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Introduction

Kohonen Self-Organising Maps (SOM)

@ SOM is an unsupervised neural network method which has
both clustering and visualization properties

@ It maps a high dimensional data space to a lower
dimension (generally 2) which is called a map

@ the input data is partitioned into “similar” clusters while
preserving their topology

@ k-means and related algorithm operates as a SOM without
topology preservation and without easy visualization

@ Our general aim: to have SOM algorithms able to manage
(interval-valued, histogram-valued, etc) symbolic data



Introduction

Related works

@ Bock (2003): stochastic version of SOM for interval-valued
data

@ Badran et al (2005): batch version of SOM for real-valued
data

@ This presentation: batch version of SOM for interval-valued
data with automatic weighting of the variables

@ J. A. Kangas et al (1990), N. Grozavu et al (2009):
stochastic versions of SOM for real-valued data with
automatic weighting of the variables

@ L. D. S. Pacifico and F. A. T. de Carvalho (2011): batch
version of SOM for real-valued data with automatic
weighting of the variables

@ Adaptive distances: Diday and Govaert (1977):



A batch SOM for interval-valued data

@ Let E = {ey,...,en} the set of individuals

@ Each individual is described by a vector of intervals:

X = (X,'1,...,X,'p);X,'j = [a,-j,b,-,-] ey = {[a,b] ;a,be
Randa<b}(i=1,....nj=1,...,p)

@ Each neuron (cluster) is represented by a prototype
described by a vector of intervals:
w,:(vn;,;,...,w,p);wrj: [ag, Byl € S(r=1,....,m;j=
1,...,p




A batch SOM for interval-valued data

Adequacy criterion - |

@ All the individuals belonging to E are simultaneously
presented to the self-organizing map

@ The algorithm alternates (iteratively) three steps:
representation, weighting and affectation

@ Adequacy criterion:

J= Zn: zm: KT (8(f(xi), r)) d5 (i, wr)

i=1 r=1



A batch SOM for interval-valued data

Adequacy criterion -

° dir(xi, wr) = Y24 Al(aj — ag)? + (bj — B;)?] is the
square of an adaptive Euclidean distance between vectors
of intervals parameterized by a vector of weights
Ar = (Ar1,- .., App) on the variables;

@ the vectors of weights A, (r = 1,..., m) change at each
iteration and are different from one neuron to another;

@ the matriz of weights is composed by m vectors of weights
N=(A1,. o Am)




A batch SOM for interval-valued data

Adequacy criterion - llI

@ fis the identification function defined from E on
{1,,..., m}. This function gives the affectation of an
individual to a cluster.

@ J(k, 1) is the topological proximity between the clusters Cy
and C; on the grid

t
® T = Tmax( '"'")N/rer is a (decreasing) function of the
number of |terat|ons t already realised
e KT is the neighborhood function of the self-organizing
map; K is a function of the topological proximity ¢ as well
as a function of the number T



A batch SOM for interval-valued data

Adequacy criterion - IV

The function

m
dir py (X0 Wie) = D KT (8(F(xi), 1)) 0 (i, wy)

r=1

is a weighting sum of distances between the individual x; and
the set of prototypes w, (r =1,..., m).




A batch SOM for interval-valued data

Algorithm - |

@ From an initial solution, the algorithm is repetead a fixed
number of iterations;

@ For each iteration, T being fixed, the adequacy criterion J
is minimized in three steps: representation, weighting and
affectation




A batch SOM for interval-valued data

Algorithm - Il

1) Initialization :

e Fix m (the number of neurons or clusters), the topological
distance ¢, the neighborhood function KT with T, and
Tmax and the maximum number of iterations N, ;

e Sett« 0and compute T;

e Randomly select m distincts prototypes
wﬁo) eE(r=1,...,m);

o Setthe map L(m, W), where W® = w(? ... w(¥);

o SetA® = (@, . X,©) with
XO =1, ) (r=1,...,m);

o Affect each individual x; to the nearest neuron (cluster)
according to

— fO) (y.) — i Cwl®
r=fo(x;) = arg1£nh|£m d(T’A(O))(thh )
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Algorithm - 111

2) Step 1: Representation

e the function f and the matriz A are kept fixed;
e the adequacy criterion J is minimized on the prototypes

@ sett«+ t+1and compute T = TmaX(TTmf" )N,.,9L1;

e the components W,(jt) = [afjt),,b’ﬁj’)] (j=1,...,p)of the
prototype w!) = (W ... w{)
computed for each neuron by:

