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Introduction / motivations

The data manipulated in an enterprise context are structured data
(BD) but also unstructured data such as e-mails, documents,..

Graph model 1s a natural way of representing and modeling
structured and unstructured data in a unified manner.

The main advantage of graph model resides in its dynamic aspect and
its capability to represent relations between individuals.

However, graph extracted has a huge size which makes it difficult to
analyze and visualize these data also an aggregation step is needed
to have more understandable graphs in order to allow user
discovering underlying information and hidden relationships
between clusters of individuals.
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Objectives

o Create a data model associated to a
soclal networks

o Propose an aggregative approach
which reduces this information.
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Descriptions of the individuals (11GAES

In social networks we have a set of individuals described by a
vector of variables (numerical, categorical or symbolic) and
a set of relationships.

Set of individuals  V ={v,,---,v_}
Set of relations R= {Rl,---, Rp} defined on V
Set of edges E=1{E,,E,|
u,veV (u,v)eE if uRv
Set of variables A= {Al s Ay } defined on V
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Categorical variable / Rela-

The relation “color” of
individuals is a categorical
variable because the relation
1S transitive

But the relation “call with” 1s
not transitive also “call with”
1s not a categorical variable.

Zachary’s karate club dataset (UCI datasets)
&
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Build the edge-by-node matrix R r —RD
i

i _{1 if node v, is incident w ith the edge e,

0 node vector I,

[— |
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Node data table model-

Description data table
\ A Al
- a

V= {V19V2>V39V4=V5}

Each individual of V 1s characterized by a vector
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K-means approach

The node vector v; represents a node Vv; with respect to the edges
in the given graph G=(V,E)

The mean vector or the centroid of the 1

node vectors contained in the cluster C, 9 = ‘C—kvéﬁ

1S K 2

The objective function minimized is Q. = Z Z"HrI — |
k=1 v;eC,

Problems :

*The dimensional representation space is high

*How to add the data table describing the nodes ? by weight between Qg and Q4
(objective function on description data table)?

This approach is not realist C/
HCSDA’11 Beijing, October 2011 lrrzia — =

CENTRALE

ppppp




Dissimilarity approach

The dissimilarity between two nodes 1s determined by the
number of edges between them and a description vector of
these nodes.

Let Ny ={weV|uweEui

the neighborhood set of the node v for the relationship R,

For each pair (n,m) of nodes of a given the relationship R,
we compute the contingency table

Obiet m

- s | a=Ng (M N (M].b=Ng (m)|-a,c= N, (n)]-a,

o ot

kit n

Distances or dissimilarities are defined by a,b,c,d parameters
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Dissimilarity approach

The most popular measures are Euclidian distance and
Jaccard index which are defined by

Euclidian distance d;(n,m)=(b+c)/(a+b+c+d)
Ohyet m

Ghigtn

Jaccard distance
d,(n,m)=1-a/(a+b+c)

Remark : with the node vector representation Jaccard distance
is defined by:

T T T T
d,(n,m)=1-r, r/Ann+rrn—rr;)
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Dissimilarity clustering

On the set A of variables we compute dissimilarities between
two nodes adapted to the different types of variables
(numerical, categorical, symbolic, functional)

We have a set of data tables also we propose to use multiple
dissimilarity tables clustering approach to solve this problem.

F.A.T De Carvalho, Y. Lechevallier and Filipe M. de Melo
(2012). Partitioning hard clustering algorithms based on multiple
dissimilarity matrices. Pattern Recognition.
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K-SNAP algorithm

K-SNAP is a:

o Algorithm for graph aggregation based on the descriptions of nodes
and edges.

o Allows the user to intervene in the aggregation procedure.
algorithm :

o step 1: setting : the user selects variables (description of the nodes),
relations (description of the edges) and fix the size of
the aggregated graph (number of the clusters).

o step 2: Graph Aggregation procedure consists of two completely
independent steps:

— Aggregation based on variable set : A-groupement

— Aggregation based on relation set: (A,R)-groupgment
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Groupement concepts -

A-groupement
All nodes belonging to a cluster must have
the same values on all variables.

(A, R)-groupement
All nodes belonging to a cluster must have
the same list of neighbor clusters.

Y. Tian, R. A. Hankins and J. M. Patel (2008). Efficient aggregation
for graph summarization. In SIGMOD ’08
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A-groupement step

3 modalities A,B,C




The edge set 1s
added.

Select the cluster
will must be splitting

We select the cluster
A by using objective
function
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Divide the set A
1n subsets where
the nodes have
the same
neighbor
clusters
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Limitations of k-SNAP

o Only applies to a homogeneous graph: nodes have the same
description

o Aggregation is very rigid in terms of
— categorical variables : Cartesian product of all modalities.
— Neighbor clusters : the subsets created must be have the same
neighbor clusters
o Ineffective with the presence of a large number categorical
variables and heterogenic relationships.

- increases the number of clusters with small size
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Our approach

Integration of the clustering method ""Dynamic clustering* in A-
groupement step.

Use classical Dynamic clustering or K-means in
case it has no a priori knowledge on the nodes.

Use Symbolic Dynamic clustering on the set of modalities
created by A-groupement step (reduce the number of clusters)

Proposal two new aggregation criteria of evaluation to
Improve the quality of results while adopting the principle of k-
SNAP in (A-R)-groupement step

Use the degree of node and centrality criterion

>
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Local degree of a node -

The local degree of the node v associated with the
relationship R; and the class C;is

Deg;;(v) =

NRj (V)ﬁCi‘

where N (v)={weV [(u,w) e E}uiv}

The complementary local degree of the node v
associated with the relationship R; and the class C;is

It includes the rest of the

Deg;;(v) = . .
’ links issued from Vv

NRJ- (V)ﬂ(:‘
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Measure of homogen

o For a given partition P=(C,,C,..C,) | this measure A evaluates the

homogeneity of the partition P and determines the cluster to be
divided .
e For each relatlon R; and the cluster C;, we denote:

IA) (C)= ‘ C Z Deg; i, (V) Intra-group criterion
veC;
; 1
IEN(C,) = \ETCVG;CPEQ ii(V)  Inter-group criterion

IAIC) -
— Z Y ——2=% %' Measure of
i= lEeRIEJ(Ci) i=1 E;eR .
’ homogeneity

with Deg ;;(v) is the degree of vertex v according to the relationship R;
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(A-R) groupement : selectior

The algorithm consists of finding for each iteration the
relationship R and the cluster C that minimize the
measure of evaluation o until the cardinal of the
partition is equal to K.

Choose the cluster i* and the relationship j* such that :
(i*, J*) — arg minlsis|P|91§js|R| 5ij = IAj(Ci)/ IEj(Ci)

Measure of
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(A-R) groupement : splitin

On the selected cluster C, we find the central node
vy which maximizes the centrality degree

d =argmax _ N Deg (V)

C, 1s divided into two subgroups according to the
following strategy:
*one contains the central node with its neighbors in C,,

the other the restNoT (tﬁemg?bup.
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Application example : the
books about US politics

Elaborated by Mark Newman this data set contains 105 vertices
and 441 edges.

B - (46.67%)
[ [40.35%) .
N -

(12.38%) .
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Application example : the
books about US politics

Our approac:--'o

P i

/ s Vo

e T
%0 ® o
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Development of new evaluation criteria to
improve the quality of results by using the
measure of homogeneity.

For graphs without a prior1 information replace
the A-groupement by a clustering step
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Thank,
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