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Summary. Dynamic cluster methods aim to obtain both a single partition of the
input data into a fixed number of clusters and the identification of a suitable repre-
sentation of each cluster simultaneously. In its adaptive version, at each iteration of
these algorithms there is a different distance to the comparison of each cluster with
its representation. In this paper, we present a dynamic cluster method based on L,
distances for quantitative data.

1 Introduction

Clustering (Bock (1993), Jain et al. (1999)) is an exploratory data analysis
method the aim of which is to group a set of items into clusters such that items
within a given cluster have a high degree of similarity, while items belonging
to different clusters have a high degree of dissimilarity. The most popular
cluster analysis techniques are hierarchical and partitional methods (Spaeth
(1980), Gordon (1999), Everitt (2001)).

Hierarchical methods yields complete hierarchy, i.e., a nested sequence of
partitions of the input data. Hierarchical methods can be either agglomerative
or divisive. Agglomerative methods starts with trivial clustering, where each
item is in a unique cluster, and ending with the trivial clustering, where all
items are in the same cluster. A divisive method starts with all items in the
same cluster and performs divisions until a stopping criterion is met.

Partitional methods aim to obtain a single partition of the input data
into a fixed number of clusters. Often, these methods look for a partition
that optimizes (usually locally) a criterion function. To improve the cluster’s
quality, the algorithm is run multiple times with different starting points,
and the best configuration obtained from all the runs is used as the output
clustering.
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The dynamic cluster algorithms (Diday and Simon (1976)) are iterative
two steps relocation algorithms involving at each iteration the construction
of the clusters and the identification of a suitable representative or exemplar
(means, axes, probability laws, groups of elements, etc.) of each cluster by
locally optimizing an adequacy criterion between the clusters and their cor-
responding representatives. The k-means algorithm with class representative
updated after all objects have been considered for relocation, is a particular
case of dynamical clustering with adequacy criterion equal to variance crite-
rion such that class exemplar equal to cluster centers of gravity.

In these algorithms, the optimization problem can be stated as follow. Let
2 be a set of n objects indexed by i = 1, ...,n and described by p quantitative
variables. Then each object i is described by a vector x; = (z},...,z¥) € RP.
The problem is to find the partition P = (C, ...,Ck) of 2 in K clusters and
the system Y = (yy, ..., Y ) of class exemplars, which minimizes a partitioning
criterion g(P,Y) that measures the fitting between the clusters and their
representatives.

This optimization process starts from a set of representatives or an ini-
tial partition and interactively applies an “allocation” step (the exemplars
are fixed) in order to assign the individuals to the classes according to their
proximity to the exemplars. This is followed by a “representation” step (the
partition is fixed) where the exemplars are updated according to the assign-
ment of the individuals in the allocation step, until achieving the convergence
of the algorithm, when the adequacy criterion reaches a stationary value.

The dynamic cluster algorithm converges and the partitioning criterion
decreases at each iteration if the class exemplars are properly defined at
each representation step. Indeed, the problem is to find the exemplar y, =
(Yps--->yr) € RP of each cluster Cj(k = 1,..., K), which minimizes an ad-
equacy criterion f(y,) measuring the dissimilarity between the exemplar y,
and the cluster Cy.

The adaptive dynamic clusters algorithms (Diday and Govaert (1977))
also optimize a criterion based on a measure of fitting between the clusters
and their representation, but at each iteration there is a different distance to
the comparison of each cluster with its representative. The idea is to asso-
ciate each cluster with a distance which is defined according to the intra-class
structure of the cluster. These distances are not determined once and for all,
and moreover, they are different from one class to another. The advantage of
these adaptive distances is that the clustering algorithm is able to recognize
clusters of different shapes and sizes.

In these algorithms, the optimization problem is now to find the partition
P =(Cy,...,Ck) of 2in K clusters, its corresponding set of K exemplars Y =
(¥, ¥r) and a set of K distances d = {d*, ..., d*} each one associated with
a cluster, which minimizes a partitioning criterion g(P, Y, d) that measures the
fitting between the clusters and their representatives.