() _ 2 KT (6D (xi). 1)) &y

N TS KT (R (%)), )]
50 _ Sy KT (8(F1=D(x)), r) by
T S KTIS(FD(xy), )]

Y(r=1,...,m)are
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Algorithm - IV

3) Step 2: Weighting
e the prototypes and the function f are kept fixed;
e the adequacy criterion J is minimized on the vectors of

weights
e the components of the vector of weights
A = (Afﬁ), . )\(’)) are computed, under the constraints,

Aj>0et[lyA;=1,by

{H (ZKT( 11) ) )) [(alh_a ) (blh B )ﬂ)}p
)\Ejz): h=1 \ i=1
ZKT( 000).0) [(a5 = o + by — Y]
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Algorithm - V

4) Step 3: Affectation

e the prototypes and the matriz of weights are kept fixed;
e the adequacy criterion J is minimized on the identification
function f;

o Affect each individual x; (i = 1,..., n) to the nearest neuron
according to

— f(x.) = i W
r=Ff9x;) = arg1gmh|gmd(T,A(,))(x,,wh )
5) Stopping criterion.

If f = Njter — 1 then STOP; else goto 2 (Step 1 :
Representation).



Evaluation and examples

Experimental configuration

Batch SOM with adaptive distances x Batch SOM without
adaptive distances;

Each algorithm is run 50 times on the data sets. The best
result is choosen according to the adequacy criterion J;

Number of iterations Ny = 30;
0: Euclidean distance;

Neighborhood function: K7 (5(c, r)) = exp {_%}

Evaluation metrics: overall error rate of classification
(OERC), corrected Rand index and F-measure



Evaluation and examples

Fish data set

@ 12 species of freshwater fish

@ 13 interval-valued variables: Length, Weight, Muscle,
Intestine, Stomach, Gills, Liver, Kidneys, Liver/muscle,
Kidneys/muscle, Gills/muscle, Intestine/muscle,
Stomach/muscle

@ Four a priori classes:

@ Class 1 (Carnivorous): 1-Ageneiosusbrevifili/C, 2-Cynodongibbus/C, 3-Hopliasaimara/C,
4-Potamotrygonhystrix/C

@ Class 2 (Detritivorous): 7-Dorasmicropoeus/D, 8-Platydorascostatus/D,
9-Pseudoancistrusbarbatus/D, 10-Semaprochilodusvari/D

@ Class 3 (Omnivorous): 5-Leporinusfasciatus/O 6-Leporinusfrederici/O

@ Class 4 (Herbivorous): 11-Acnodonoligacanthus/H 12-Myleusrubripinis/H
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Fish data set: results

Fish data set (grid: 2 x 3)

OERC Rand index F-measure
Tin © Tmax | No W. W. No W. W. No W. W.
0.3:1.0 0.416 | 0.416 | 0.002 | -0.033 | 0.503 | 0.438
03:15 0.583 | 0.083 | -0.140 | 0.500 | 0.388 | 0.747
0.3:2.0 0.416 | 0.333 | -0.120 | 0.093 | 0.438 | 0.580
0.3:3.0 0.416 | 0.333 | -0.052 | 0.043 | 0.449 | 0.504
0.3:5.0 0.583 | 0.333 | -0.104 | 0.120 | 0.435 | 0.644
03:7.0 0.333 | 0.333 | 0.057 | 0.120 | 0.566 | 0.644

Grid (fish data set)
T:0.3-1.0(NoW.) || T:0.3-1.5(W)
X 172 2 4 2 1/2
1 1 3/4 1 1 3
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Car data set

@ 33 car models

@ 8 interval-valued variables: Price, Engine Capacity, Top
Speed, Acceleration, Step, Length, Width and Height
@ Four a priori classes:

@ Class 1 (Utilitarian): 1-Alfa 145/U, 5-Audi A3/U, 12-Punto/U, 13-Fiesta/U,17-Lancia Y/U, 24-Nissan
Micra/U, 25-Corsa/U, 28-Twingo/U, 29-Rover 25/U, 31-Skoda Fabia/U

@ Class 2 (Berlina): 2-Alfa 156/B, 6-Audi A6/B, 8-BMW serie 3/B, 14-Focus/B, 21-Mercedes Classe
C/B, 26-Vectra/B, 30-Rover 75/B, 32-Skoda Octavia/B

