delta B_{i}, B_{j})_{H_{\mathrm{bc}}^{2}} \right) \\ 0 \end{bmatrix} \qquad D_{12N} = \begin{bmatrix} 0 \\ I_{N_{B}} \end{bmatrix} D_{21N} = \begin{bmatrix} 0 & 0 & 0 & d \\ 0 & c & 0 & 0 \end{bmatrix}$$

Lucie BAUDOUIN avec C. Prieur, D. Arzelier et F. Guignard

Constantes physiques

Données expérimentales du projet SESAME de l'Observatoire de Paris.

Mirroir bimorphe - distribution de 31 actionneurs piezo

- Constantes physiques utilisées :
 - Rayon du mirroir : $a = 41 \times 10^{-3}$ m
 - ► Coefficients de raideur : $\begin{array}{c} Q_1 = 84 \text{ Nm} \\ Q_2 = 11.25 \times 10^8 \text{ Nm}^{-3} \end{array}$
 - Densité surfacique : $\rho = 16.3 \text{ kg} \text{.m}^{-2}$
 - ► contantes piezo-électriques : $\hat{d}_{31} = -4.3 \times 10^{-3} \text{ N.V}^{-1}$ $\tilde{e}_{31} = -5.6 \times 10^{3} \text{ V.m}$

• Longueur d'onde :
$$\lambda = 10^{-6} m$$

Introduction Passage à la dimension finie Formalisme d'état Cadre numérique Contrôle Robuste en dimension infinie Résultats Application Numérique Conclusion

Hypotèses de synthèse d'un correcteur H_{∞} en dimension finie :

- (A_N, B_{1N}) et (A_N, B_{2N}) stabilisables
- (A_N, C_{1N}) et (A_N, C_{2N}) détectables

$$D_{12N}^* [C_{1N} \ D_{12N}] = [0 \ I]$$

•
$$D_{21N}[B_{1N}^* \ D_{21N}^*] = [0 \ I]$$

 \Rightarrow Les coefficients *b*, *c* et *d* doivent être non nul.

Indice de performance :

Passage à la dimension finic Cadre numérique **Résultats** Conclusion

Remarques préliminaires

"Correspondance" Zernike/Bessel

▶ 14 premiers Zernique = 92% de l'information (ref. P-A)

- Dans notre modèle, 12 Zernike donnent 75%... sans tip et tilt
- Spillover pour les Bessel ?

Passage à la dimension finie Cadre numérique **Résultats** Conclusion

Remarques préliminaires

"Correspondance" Zernike/Bessel

- > 14 premiers Zernique = 92% de l'information (ref. P-A)
- Dans notre modèle, 12 Zernike donnent 75%... sans tip et tilt
- Spillover pour les Bessel ?

Passage à la dimension finie Cadre numérique Résultats Conclusion

Résultats

► Tableau de performances (ref. P-A : 2.22 à 2.86) :

	cas 1	cas 2	cas 3
b	0.001	0.001	0.001
с	0.2	0.02	0.002
d	Ø	Ø	Ø
$\frac{ \phi_{tur} }{ \phi_{res} } H_{\infty}$	1.04	2.64	2.92
$\frac{\ \phi_{tur}\ }{\ \phi_{res}\ } H_2$	1.25	2.59	2.92

Simulation de Monte-Carlo avec 200 tirages : atténuation de 2.15 de la phase turbulente.

Passage à la dimension fil Cadre numérique Résultats Conclusion

Conclusion

- Modélisation innovante par edp
- Miroir : matrice d'intéraction VS constantes physiques
- Equation de mesures piezo inutile
- > Performances satisfaisantes en terme d'atténuation de ϕ_{tur}

Pour la suite :

- Non linéaire : prise en compte des phénomènes
 - de saturation des capteurs et actionneurs (amplitude, vitesse),
 - d'hystérésis des matériaux piezoélectriques (effet mémoire).
- Retard de l'ASO
- Prise en compte d'incertitudes

Passage à la dimension fil Cadre numérique Résultats Conclusion

Conclusion

- Modélisation innovante par edp
- Miroir : matrice d'intéraction VS constantes physiques
- Equation de mesures piezo inutile
- > Performances satisfaisantes en terme d'atténuation de ϕ_{tur}

Pour la suite :

- Non linéaire : prise en compte des phénomènes
 - de saturation des capteurs et actionneurs (amplitude, vitesse),
 - d'hystérésis des matériaux piezoélectriques (effet mémoire).
- Retard de l'ASO
- Prise en compte d'incertitudes

Passage à la dimension fir Cadre numérique Résultats Conclusion

Conclusion

- Modélisation innovante par edp
- Miroir : matrice d'intéraction VS constantes physiques
- Equation de mesures piezo inutile
- > Performances satisfaisantes en terme d'atténuation de ϕ_{tur}

Pour la suite :

- Non linéaire : prise en compte des phénomènes
 - de saturation des capteurs et actionneurs (amplitude, vitesse),
 - d'hystérésis des matériaux piezoélectriques (effet mémoire).
- Retard de l'ASO
- Prise en compte d'incertitudes