Introduction
A batch SOM for interval-valued data
Evaluation and examples
Concluding Remarks
References

A batch self-organizing maps algorithm for interval-valued data

Francisco de A. T. de Carvalho¹

Centro de Informatica-CIn/UFPE
Av. Prof. Luiz Freire, s/n -Cidade Universitaria, CEP 50740-540, Recife-PE, Brasil, fatc@cin.ufpe.br

Table of Contents

- Introduction
- A batch SOM for interval-valued data
- Second Second
- 4 Concluding Remarks
- 6 References

Kohonen Self-Organising Maps (SOM)

- SOM is an unsupervised neural network method which has both clustering and visualization properties
- It maps a high dimensional data space to a lower dimension (generally 2) which is called a map
- the input data is partitioned into "similar" clusters while preserving their topology
- k-means and related algorithm operates as a SOM without topology preservation and without easy visualization
- Our general aim: to have SOM algorithms able to manage (interval-valued, histogram-valued, etc) symbolic data

Related works

- Bock (2003): stochastic version of SOM for interval-valued data
- Badran et al (2005): batch version of SOM for real-valued data
- This presentation: batch version of SOM for interval-valued data with automatic weighting of the variables
- J. A. Kangas et al (1990), N. Grozavu et al (2009): stochastic versions of SOM for real-valued data with automatic weighting of the variables
- L. D. S. Pacifico and F. A. T. de Carvalho (2011): batch version of SOM for real-valued data with automatic weighting of the variables
- Adaptive distances: Diday and Govaert (1977):

The data

- Let $E = \{e_1, \dots, e_n\}$ the set of individuals
- Each individual is described by a vector of intervals:

$$\mathbf{x}_{i} = (x_{i1}, \dots, x_{ip}); x_{ij} = [a_{ij}, b_{ij}] \in \Im = \{[a, b] : a, b \in \Re \text{ and } a \leq b\} (i = 1, \dots, n; j = 1, \dots, p)$$

 Each neuron (cluster) is represented by a prototype described by a vector of intervals:

$$\mathbf{w}_r = (w_{r1}, \dots, w_{rp}); w_{rj} = [\alpha_{rj}, \beta_{rj}] \in \Im(r = 1, \dots, m; j = 1, \dots, p))$$

Adequacy criterion - I

- All the individuals belonging to E are simultaneously presented to the self-organizing map
- The algorithm alternates (iteratively) three steps: representation, weighting and affectation
- Adequacy criterion:

$$J = \sum_{i=1}^{n} \sum_{r=1}^{m} K^{T} \left(\delta(f(\mathbf{x}_{i}), r) \right) d_{\boldsymbol{\lambda}_{r}}^{2}(\mathbf{x}_{i}, \mathbf{w}_{r})$$

Adequacy criterion - II

- $d_{\lambda_r}^2(\mathbf{x}_i, \mathbf{w}_r) = \sum_{j=1}^p \lambda_{rj}[(a_{ij} \alpha_{rj})^2 + (b_{ij} \beta_{rj})^2]$ is the square of an adaptive Euclidean distance between vectors of intervals parameterized by a vector of weights $\lambda_r = (\lambda_{r1}, \dots, \lambda_{rp})$ on the variables;
- the vectors of weights λ_r (r = 1, ..., m) change at each iteration and are different from one neuron to another:
- the matriz of weights is composed by m vectors of weights $\Lambda = (\lambda_1, \dots, \lambda_m)$

Adequacy criterion - III

- f is the identification function defined from E on {1, , . . . , m}. This function gives the affectation of an individual to a cluster.
- δ(k, l) is the topological proximity between the clusters C_k and C_l on the grid
- $T = T_{max}(\frac{T_{min}}{T_{max}})^{\frac{t}{N_{iter}}}$ is a (decreasing) function of the number of iterations t already realised
- K^T is the neighborhood function of the self-organizing map; K^T is a function of the topological proximity δ as well as a function of the number T

Adequacy criterion - IV

The function

$$d_{(T, \mathbf{\Lambda})}(\mathbf{x}_i, \mathbf{w}_{f(\mathbf{x}_i)}) = \sum_{r=1}^m K^T \left(\delta(f(\mathbf{x}_i), r) \right) d_{\mathbf{\lambda}_r}^2(\mathbf{x}_i, \mathbf{w}_r)$$

is a weighting sum of distances between the individual \mathbf{x}_i and the set of prototypes \mathbf{w}_r (r = 1, ..., m).

