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Main topics

� Motivation

� Data Mining
� Prediction
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� Prediction

� Bioinformatics
� Molecular Biology

� Using DM in Molecular Biology

� Case studies
� Gene Expression Analysis

� Protein function prediction



Motivation

� Genome research is producing a very 
large amount of data

� Exponential growth in the number of 
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� Exponential growth in the number of 
stored bp in the last 10 years

� In the beginning of the decade, doubling 
every 12-15 months



Motivation
Source: http://www.ncbi.nlm.nih.gov/
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GenBank growth

Spring 2009



Motivation

Year Base Pairs Sequences

2000  11,101,066,288 10,106,023
2001 15,849,921,438 14,976,310

Source: http://www.ncbi.nlm.nih.gov/

André de Carvalho 5

2001 15,849,921,438 14,976,310
2002 28,507,990,166 22,318,883
2003 36,553,368,485 30,968,418
2004 44,575,745,176 40,604,319
2005 56,037,734,462 52,016,762
2006 69,019,290,705 64,893,747
2007 83,874,179,730 80,388,382
2008 99,116,431,942 98,868,465



Bioinformatics

� Several sequencing projects have been 
concluded lately

Producing a large amount of data
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� Producing a large amount of data

� Until 2009:
� 4370 projects

� Almost 1000 completed



Bioinformatics
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Fonte: http://www.genomesonline.org/gold_statistics.htm



Bioinformatics (2009)

André de Carvalho 8

Fonte: http://www.genomesonline.org/gold_statistics.htm



Bioinformatics (2007)
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Fonte: http://www.genomesonline.org/gold_statistics.htm



Bioinformatics

� Genome projects

� Complete genomes published (eukaryote)
� Human
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� Human
� Mouse
� Drosophila
� Arabidopsis thaliana 

� Domestic animals
� Bovine



Bioinformatics
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Fonte: http://www.genomesonline.org/gold_statistics.htm



Motivation

� Emphasis is progressively moving from 
data accumulation to data interpretation 

Data resulting from sequencing projects
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� Data resulting from sequencing projects
� These data needs to be analysed
� Analysis in Laboratories is difficult and 

expensive
� Sophisticated computational tools are needed
� Data mining



DM and Machine Learning

� Most DM methods are based on Machine 
Learning (ML) techniques
� Decision Trees

� Regression
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� Regression

� Clustering

� Association rules

� Artificial Neural Networks

� Support Vector Machines

� Evolutionary Computation

� Hybrid Intelligent Systems



Bioinformatics

� Definition

� Research and development of 
computational tools able to solve problems 
from Biology 
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from Biology 
� Molecular biology

Computers are to biology what mathematics 
is to physics

Harold Morowitz



Bioinformatics 

� Several areas may benefit
� Medicine  - Pharmacy - Agriculture

Molecular Medicine
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� Molecular Medicine
� Improve diagnosis of diseases

� Detect genetic predisposition to pathologies

� Create drugs based on molecular information

� Use gene therapy as drugs

� Design “custom drugs” based on individual genetic 
profiles



Molecular biology

� Study of cells and molecules 

� Particularly genome of organisms

� Main structures investigated:
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� Main structures investigated:

� Genes

� Chromosomes

� DNA

� RNA

� Proteins

nucleotides

Amino acids

Gene

expression



Molecular biology
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Molecular biology

� Central Dogma of Molecular Biology
� Information transference  

DNAReplication
They are only 
assumptions 
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Transcription

Translation

DNA

RNA

Proteins

Replication assumptions 



Molecular biology

� Recent discoveries contradict this dogma:
� RNA can suffer replication in some virus and 

plants
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� Viral RNA, through an enzyme named reverse 
transcriptase, can be transcribed in DNA

� DNA can directly produce specific proteins 
� Without going through the transcription process



Molecular biology

� A genome is all the DNA in an organism, 
including its genes

Genes carry information for making all the 
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� Genes carry information for making all the 
proteins required by all organisms

� These proteins determine, among other 
things:

� How an organism looks like, how well its body 
metabolizes food or fights infection, and 
sometimes even how it behaves



Molecular biology

� DNA (Deoxyribonucleic Acid)
� Molecule made up of two parallel twisted 
chains of alternating units of phosphoric acid 
and deoxyribose sugars
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and deoxyribose sugars
� Combination of four types of bases