@ Class 3 (Sporting): 4-Aston Martin/S, 11-Ferrari/S, 15-Honda NSK/S,16-Lamborghini/S,
19-Maserati GT/S, 20-Mercedes SL/S, 27-Porsche/S

@ Class 4 (Luxury): 3-Alfa 166/L, 7-Audi A8/L, 9-BMW serie 5/L, 10-BMW serie 7/L, 18-Lancia K/L,
22-Mercedes Classe E/L,23-Mercedes Classe S/L, 33-Passat/L
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Car data set: results

Car data set (grid: 2 x 5)

OERC Rand index F-measure
Tmin : Tmax | No W. W. No W. W. No W. W.
0.3:2.0 0.303 | 0.181 | 0.299 | 0.318 | 0.515 | 0.572
0.3:3.0 | 0.303 | 0.242 | 0.310 | 0.510 | 0.557 | 0.760
0.3:35 0.303 | 0.212 | 0.315 | 0.583 | 0.565 | 0.797
0.3:5.0 0.454 | 0.333 | 0.253 | 0.392 | 0.585 | 0.746
0.3:9.0 | 0.242 | 0.212 | 0.333 | 0.615 | 0.570 | 0.852
0.3:13.0 | 0.393 | 0.333 | 0.269 | 0.392 | 0.583 | 0.746

Grid (car data set)

T:0.3-35(NoW) || T:0.3-9.0 (W)
4 3 3 1 24 X X X 3
4 4 X 34 41 X X X 2
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Temperature data set - 34 cities

@ 34 cities described by 12 interval-valued variables

@ this data set gives the minimum and the maximum monthly
temperatures of cities in degrees centigrade

@ Two a priori classes:

e Class 1 (cities mainly located between 0° and 40°
latitudes): 3-Bahraim, 4-Bombay, 5-Cairo, 6-Calcutta,
7-Colombo, 9-Dubai, 12-Hong Kong,13-Kula Lampur,
16-Madras, 18-Manila, 20-Mexico, 23-New Delhi,
30-Sydney

e Class 2 (cities mainly located between 40° and 60°
latitudes): 1-Amsterdam, 2-Athens,
8-Copenhagen,10-Frankfurt ,11-Geneva ,14-Lisbon,
15-London,17-Madrid, 21-Moscow, 22-Munich, 24-New
York, 25-Paris, 26-Rome, 27-San Francisco, 28-Seoul,
29-Stockholm, 32-Tokyo, 33-Toronto, 34-Vienna, 35-Zurich
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Temperature data set - 34 cities (grid: 2 x 8)

OERC Rand index F-measure
Toin: Tmax | NOW. [ W. [ NoW. [ W. [ NoW. [ W.
0.3:3.5 | 0.000 | 0.000 | 0.170 | 0.295 | 0.362 | 0.504
0.3:45 0.000 | 0.000 | 0.213 | 0.558 | 0.406 | 0.732
0.3:6.0 0.029 | 0.000 | 0.266 | 0.487 | 0.483 | 0.678
0.3:85 | 0.000 | 0.000 | 0.415 | 0.686 | 0.591 | 0.798
0.3:15.5 | 0.000 | 0.029 | 0.408 | 0.839 | 0.587 | 0.891
0.3:22.0 | 0.000 | 0.000 | 0.295 | 0.825 | 0.490 | 0.884
Grid (temperature data set - 34 cities)
T:0.3-85(NoW.) T:0.3-15.5(W.)
2 X 1 X X 2 X 22X X X X X X X 2
2 X1 X X 2 X 111 X X X X X X 1
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Temperature data set - 492 cities

@ 492 cities described by 12 interval-valued variables

@ this data set gives the average minimum and the maximum
monthly temperatures of cities in degrees centigrades

@ There is no a priori classification:

Grid (temperature data set - 492 cities)

T:0.3-7.0 (W)

113 X X X X X X 100
X X X X X X X X
X X X X X X X X
X X X X X X X X
106 X X X X X X 173
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Temperature data set - 492 cities

Grid (prototypes: January temperatures)

T.0.3-7.0 (W)
[C11.1,-39] [-8.0,-1.2] [-82 —14] [-57,14] [9.0,187] [124,22.7] [12.8,23.0] [21.0,27.0]
[-6.4,07] [-6.6,04] [-71,-02] [-55,1.6] [10.5,20.2] [14.0,24.0] [14.7,24.6] [14.9,24.9]
[-5.1,22]  [-51,22] [-5.0,22] [-2.8,47] [14.7,282] [16.2,259] 16.2,25.9] [16.2,25.9]
[-3.7,38]  [-35,40] [-29,48 [1.4,95] [165,258] [17.7,27.2] [17.3,26.9] [17.2,6.8]
[-40,10] [-1.9,59] [-16,62] [26,109] [16.6,25.8] [18.4,27.8] [18.3,27.7] [19.0,29.0]