Algorithm - I

- From an initial solution, the algorithm is repetead a fixed number of iterations;
- For each iteration, T being fixed, the adequacy criterion J is minimized in three steps: representation, weighting and affectation

Algorithm - II

1) Initialization:

- Fix m (the number of neurons or clusters), the topological distance δ , the neighborhood function K^T with T_{min} and T_{max} and the maximum number of iterations N_{iter} ;
- Set $t \leftarrow 0$ and compute T;
- Randomly select m distincts prototypes $\mathbf{w}_r^{(0)} \in E(r = 1, ..., m)$;
- Set the map $L(m, \mathbf{W}^{(0)})$, where $\mathbf{W}^{(0)} = (\mathbf{w}_1^{(0)}, \dots, \mathbf{w}_m^{(0)})$;
- Set $\Lambda^{(0)} = (\lambda_1^{(0)}, \dots, \lambda_m^{(0)})$ with $\lambda_r^{(0)} = (1, \dots, 1) (r = 1, \dots, m);$
- Affect each individual x_i to the nearest neuron (cluster) according to

$$r = f^{(0)}(\boldsymbol{x}_i) = arg \min_{1 \leq h \leq m} d_{(T, \boldsymbol{\Lambda}^{(0)})}(\boldsymbol{x}_i, \boldsymbol{w}_h^{(0)})$$

Algorithm - III

2) Step 1: Representation

- the function f and the matriz Λ are kept fixed;
- the adequacy criterion *J* is minimized on the prototypes
- set $t \leftarrow t + 1$ and compute $T = T_{max}(\frac{T_{min}}{T_{max}})^{\frac{t}{N_{iter} 1}}$;
- the components $w_{rj}^{(t)} = [\alpha_{rj}^{(t)}, \beta_{rj}^{(t)}]$ (j = 1, ..., p) of the prototype $\mathbf{w}_r^{(t)} = (w_{r1}^{(t)}, ..., w_{rp}^{(t)})$ (r = 1, ..., m) are computed for each neuron by:

$$\alpha_{rj}^{(t)} = \frac{\sum_{i=1}^{n} K^{T} \left(\delta(f^{(t-1)}(\mathbf{x}_{i}), r)\right) a_{ij}}{\sum_{i=1}^{n} K^{T} \left[\delta(f^{(t-1)}(\mathbf{x}_{i}), r)\right]}$$
$$\beta_{rj}^{(t)} = \frac{\sum_{i=1}^{n} K^{T} \left(\delta(f^{(t-1)}(\mathbf{x}_{i}), r) b_{ij}}{\sum_{i=1}^{n} K^{T} \left[\delta(f^{(t-1)}(\mathbf{x}_{i}), r)\right]}$$

Algorithm - IV

3) Step 2: Weighting

- the prototypes and the function f are kept fixed;
- the adequacy criterion J is minimized on the vectors of weights
- the components of the vector of weights $\boldsymbol{\lambda}_r^{(t)} = (\lambda_{r1}^{(t)}, \dots, \lambda_{rp}^{(t)})$, are computed, under the constraints, $\lambda_{rj} > 0$ et $\prod_{j=1}^p \lambda_{rj} = 1$, by

$$\lambda_{ij}^{(t)} = \frac{\left\{ \prod_{h=1}^{p} \left(\sum_{i=1}^{n} K^{T} \left(\delta(f^{(t-1)}(\mathbf{x}_{i}), r) \right) \left[(a_{ih} - \alpha_{ih}^{(t)})^{2} + (b_{ih} - \beta_{ih}^{(t)})^{2} \right] \right) \right\}^{\frac{1}{p}}}{\sum_{i=1}^{n} K^{T} \left(\delta(f^{(t-1)}(\mathbf{x}_{i}), r) \right) \left[(a_{ij} - \alpha_{ij}^{(t)})^{2} + (b_{ij} - \beta_{ij}^{(t)})^{2} \right]}$$