� A (adenine), C (cytosine), G (guanine) and T (thymine)

� Chains are held together by links that connect each 
nucleotide in one chain to its complement in the 
other chain

� A connects with T and C with G

� Gives the double helix appearance



Molecular biology

� RNA (Ribonucleic Acid)

� Differ from DNA in several aspects:
Single stranded molecule
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� Single stranded molecule

� Contains ribose sugars
� Instead of deoxyribose

� Instead of T (thymine), contains U (uracyl)

� RNA molecules are smaller than DNA molecules



Molecular biology

� Genes 

� Subsequences of DNA 
Localized in chromosomes 
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� Localized in chromosomes 

� Used as mould for the production of proteins 

� There are segments incased between genes 
named no coding regions



Molecular biology

� Proteins
� Define structure, function and regulatory 
mechanisms in the cells
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mechanisms in the cells
� Examples of regulatory mechanisms: 

� Cell cycle control, genetic transcription 

� Can be represented by linear sequences

� Combination of 20 different amino acids 

� Three nucleotides (codon) are mapped to an 
amino acid



Molecular biology

André de Carvalho 25



Gene expression process

G C A G C T C C G G A C T C C A T . . . 

RNA Polymerase

DNA

T  
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G C A G C T C C G G A C T C C A T . . . 

promoter Transcription mRNA

A

T  



Gene expression process

T G C A G C T C C G G A C T C C A T . 
. . 

RNA Polymerase
DNA
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. . 
promoter Transcription

A C G U C G A G G C C U G A G G U A . . .

mRNA



Gene expression process

T G C A G C T C C G G A C T C C A T . 
. . 

RNA Polymerase

promoter

DNA
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promoter
Transcription

A C G  U C G A G G C C U G A G G U A . . . 

mRNA

Translation

Thr

Ribosome

A C G



Gene expression process

T G C A G C T C C G G A C T C C A T . 
. . 

RNA Polymerase

promoter Transcription

DNA

mRNA
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promoter Transcription

A C G U C G A G G C C U G A G G U A . . . 

mRNA

Translation Ribosome
His

LeuGlySer

Ser

Cys



DM and molecular biology

� Problems in Molecular Biology where ML 
techniques have been used
� Gene recognition

Reconstruction of phylogenies
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� Reconstruction of phylogenies

� Gene expression analysis

� Protein structure prediction

� Protein function prediction

� Gene regulation analysis

� Sequences alignment



Gene expression analysis

� Concerned with the identification of the 
function of genes 

� Main goals: 
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� Main goals: 

� Reveal patterns in genetic datasets 
� Looks for Patterns of similarity and dissimilarity

� Analyze expression levels of thousands of 
genes collected from different tissues



Gene expression analysis

� Several techniques are used to detect 
gene expression in a tissue

� Microarrays
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� Microarrays

� Sage

� PCR

� MPSS



Gene expression analysis

� Microarray

Tissue A Tissue B
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Gene expression analysis

� Microarray

� Green spot: gene is 
abundant in health state

Red spot: gene is 
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� Red spot: gene is 
abundant in disease state

� Yellow spot: gene is 
abundant in both states

� Black spot: neither health 
nor disease state express 
the gene



Gene expression analysis
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Gene expression analysis

� Measure expression level 
under several conditions 

� Normal and cancer tissue

Gene 1

Gene 2

Condition 1 Condition m
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� Normal and cancer tissue

� Different treatments
� Before and after using a drug

� Different periods of treatment

� Different diseases

� High cost to obtain data
Gene n



Gene expression analysis

� Data mining techniques have been largely 
used
� Classification or clustering
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� Microarray data are challenging
� High dimensionality

� Irrelevant features

� Redundant features

� Noisy data

� Small number of tissue samples



Gene expression analysis

� Usually works with a subset of genes

� Identify important genes

� Improve classification accuracy

André de Carvalho 38

� Improve classification accuracy

� Minimize effects of noise

� Make the technology more accessible
� Become a common clinical tool



Gene expression analysis

� Gene selection
� Not all the genes are relevant for tissue 
classification / clustering

Use only the most relevant genes
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� Use only the most relevant genes

� Each gene can be seen as an attribute

� Problem becomes attribute selection
� Two approaches are used

� Ranking of attributes

� Selection of the best subset of attributes



Experiment 1

� Several ML techniques have been used 
for gene expression analysis

� Tissue classification
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� Tissue classification

� Given a gene expression data set, 
which technique should be used?