@ Prototypes average minimum and maximum January
temperatures increases from left to right and from top to
down in the grid
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@ Cluster 1 (106): barcelona, beijing, belgrade, budapest,
dubrovnik, frankfurt, geneva, lisbon, lyon, madrid,
marseille, milan, naple, paris, porto, rome, shangai...

@ Cluster 8 (173): baghdad, bankok, brazzaville, cairo,
calcutta, cayenne, dakar, hanoi, havana, hong kong,
islamabad, jakarta, karthoum, kuweit, rio de janeiro, ...

@ Cluster 33 (113): berlin, brussels, copenhagen, helsink,
kiev, london, moscow, oslo, prague, quebec, reykjavic,
seatle, st petersburg, stockholm, totonto, viena, warsaw, ...

@ Cluster 40 (100): athens, beirut, buenos aires, canberra,
jerusalem, lima, los angeles, mexico city, montevideo,
palermo, porto alegre, pretoria, santiago, sydney, ...
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Concluding Remarks

Contributions

@ extension of the batch SOM algorithm to interval-valued
data

@ automatic weighting of the interval-valued variables based
on adaptive distances

Evaluation and example
@ adaptive batch SOM x non adaptive batch SOM
@ four interval-valued data sets: fish, car, city temperatures

@ evaluation metrics: overall error rate of classification,
corrected Rand index, F-measure

@ conclusion: adaptive batch SOM outperforms non adaptive
batch SOM in the majority of the cases
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Work in progress

@ Batch SOM with city-block and Hasudorff distances to
manage interval-valued data (modelling already finished;
program implementations in progress)

@ Batch SOM to manage histogram-valued data (modelling
already finished; program implementations in progress)

@ Different automatic weightings of the interval-valued
variables (sum, product)
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Let P={Py,...,Pi, ..., Pn} be the a priori partition into m
classes and Q = {Qy,..., @}, ..., Qk} be the hard partition into
K clusters given by a clustering algorithm.

Table: Confusion matrix

Clusters
Classes Q .. Q . Qx >
K

P, Iy .. ny; Mk Ne =321 Mj
P, n; n, ny nie = XK n;

i al ij iK i® j=1"1f
P . —_ K .
m Ny Npmj L. NmK Nme = Z/:1 Npyj

— m — m _ m _ m K

> Ne1 = 22104 Nin e Nej = 3j04 Nji s Nek = 30i24 Nik n=3"0 2 N
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The corrected Rand index is:

LSRRGSR SL ()

a2 () + Z/ (-2 ) iy (%) Z/ 1 (%)

where (7) = 2= and n; represents the number of objects
that are in class P; and cluster Qj; nj, indicates the number of
objects in class P;; n,; indicates the number of objects in cluster
Q;; and nis the total number of objects in the data set.
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The traditional F — measure between class P; (i =1,...,m)
and cluster Q;(j = 1, ..., K) is the harmonic mean of precision
and recall:

Precision(P;, Q;) x Recall(P;, Q)

F P.Q) =2
measure(Pi, Q) Precision(P;, Q;) + Recall(P;, Q) @)

The Precision between class P; (i = 1,..., m) and cluster
Qi (j=1,...,K) is defined as the ratio between the number of
objects that are in class P; and cluster Q; and the number of
objects in cluster Q;:

n,-j n,~j

Precision(P;, Q) = nf/ = m (3)
° j=
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The Recall between class P; (i =1,..., m) and cluster

Qi (j=1,...,K) is defined as the ratio between the number of
objects that are in class P; and cluster Q; and the number of
objects in class P;:

Recall(P;, Q) = 2 i

(4)

n. T K
Mie > i1 Njj
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The F — measure between the a priori partition

P={Py,...,P;..
Q= {01,...,0
defined as:

F —measure(P, Q) =

Pm} and the hard partition
., Qk} given by a cluster algorithm is

m

an. max 1<j<x F—measure(P;, Q)
i=1

()




	Introduction
	A batch SOM for interval-valued data
	Evaluation and examples
	Concluding Remarks
	References