Algorithm - V

- 4) Step 3: Affectation
 - the prototypes and the matriz of weights are kept fixed;
 - the adequacy criterion J is minimized on the identification function f;
 - Affect each individual \mathbf{x}_i (i = 1, ..., n) to the nearest neuron according to

$$r = f^{(t)}(\mathbf{x}_i) = arg \min_{1 \le h \le m} d_{(T, \mathbf{\Lambda}(t))}(\mathbf{x}_i, \mathbf{w}_h^{(t)})$$

5) Stopping criterion. If $t = N_{iter} - 1$ then STOP; else go to 2 (Step 1 : Representation).

Experimental configuration

- Batch SOM with adaptive distances × Batch SOM without adaptive distances;
- Each algorithm is run 50 times on the data sets. The best result is choosen according to the adequacy criterion J;
- Number of iterations N_{iter} = 30;
- δ: Euclidean distance;
- Neighborhood function: $K^T(\delta(c,r)) = \exp\left\{-\frac{(\delta(c,r))^2}{2T^2}\right\};$
- Evaluation metrics: overall error rate of classification (OERC), corrected Rand index and F-measure

Fish data set

- 12 species of freshwater fish
- 13 interval-valued variables: Length, Weight, Muscle, Intestine, Stomach, Gills, Liver, Kidneys, Liver/muscle, Kidneys/muscle, Gills/muscle, Intestine/muscle, Stomach/muscle
- Four a priori classes:
 - Class 1 (Carnivorous): 1-Ageneiosusbrevifili/C, 2-Cynodongibbus/C, 3-Hopliasaimara/C,
 4-Potamotrygonhystrix/C
 - Class 2 (Detritivorous): 7-Dorasmicropoeus/D, 8-Platydorascostatus/D, 9-Pseudoancistrusbarbatus/D, 10-Semaprochilodusvari/D
 - Class 3 (Omnivorous): 5-Leporinusfasciatus/O 6-Leporinusfrederici/O
 - Class 4 (Herbivorous): 11-Acnodonoligacanthus/H 12-Myleusrubripinis/H

Fish data set: results

Fish data set (grid: 2×3)

	OE	RC	Rand	index	F-measure				
$T_{min}:T_{max}$	No W.	W.	No W.	W.	No W.	W.			
0.3 : 1.0	0.416	0.416	0.002	-0.033	0.503	0.438			
0.3 : 1.5	0.583	0.083	-0.140	0.500	0.388	0.747			
0.3 : 2.0	0.416	0.333	-0.120	0.093	0.438	0.580			
0.3 : 3.0	0.416	0.333	-0.052	0.043	0.449	0.504			
0.3 : 5.0	0.583	0.333	-0.104	0.120	0.435	0.644			
0.3 : 7.0	0.333	0.333	0.057	0.120	0.566	0.644			

Grid (fish data set)

T:	0.3 - 1.	0 (No W.)	T:	0.3	- 1.5 (W.)
X	X 1/2 2				1/2
1	1	3/4	1	1	3

Car data set

- 33 car models
- 8 interval-valued variables: Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width and Height
- Four a priori classes:
 - Class 1 (Utilitarian): 1-Alfa 145/U, 5-Audi A3/U, 12-Punto/U, 13-Fiesta/U,17-Lancia Y/U, 24-Nissan Micra/U, 25-Corsa/U, 28-Twingo/U, 29-Rover 25/U, 31-Skoda Fabia/U
 - Class 2 (Berlina): 2-Alfa 156/B, 6-Audi A6/B, 8-BMW serie 3/B, 14-Focus/B, 21-Mercedes Classe
 C/B, 26-Vectra/B, 30-Rover 75/B, 32-Skoda Octavia/B
 - Class 3 (Sporting): 4-Aston Martin/S, 11-Ferrari/S, 15-Honda NSK/S,16-Lamborghini/S, 19-Maserati GT/S, 20-Mercedes SL/S, 27-Porsche/S
 - Class 4 (Luxury): 3-Alfa 166/L, 7-Audi A8/L, 9-BMW serie 5/L, 10-BMW serie 7/L, 18-Lancia K/L,
 22-Mercedes Classe E/L,23-Mercedes Classe S/L, 33-Passat/L