� Trial and error

� Meta-learning



Experiment 1

� Examples
� 49 datasets

� 7 ML algorithms

Relative performances
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� Relative performances

� No clear winner



Metalearning

� Issues with algorithm selection
� The choice of ML algorithm should be data driven

� Trial-and-error may be very time consuming

Metalearning
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� Metalearning
� Learn from past to predict the future

� Relate data characteristics with preference for 
particular algorithms

� Construct rankings of algorithms

� It is fast and easy to apply



Metalearning

� 3 main steps

� Generation of metadata

� Induction of meta-learning model
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� Induction of meta-learning model

� Application of the metamodel



Metalearning

� Generation of metadata
� Synthesize data characteristics and algorithms’ 

performances

Metaexamples
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� Metaexamples
� Metafeatures: general, statistical and information-theoretic 
measures

� Target: ranking of estimated performances for a set of  
algorithms

� Flexible recommendation allows user to try out algorithms 
in according to his/her preference



Metalearning

� Induction of meta-learning model
� K-NN ranking method

� Find nearest metaexamples (Euclidean distance)

Combine target rankings (Average rank)
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� Combine target rankings (Average rank)



Metalearning

� Application of the metamodel
� Support user in the algorithm selection process

� Compute metaexample for new data

Metafeatures
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� Metafeatures

� Target

� Evaluation of metamodel
� Leave-one-out (LOO)

� Spearman’s rank correlation for ranking accuracy

� Default ranking as baseline method

� All metaexamples are considered



Experimental results

� Data
� 49 cancer related datasets

� Mainly disease diagnostics related
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� Diverse data characteristics

� Usual mean 0, variance 1 transformations

� Calculation of the meafeatures was preceded 
by a data reduction step

� PLS reduced the number of attributes to 3

components



Experimental results

� ML algorithms
� Common approaches

� Moderate computational burden

Easy availability
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� Easy availability

� SVM Linear, SVM RBF, DLDA, DQDA, PAM, 3-NN, PDA

� Default parameters

� Performance estimation
� .632+ estimator with 50 examples



Experimental results

� Metafeatures
� 10 Statlog continuous measures

� Log of number of examples

� Log of number of attributes
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� Log of number of classes

� Mean absolute skewness

� Mean kurtosis

� Geometric mean ratio of the standard deviations of individual 
populations to the pooled standard deviations

� First canonical correlation

� Proportion of total variation explained by the firs canonical 
correlation

� Normalized class entropy

� Average absolute correlation between continuous attributes, per 
class



Experimental results

� Mean ranking LOO
accuracies 

� Varying k = [1:20]

� Always better than default
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� Always better than default

� Smooth performance 
degradation with K

� More homogeneous 
datasets



Analysis of the results

� Before, metalearning has been applied 
to general classification domains

� Now, a successful application of 
metalearning in the gene expression 
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� Now, a successful application of 
metalearning in the gene expression 
analysis domain is presented

� Future steps
� Compare metalearning approaches

� Employ domain specific metafeatures 



Protein function prediction

� Allows the assignment of functions to 
newly discovered proteins

� Important problem in proteomics
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� Important problem in proteomics

� Common approach
� Search for similar frequencies

� Alternative Approach
� Induce a classification model



Protein function prediction

� Difficulties associated with the 
prediction of protein function

� The same protein may have more than one 
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� The same protein may have more than one 
function

� Multi-label classification

� Functions may vary from more generic to 
more specific

� Hierarchical classification



Protein function prediction

� Class hierarchy of Enzymes
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Multi-label classification

� Examples may belong to 
more than one class

Simultaneously

P
re

s.
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� Simultaneously

Temp.
P

re
s.