The initialization, the allocation step and the stopping criterion are nearly
the same in the adaptive and non-adaptive dynamic cluster algorithm. The
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main difference between these algorithms occurs in the representation step
which has two stages: a first stage, where the partition and the distances are
fixed and the exemplars are updated, is followed by a second one, where the
partition and their corresponding representatives are fixed and the distances
are updated. The adaptive dynamic cluster algorithm converges and the par-
titioning criterion decreases at each iteration if the class exemplars and the
distances are properly defined at each representation step.

The aim of this paper is to present a dynamic cluster method based on
L, distances for quantitative data. Sections 2 and 3 present, respectively, the
non-adaptive and the adaptive version of this method. An example concerning
adaptive and non-adaptive dynamic cluster method based on Lo distance is
given in section 4 and the concluding remarks are given in section 5.

2 A dynamic cluster method based on non-adaptive L,
distance

Let x; = (z},...,2%) and x; = (z},,...,2)) be two quantitative features
vectors, representation of objects i and i’ belonging to class Cy(k =1, ..., K),
respectively. We consider the L, distance function to measure the dissimilarity
between x; and x;:

p
dr(Xi,Xi/) = Z(h"i - mg’DT: > 1 (1)

j=1

In equation (1), r = 1 and r = 2 gives, respectively, L; and Lo distances.

2.1 The optimization problem for class exemplar

As presented in the introduction, the exemplar y,, of a cluster C}, is defined in
the framework of the dynamic cluster algorithm by optimizing an adequacy
criterion f measuring the dissimilarity between the cluster and its representa-
tive. Here, we search the vector y, = (yi, ..., y;,) which minimizes the following
adequacy criterion:

Flyp) =D de(xinyy) = DY (2l =yl r>1 (2)

i€Clh i€C j=1

where d,. is the distance between two vectors of quantitative data as given by
equation (1).
The criterion (2) can also be written:

fi)

Flyy) = Z > (el — i) (3)

p
j=1ieCy
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and we search, for j = 1, ..., p, the quantity yi which minimizes:

Fll) = (=] =yl (4)
1€C

When r € {1,2} the minimum of the equation (4) has an analytical solu-
tion: for r = 1, y; is the median of {z?,i € Cy}; for r = 2, y; is the average
of {:L'i,'LEC'k} . . . .

For r > 2, let {z]]i € C}} ;.md let X7, = {m%l), o ,xg#ck)} b.e the S(?t of
increasing ordered values of {z]|i € Crlt, 'i.e., vie{l,...,#Ck}, xgl) e {zllie
Cr} and VI € {1,.. .,#Ck - 1},:56) < w{lﬂ).
Let the functions f;,t =0,...,#C}, be

#Cl
filyl) =Y (el — i), vl € By (5)
=1
where By =] — 00, ,), B = [a{yy, {,4p)]s 1.0 =1,...,#C, — 1, and By, =

[mg#ck),oo[ _

In that case, the quantity y; which minimizes (4) belongs to the union
of two sets: the set {a7]i € Cy} and the set of roots of the derivatives, for
yi € By, of the functions f; (t =0,...,#Cy).

2.2 The dynamic cluster algorithm

The dynamic cluster algorithm search for the partition P = (C},...,Ck) of {2
and the system Y = (yy,...,yg) of class exemplars which locally minimizes
the following partitioning criterion based on the distance d,. defined in (1):

K K p
gPY) =5 S dxiy) = 5050 Sl - il (6)

k=1icCy, k=1icCy j=1

This algorithm proceeds by iteratively repeating an “allocation” step and

a “representation” step. During the “representation” step, the partition is
fixed and the algorithm computes for each cluster C}, its representative y,
which minimizes the adequacy criterion given in (2). During the “allocation
step”, the exemplars are fixed and the algorithm performs a new partition
by reassigning each object ¢ to the closest class exemplar y,, where kx =
arg ming=1,... x d(X;,yy)-