Car data set: results

Car data set (grid: 2×5)

	OE	RC	Rand	index	F-measure				
$T_{min}:T_{max}$	No W.	W.	No W.	W.	No W.	W.			
0.3 : 2.0	0.303	0.181	0.299	0.318	0.515	0.572			
0.3 : 3.0	0.303	0.242	0.310	0.510	0.557	0.760			
0.3 : 3.5	0.303	0.212	0.315	0.583	0.565	0.797			
0.3 : 5.0	0.454	0.333	0.253	0.392	0.585	0.746			
0.3 : 9.0	0.242	0.212	0.333	0.615	0.570	0.852			
0.3 : 13.0	0.393	0.333	0.269	0.392	0.583	0.746			

Grid (car data set)

T: 0.3 - 3.5 (No W.)						0.3	- 9.	0 (V	V.)
4 3 3 1 2					4	X	Χ	Χ	3
4 4 X 3/4 4					1	Χ	Χ	Χ	2

Temperature data set - 34 cities

- 34 cities described by 12 interval-valued variables
- this data set gives the minimum and the maximum monthly temperatures of cities in degrees centigrade
- Two a priori classes:
 - Class 1 (cities mainly located between 0⁰ and 40⁰ latitudes): 3-Bahraim, 4-Bombay, 5-Cairo, 6-Calcutta, 7-Colombo, 9-Dubai, 12-Hong Kong,13-Kula Lampur, 16-Madras, 18-Manila, 20-Mexico, 23-New Delhi, 30-Sydney
 - Class 2 (cities mainly located between 40° and 60° latitudes): 1-Amsterdam, 2-Athens,
 8-Copenhagen,10-Frankfurt ,11-Geneva ,14-Lisbon,
 15-London,17-Madrid, 21-Moscow, 22-Munich, 24-New York, 25-Paris, 26-Rome, 27-San Francisco, 28-Seoul,
 29-Stockholm, 32-Tokyo, 33-Toronto, 34-Vienna, 35-Zurich

Temperature data set - 34 cities (grid: 2×8)

	OE	RC	Rand	index	F-measure	
$T_{min}:T_{max}$	No W.	W.	No W.	W.	No W.	W.
0.3 : 3.5	0.000	0.000	0.170	0.295	0.362	0.504
0.3 : 4.5	0.000	0.000	0.213	0.558	0.406	0.732
0.3 : 6.0	0.029	0.000	0.266	0.487	0.483	0.678
0.3 : 8.5	0.000	0.000	0.415	0.686	0.591	0.798
0.3 : 15.5	0.000	0.029	0.408	0.839	0.587	0.891
0.3 : 22.0	0.000	0.000	0.295	0.825	0.490	0.884

Grid (temperature data set - 34 cities)

T: 0.3 - 8.5 (No W.)						-	Γ: 0.	3 - 1	5.5	(W.))				
2	Χ	1	Χ	X	2	Х	2	Х	Χ	Χ	Χ	X	X	Χ	2
2	Χ	1	Χ	Χ	2	Χ	1	1	Χ	Χ	Χ	Χ	Χ	Χ	1

Temperature data set - 492 cities

- 492 cities described by 12 interval-valued variables
- this data set gives the average minimum and the maximum monthly temperatures of cities in degrees centigrades
- There is no a priori classification:

Grid (temperature data set - 492 cities)

	T: 0.3 - 7.0 (W.)										
113	Х	Х	Х	Х	Х	Х	100				
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				
106	Χ	Χ	Χ	Χ	Χ	Χ	173				

Temperature data set - 492 cities

Grid (prototypes: January temperatures)

