A Temporal Representation of Point-Interval Relations

Björn Gottfried and Hanna Bauerdick

Caserta, March 14th, 2007

The Problem

- Situation
 - A large telecommunication company
 - Faults \rightarrow alarms generated by network resources
 - e.g. devices are out of order or traffic bursts entail problems
 - System operator tries to identify underlying faults: problematic since
 the data stream of alarms is quite complex and dense
 - Furthermore: events are imprecise wrt. time (no access to precision)
The Problem

- **Aim**
 - Automise identification of faults
 - Intermediate aim: cluster alarms → simplification for operator

 Supporting network operators in localising faults
 Reduction of information by generating high-level alarms
 Reduction of workload for the operator

System Overview

- Focus on pattern representation
Data

A = alarm(?, "AdapterGGSN", "GGN", "Communication", "GGSN lost contact with all RADIUS authentication servers associated with APN")
B = alarm(?, "AdapterGGSN", ?, "Communication", "GGSN lost contact with all RADIUS accounting servers associated with APN")
C = alarm(?, "AdapterGGSN", ?, "SNMP AGENT", "10.22.170.129")

TemporalRelations:
A HEAD_TO_HEAD B
A OLDER_AND_CONTEMPORARY C
B OLDER_AND_CONTEMPORARY C

Method

- Relational system as a mean for representing temporal information, mainly based on
 - Allen 1983, 1984
 - Vilain, Kautz 1986
 - Ladkin, Maddux 1994
 - Cohn, Hazarika 2001
Method

- Coarse set of jointly exhaustive and pairwise disjoints relations between events (e.g. alarms)
- Relation algebra → CSP (e.g. for testing the consistency of pattern descriptions or to complete knowledge)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Converse</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>before</td>
<td><</td>
<td>></td>
<td>{P_i, l_k} < {P_j, l_j}</td>
</tr>
<tr>
<td>equal</td>
<td>=</td>
<td>=</td>
<td>{P_i} = {P_j}</td>
</tr>
<tr>
<td>during</td>
<td>d</td>
<td>c</td>
<td>{P_i} ∩ {l_k}</td>
</tr>
<tr>
<td>contains</td>
<td>c</td>
<td>d</td>
<td>{l_k} ⊂ {P_i}</td>
</tr>
<tr>
<td>after</td>
<td>></td>
<td><</td>
<td>{P_i, l_k} > {P_j, l_j}</td>
</tr>
</tbody>
</table>

An example: composing relations

- Given three temporal entities: x, y, and z
- It holds: x > y and y c z
- The composition provides x > z

<table>
<thead>
<tr>
<th></th>
<th><</th>
<th>c</th>
<th>=</th>
<th>d</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td>d</td>
<td>< d = c ></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>d = c</td>
<td>c ></td>
</tr>
<tr>
<td>=</td>
<td><</td>
<td>c</td>
<td>=</td>
<td>d</td>
<td>></td>
</tr>
<tr>
<td>d</td>
<td><</td>
<td>< d = c ></td>
<td>d</td>
<td>d</td>
<td>></td>
</tr>
<tr>
<td>></td>
<td>< d = c ></td>
<td>></td>
<td>></td>
<td>d ></td>
<td>></td>
</tr>
</tbody>
</table>
Experimental Analysis

- Structure of test data set
 - 5 different adapters, 2 hour time range, 5810 alarms
 - Peak: 62 alarms per second, Mean: 0.8 alarms per second

Experimental Analysis

Based on the representation
Summary

- Method
 - A temporal (i.e. 1-dimensional) representation of events has been proposed (including points and intervals in time)
 - It can be dealt with using CSP techniques

- Application
 - Thrown alarms in telecommunication networks: mining for frequent patterns (mining for important patterns → expert knowledge)
 - The generality of the approach allows the application in other domains in the future