Cough

Aches

Fever

Cough e Aches

Cough e Fever

Cough, Aches e Fever

Aches e Fever



Multi-label classification

� Two main approaches
� Transformation into a single-label problem

� Algorithm independent
Combination of conventional single label-classifiers 
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� Combination of conventional single label-classifiers 

� Algorithm dependent
� Modification of single-label classifiers

� Modification of their internal mechanisms

� Development of new multi-label classification 
algorithms

� Encode multi-label output



Multi-label classification

� Algorithm independent transformation

� Label-based

� Instance-based
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� Instance-based
� Instance elimination

� Creation of new labels

� Label conversion
� Label elimination

� Label decomposition



Multi-label classification

� Label-based transformation
� A classifier is associated to each label / class 

� Binary classification problems  
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Classifier  Positive     Negative
A               1, 2, 3, 6      4, 5
B               1, 3, 5          2, 4, 6           
C               4                  1, 2, 3, 5, 6

Instance Classes
1 A and B
2 A
3 A and B
4 C
5 B
6 A 

Multi-label Problem

Single-label problem



Multi-label classification

� Instance-based transformation
� Instance elimination
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Instance Class
2 A
4 C
5 B
6 A 

Instance Classes
1 A and B
2 A
3 A and B
4 C
5 B
6 A 

Multi-label Problem

Single-label problem



Multi-label classification

� Instance-based transformation
� Label creation (label-powerset)
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Instance Class 
1 D
2 A
3 D
4 C
5 B
6 A 

Instance Classes
1 A and B
2 A
3 A and B
4 C
5 B
6 A 

Multi-label Problem                   Single-label problem



Multi-label classification

� Instance-based transformation
� Label elimination
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Instance Classes
1 A and B
2 A
3 A and B
4 C
5 B
6 A 

Instance Class 
1 A
2 A
3 B
4 C
5 B
6 A 

Multi-label Problem                   Single-label problem



Multi-label classification

� Instance-based transformation
� Label decomposition (cross-training method)
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Instance       Classes
1 A, B
2 A
3 A, B
4 C
5 B
6 A 

Instance       Class
1 B
2 A
3 B
4 C
5 B
6 A 

Instance    Class
1 A
2 A
3 A
4 C
5 B
6 A 

Multi-label Problem

Single-label 
problems



Multi-label classification

� Instance-based transformation
� Label decomposition (multiplicative method)

Instance       Class
1 B

Instance    Class
1 A

André de Carvalho 63

Instance       Classes
1 A, B
2 A
3 A, B
4 C
5 B
6 A 

1 B
2 A
3 A
4 C
5 B
6 A 

Instance       Class
1 B
2 A
3 B
4 C
5 B
6 A 

1 A
2 A
3 A
4 C
5 B
6 A 

Instance       Class
1 A
2 A
3 B
4 C
5 B
6 A 

Multi-label Problem

Single-label 
problems



Output encoding

� Encode desired output by binary vectors
� Multi-class problem

Class code
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Class code
A   B   C
1    1    0
1    0    0
1    1    0
0    0    1
0    1    0       
1    0    0

Instance Classes
1 A and B
2 A
3 A and B
4 C
5 B
6 A 

Multi-label Problem                   Single-label problem



Multi-label classification

� Evaluation

� Require specific measures

� Examples can be partially correct or 
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� Examples can be partially correct or 
partially incorrect classified

� Classification may use a ranking



Experiments 2

� Comparison of three algorithm independent 
methods for multi-label classification
� One-against-all (OAA)
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� One-against-all (OAA)

� Label-Powerset

� Cross-Training

� Datasets:
� Yeasts – proteins found in the organism 
Saccharomyces cerevisiae

� Sequences – protein sequences classified in 
structural families

66



Experiments

� Datasets
� Yeasts 

� 2417 examples (2385 multi-label)

103 numerical attributes
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� 103 numerical attributes

� Distribution (34, 731.5, 1816) and 4.23 classes/example

� Sequences 
� 662 examples (69 multi-label)

� 1186 nominal attributes

� Distribution (16, 54.5, 171) and 1.15 classes/example



Experiments

� Yeasts dataset

60

Accuracy

60

Accuracy

60

Accuracy
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Experiments

� Sequence dataset

100

Accuracy

100

Accuracy

100

Accuracy
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Analysis of the results

� Each method favours a specific feature 
of the dataset
� High / low frequency of multi-label 
examples
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examples

� SVMs usually presents a better 
predictive accuracy

� Similar results for other datasets and 
performance metrics



Hierarchical classification

� Classification problems where:

� Classes can be partitioned into subclasses

� Classes can be grouped into superclasses
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� Classes can be grouped into superclasses

� Data are hierarchically organized

� {1, 1.1, 1.2, ..., k, k.1, k.2}

� Classes assume an hierarchical 
organization



Hierarchical classification

� Types of hierarchical based classification

� Mandatory prediction to leaf nodes

� Prediction to any node doençadoençaSickSick
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� Prediction to any node doençadoença

SpanishSpanishSARSSARS comumcomum

CoughCough AchesAches FeverFever

SickSick

CommonCommon

CoughCough



Types of hierarchy
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(a) Trees

(b) Direct Acyclic Graphs (DAG)



Hierarchical classification

� Main approaches

� Transformation into a flat classification 
problem
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problem

� Hierarchical prediction with flat 
classification algorithms

� Top-down

� Big-bang (one-shot)



Hierarchical classification

� Transformation into a flat classification 
problem
� Reduces problem complexity
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� Most used method:
� Select a hierarchy level and perform flat 
classification in this level

� Advantage: the simplest approach

� Disadvantage: classification in the other 
levels of the hierarchy is lost



Hierarchical classification

Original problem
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Flat classification
problem



Hierarchical classification

� Hierarchical prediction with flat classification 
algorithms
� Divides the original problem into a set of flat 
classification problems
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classification problems
� A flat classification for each level

� Advantage: no need to modify flat classification 
algorithms

� Disadvantage: classifications in different levels 
may be inconsistent

� Ex. class 2 (level 2) and class 3.4 (level 3)



Hierarchical classification

Prob. 1
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Level 1

Level 2

Prob. 1

Prob. 2



Hierarchical classification

� Top-down
� Divides original problem into a set of flat 
classification problems

� Which are dealt with sequentially, level by level, from the 

André de Carvalho 79

� Which are dealt with sequentially, level by level, from the 
root

� Classification proceeds in the sub-tree associated with 
the previously chosen node

� Advantage: no need to modify flat classification 
algorithms

� Disadvantage: risk of classification error 
propagation



Hierarchical classification
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Hierarchical classification

� Big-bang

� Classification algorithm considers the whole 
hierarchy 
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hierarchy 

� Advantage: classification is carried out in 
just one go

� Disadvantage: complexity of the algorithms



Hierarchical classification
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Hierarchical classification

� Evaluation measures
� Uniform cost

� Most used

Distance-based cost
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� Distance-based cost
� Based on the distance between the predicted class and 
the true class  

� Depth dependent
� Errors at higher levels should have a higher cost 

� Semantic-based cost
� More similar classes classes have smaller penalizations



Hierarchical classification

� Evaluation measures might

� Report na accuracy rate for the whole 
hierarchy
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hierarchy

� Report na accuracy rate for each level

� Report na accuracy rate for each class



Experiment 3

� Two datasets
� G-Protein-Coupled Receptors (GPCRs)

� Enzymes
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Enzymes

� Data extracted from UniProt and 
GPCRDB

� Attributes:
� Interpro entries, along with molecular 
weight and sequence length 



Data sets

� G-Protein-Coupled Receptors (GPCRs)
� 40-50% of current drugs target GPCR activity

� 7461 instances

Class hierarchy
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� Class hierarchy
� 12/54/82/50 classes per level

� Enzymes
� Catalysts which are used to speed up chemical 
reactions within the cell

� 6925 instances

� Class hierarchy
� 2/21/48/87 classes per level



Investigated approaches

� Classifier technique: decision trees

� Four models were used:

� Flat – based on leaves
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� Flat – based on leaves

� Flat – all levels

� Top-Down

� Big-Bang
� (Clare and King, 2003)



Hierarchical classification of proteins
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Analysis of the results

� Hierarchical approaches are better than 
flat approaches 

� GPCR
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� GPCR

� Top-Down 

� Other classifiers

� Ensembles

� Different metrics



Conclusion

� Data Mining

� Motivation

Molecular Biology
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� Molecular Biology

� Bioinformatics problems

� Analysis of Gene Expression

� Protein function classification

� DM solutions



Conclusion

� Classification can be a complex tasks

� New types of problems are being 
investigated
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investigated

� And novel demands may arise

� New techniques are needed

� And metrics to evaluate them in these non-
trivial classification problems
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