	T: 0.3 - 7.0 (W.)										
[-11.1, -3.9]	[-8.0, -1.2]	[-8.2, -1.4]	[-5.7, 1.4]	[9.0, 18.7]	[12.4, 22.7]	[12.8, 23.0]	[21.0, 27.0]				
[-6.4, 0.7]	[-6.6, 0.4]	[-7.1, -0.2]	[-5.5, 1.6]	[10.5, 20.2]	[14.0, 24.0]	[14.7, 24.6]	[14.9, 24.9]				
[-5.1, 2.2]	[-5.1, 2.2]	[-5.0, 2.2]	[-2.8, 4.7]	[14.7, 28.2]	[16.2, 25.9]	16.2, 25.9]	[16.2, 25.9]				
[-3.7, 3.8]	[-3.5, 4.0]	[-2.9, 4.8]	[1.4, 9.5]	[16.5, 25.8]	[17.7, 27.2]	[17.3, 26.9]	[17.2, 6.8]				
[-4.0, 1.0]	[-1.9, 5.9]	[-1.6, 6.2]	[2.6, 10.9]	[16.6, 25.8]	[18.4, 27.8]	[18.3, 27.7]	[19.0, 29.0]				

 Prototypes average minimum and maximum January temperatures increases from left to right and from top to down in the grid

- Cluster 1 (106): barcelona, beijing, belgrade, budapest, dubrovnik, frankfurt, geneva, lisbon, lyon, madrid, marseille, milan, naple, paris, porto, rome, shangai...
- Cluster 8 (173): baghdad, bankok, brazzaville, cairo, calcutta, cayenne, dakar, hanoi, havana, hong kong, islamabad, jakarta, karthoum, kuweit, rio de janeiro, ...
- Cluster 33 (113): berlin, brussels, copenhagen, helsink, kiev, london, moscow, oslo, prague, quebec, reykjavic, seatle, st petersburg, stockholm, totonto, viena, warsaw, ...
- Cluster 40 (100): athens, beirut, buenos aires, canberra, jerusalem, lima, los angeles, mexico city, montevideo, palermo, porto alegre, pretoria, santiago, sydney, ...

Concluding Remarks

Contributions

- extension of the batch SOM algorithm to interval-valued data
- automatic weighting of the interval-valued variables based on adaptive distances

Evaluation and example

- adaptive batch SOM × non adaptive batch SOM
- four interval-valued data sets: fish, car, city temperatures
- evaluation metrics: overall error rate of classification, corrected Rand index, F-measure
- conclusion: adaptive batch SOM outperforms non adaptive batch SOM in the majority of the cases

Work in progress

- Batch SOM with city-block and Hasudorff distances to manage interval-valued data (modelling already finished; program implementations in progress)
- Batch SOM to manage histogram-valued data (modelling already finished; program implementations in progress)
- Different automatic weightings of the interval-valued variables (sum, product)

References

- H. H. Bock and E. Diday, Analysis of Symbolic Data, Springer-Verlag, Heidelberg, 2000
- E. Diday and M. Noirhome, Symbolic Data Analysis and the SODAS Software, Wiley, 2008
- 3 T.K. Kohonen, Self-Organizing Maps. Berlin, Springer, 2001
- H.-H. Bock, Clustering algorithms and kohonen maps for symbolic data, Journal of the Japanese Society of Computational Statistics 15, 217–229, 2003
- F. Badran, M. Yacoub, et S. Thiria, Self-organizing maps and unsupervised classification. In G. Dreyfus (Ed.), Neural Networks. Methodology and Applications, pp. 379–442, Springer, 2005
- J. A. Kangas, T. K. Kohonen and J. T. Laaksonen, Variants of self organizing maps, IEEE Transactions on Neural Networks 1, 93–99, 1990
- N. Grozavu, Y. Bennani and M. Lebbah, From Variable Weighting to Cluster Characterization in Topographic Unsupervised Learning, Proceedings of the International Joint Conference on Neural Networks (IJCNN'09), 1005–1010, 2009
- E. Diday et G. Govaert, Classification automatique avec distances adaptatives, R.A.I.R.O. Informatique Computer Science 11, 329–349, 1977
- 3 L. D. S. Pacifico and F. A. T. de Carvalho, A batch self-organizing maps algorithm based on adaptive distances, Proceedings of IJCNN 2011.
- F. A. T. de Carvalho and L. D. S. Pacifico, Une version batch de l'algorithme SOM pour des données de type intervalle, Comptes Rendus des Rencontres de la SFC 2011

Let $P = \{P_1, \dots, P_i, \dots, P_m\}$ be the *a priori* partition into *m* classes and $Q = \{Q_1, \dots, Q_j, \dots, Q_K\}$ be the hard partition into *K* clusters given by a clustering algorithm.