Finally the algorithm is the following;:

(a) Initialization
Choose a partition (Cy,...,Ck) of the data set 2 or choose K distinct
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objects yq, ...,y x among (2 and assign each object ¢ to the closest exem-
plar y,, (kx = arg ming=; _x d(x;,y};)) to construct the initial partition
(C1,...,Ck).
(b) “Representation” step (the partition is fixed)
For k in 1 to K compute the exemplar y, = (yf, ..., y})
(c) ’Allocation’ step (the exemplars are fixed)
test < 0
For ¢ in 1 to n do
define the cluster C, such that kx = arg ming=;,.. x d(x;,y;)
ifi e Cy and kx #k
test 1
Crx — Cix U {’L}
(d) If test = 0 END, else go to (b)

3 A dynamic cluster method based on adaptive L,
distance

1.2ty and xp = (2}, ..., 2%) be two quantitative features
vectors, representation of objects 7 and 7’ belonging to class C},, respectively.
We consider the following adaptive L, distance function, which is parame-
terized by the weight vector Ay = (Af,...,A})), to measure the dissimilarity
between x; and x;:

Let again x; = (!

p
df (xi,xi) = Y Ml =2l )" r>1 (7)

j=1

In equation (7), r = 1 and r = 2 gives, respectively, adaptive L; (Diday
and Govaert (1977)) and adaptive Lo distances.

3.1 The optimization problem for class exemplar

We search the vectors y, = (yi,...,ys) and Ay = (A;, ..., A7) which minimizes
the following adequacy criterion:

o) =D dixi,y) = D> > Nzl -yl r>1 8)

i€Clh i€eCy j=1
where d¥ is the adaptive distance between two vectors of quantitative data
given in (7).
The criterion (8) can also be written:
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F¥iAe) = ZV > (=] =yl (9)
= 1€C
and the optimization problem will be solved in two stages.

In the first step the vector Ay = (A}, ..., A}) is fixed and we search, for
j =1,...,p, the quantity y; which minimizes:

Fi) =Y (el =yl (10)
1€C
The solution is the same as pointed out in section 2.1.
In the second step, the vector y, = (y3, ..,yp) is fixed and we search for
M = (Af, ..., A7) which minimizes the adequacy criterion f(yy, A). Accord-
ing to the standard adaptive method (Diday and Govaert (1977)), we look for
the coordinates A}, (j = 1,...,p) of the vector \; that satisfies the following
restrictions:

p
X, >0(G=1,...,p)and J[JM =1 (11)
j=1
These coordinates, which are calculated according to the Lagrange multi-
pliers method (Govaert (1975)), are:

y = M (Siee, (o — D) o (12)

Yo (7 —uil)"

o=

3.2 The adaptive dynamic cluster algorithm

The dynamic cluster algorithm searches for the partition P = (C4,...,Ck) of
2 in K clusters, its corresponding set of K exemplars Y = (yy,...,¥) and a
set of K distances d = {dl,...,d"*} each one associated with a cluster, which
locally minimizes the following partitioning criterion based on the distance d*
defined in (7):

K 4

9(P,Y,d) ZZd xkiye) =3 S S X (el —yl)” (13)

k=1 i€C}, k=1i€Cy j=1

As in the standard dynamic cluster algorithm, this method performs an
“allocation” step (the partition and the exemplars are fixed) in order to as-
sign the individuals to the classes according to their proximity to the class
representative, followed by a two-stages “representation” step where, accord-
ing to the assignment of the individuals in the allocation step, in the first
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stage the partition and the distances are fixed and the class exemplars are up-
dated, whereas in the second stage the partition and the exemplars are fixed
and the distances are updated. The algorithm iterates these steps until the
convergence when the partitioning criterion reaches a stationary value. The
algorithm schema is the following:

(a) Initialization
Choose a partition (Cy,...,Ck) of the data set 2 or choose K distinct
objects y,, ..., ¥ x among {2 and assign each object i to the closest exemplar
Vie (k¥ = arg ming—; . x d*(x;,y,)) to construct the initial partition
(C1,...,Ck).
(b) “Representation” step
a) (The partition P and the distances d¥ are fixed)
For k =1 to K compute the exemplar y,
b) (the partition P and the exemplars y, are fixed)
For j=1,...,pand k=1,..., K, compute X},
(c) “Allocation” step
test < 0
For i in 1 ton do
define the cluster C, such that kx = arg ming—;._ r d*(x;,y},)
ifi € Cy and kx # k
test <1
Ciyx — Cix U {’L}
Cr + Ce\{i}
(d) If test = 0 END, else go to (b)

4 Experimental evaluation with artificial data sets

The adaptive dynamic cluster method based on L; distance has been studied
by Diday and Govaert (1977). As an example of the adaptive and non-adaptive
dynamic cluster based on L, distances, we consider here the comparison be-
tween the adaptive and the non adaptive methods for the case of Lo distance.
To accomplish this comparison we cluster quantitative data sets scattered in
R2 using both methods and we evaluate the clustering results based on a
Monte Carlo experience.

The basic data set considered here is described in Diday and Govaert
(1977). Tt has 150 points scattered among three clusters of size 50 and un-
equal shapes: two clusters with ellipsis shapes and one cluster with spherical
shape. Figure 1 shows an example of this data set. The data points of each
cluster were drawn according to a bi-variate normal distribution with corre-
lated components according to the following parameters:

a) Class 1: uy =0, up =0, 02 =4, 012 = 1.7, 05 =1 and p;» = 0.85;
b) Class 2: u; =0, py = 3, 02 = 0.25, 012 = 0.0, 02 = 0.25 and p12 = 0.0;
c) Class 3: u1 =4, us = 3,02 =4, 012 =—-1.7,02 =1 and p1» = —0.85;
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Fig. 1. Quantitative data set showing three clusters

The clustering results are evaluated based on a external index in the frame-
work of a Monte Carlo experience with 100 replications. In each replication
a Lo clustering method (non-adaptive or adaptive) is run (until the conver-
gence to a stationary value of the partitioning criterion) 50 times and the best
result, according to the partitioning criterion is selected.

The average of the corrected Rand (CR) index (Hubert and Arabie (1985))
among these 100 replications is calculated. The CR index assesses the degree of
agreement (similarity) between an a priori partition and a partition furnished
by the clustering algorithm. The CR index takes values in the interval [-
1,1], where the value 1 indicates a perfect agreement between the partitions,
whereas values near 0 (or negatives) correspond to cluster agreements found
by chance (Milligan (1996)).

The CR indices according to the clustering results are 0.64 and 0.61 for
the methods with adaptive and non-adaptive L» distances , respectively. The
comparison between these results is achieved by a paired Students’ t-tests at
a 5% significance level. The observed value of the test statistic following a t
Student distribution with 99 degrees of freedom were 3.3. From this observed
value, we reject the hypothesis that the average performance of the adaptive
Ly method is inferior to the non-adaptive L method. The results of this
experiment show that the performance of the adaptive methods is superior to
the non-adaptive method at least for this data set.

5 Conclusion

Finally, our approach proposes a framework which permit to generalize easily
the dynamic cluster method for the case of the adaptive and non-adaptive
L, distances. If r is equal to 1 and 2 we rediscover the usual exemplars (me-
dian and mean, respectively) of the clusters but now the difficulty is to find a
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realistic interpretation for the cluster representatives when r > 2. Moreover,
the adaptive dynamic cluster method based on L; distance has been studied
by Diday and Govaert (1977). In this work we accomplished a similar study
concerning the adaptive dynamic cluster method based on L» distance. In this
study, the accuracy of the results furnished by the adaptive and non-adaptive
methods for the L, distance have been assessed by an external index in the
framework of a Monte Carlo experience. These results clearly show that the
adaptive method outperforms the non-adaptive one concerning the quality of
the clusters as measured by the corrected Rand index.
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