Table: Confusion matrix

	Clusters										
Classes	Q_1		Q_j		Q_K	Σ					
P ₁	n ₁₁		n _{1j}		n _{1K}	$n_{1\bullet} = \sum_{j=1}^K n_{1j}$					
:	:		:		:	: :					
Pi	n _{i1}		n _{ij}		n _{iK}	$n_{i\bullet} = \sum_{j=1}^{K} n_{ij}$					
:	:		:		:						
					•						
Pm	n _{m1}		n _{mj}		n _{mK}	$n_{m\bullet} = \sum_{j=1}^{K} n_{mj}$					
Σ	$n_{\bullet 1} = \sum_{i=1}^{m} n_{i1}$		$n_{\bullet j} = \sum_{i=1}^{m} n_{ij}$		$n_{\bullet K} = \sum_{i=1}^{m} n_{iK}$	$n = \sum_{i=1}^{m} \sum_{j=1}^{K} n_{ij}$					

The corrected Rand index is:

$$CR = \frac{\sum_{i=1}^{m} \sum_{j=1}^{K} \binom{n_{ij}}{2} - \binom{n}{2}^{-1} \sum_{i=1}^{m} \binom{n_{i\bullet}}{2} \sum_{j=1}^{K} \binom{n_{\bullet j}}{2}}{\frac{1}{2} \left[\sum_{i=1}^{m} \binom{n_{i\bullet}}{2} + \sum_{j=1}^{K} \binom{n_{\bullet j}}{2}\right] - \binom{n}{2}^{-1} \sum_{i=1}^{m} \binom{n_{i\bullet}}{2} \sum_{j=1}^{K} \binom{n_{\bullet j}}{2}}$$

where $\binom{n}{2} = \frac{n(n-1)}{2}$ and n_{ij} represents the number of objects that are in class P_i and cluster Q_j ; $n_{i\bullet}$ indicates the number of objects in class P_i ; $n_{\bullet j}$ indicates the number of objects in cluster Q_j ; and n is the total number of objects in the data set.

The traditional F – measure between class P_i (i = 1, ..., m) and cluster Q_j (j = 1, ..., K) is the harmonic mean of precision and recall:

$$F-measure(P_i, Q_j) = 2 \frac{Precision(P_i, Q_j) \times Recall(P_i, Q_j)}{Precision(P_i, Q_j) + Recall(P_i, Q_j)}$$
(2)

The *Precision* between class P_i (i = 1, ..., m) and cluster Q_j (j = 1, ..., K) is defined as the ratio between the number of objects that are in class P_i and cluster Q_j and the number of objects in cluster Q_j :

$$Precision(P_i, Q_j) = \frac{n_{ij}}{n_{\bullet j}} = \frac{n_{ij}}{\sum_{i=1}^{m} n_{ij}}$$
(3)

The *Recall* between class P_i (i = 1, ..., m) and cluster Q_j (j = 1, ..., K) is defined as the ratio between the number of objects that are in class P_i and cluster Q_j and the number of objects in class P_i :

$$Recall(P_i, Q_j) = \frac{n_{ij}}{n_{i\bullet}} = \frac{n_{ij}}{\sum_{j=1}^K n_{ij}}$$
(4)

The F – measure between the a priori partition $P = \{P_1, \dots, P_i, \dots, P_m\}$ and the hard partition $Q = \{Q_1, \dots, Q_j, \dots, Q_K\}$ given by a cluster algorithm is defined as:

$$F-measure(P,Q) = \frac{1}{n} \sum_{i=1}^{m} n_{i\bullet} \max_{1 \le j \le K} F-measure(P_i, Q_j)$$
(5)