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Abstract: Standard clustering methods do not handle truly large data sets
and fail to take into account multi-level data structures. This work outlines
an approach to clustering that integrates the Kohonen Self Organizing Map
(SOM) with other clustering methods. Moreover, in order to take into account
multi-level structures, a statistical model is proposed, in which a mixture of
distributions may have mixing coefficients depending on higher-level variables.
Thus, in a first step, the SOM provides a substantial data reduction, whereby a
variety of ascending and divisive clustering algorithms become accessible. As a
second step, statistical modelling provides both a direct means to treat multi-
level structures and a framework for model-based clustering. The interplay of
these two steps is illustrated on an example of nutritional data from a multi-
center study on nutrition and cancer, known as EPIC.
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1.1 Introduction

Appropriate use of a clustering algorithm is often a useful first step in extracting
knowledge from a data base. Clustering, in fact, leads to a classification, i.e. the
identification of homogeneous and distinct subgroups in data [9] and [2], where
the definition of homogeneous and distinct depends on the particular algorithm
used : this is indeed a simple structure, which, in the absence of a priori
knowledge about the multidimensional shape of the data, may be a reasonable
starting point towards the discovery of richer, more complex structures.

In spite of the great wealth of clustering algorithms, the rapid accumulation
of large data bases of increasing complexity poses a number of new problems
that traditional algorithms are not equipped to address. One important feature
of modern data collection is the ever increasing size of a typical data base: it
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Table 1.1: French Center sample

Center number frequency
Ile-de-France 1201 24.75

Nord-Pas-de-Calais 452 9.32
Alsace-Lorraine 478 9.85
Rhone-Alpes 1018 20.98

Languedoc-Roussillon 625 12.88
Aquitaine 443 9.13

Bretagne-Pays-de-Loire 635 13.09

is not so unusual to work with data bases containing from a few thousands
to a few millions of individuals and hundreds or thousands of variables. Now,
most clustering algorithms of the traditional type are severely limited as to the
number of individuals they can confortably handle (from a few undred to a
few thousands). Another related feature is the multi-level nature of the data:
typically a data base may be obtained from a multi-country, multi-centre study,
so that individuals are nested into centres which are nested into countries. This
is an example of an elementary, known structure in the data which should not
be ignored when attempting to discover new, unknown structures.

This work arises from the participation of one of its authors to the EPIC
project. EPIC is a multi-centre prospective cohort study designed to investi-
gate the effect of dietary, metabolic and other life-style factors on the risk of
cancer. The study started in 1990 and includes now 23 centres from 10 Euro-
pean countries. By now, dietary data are available on almost 500,000 subjects.
Here we initiate a new methodological development towards the discovery of
dietary patterns in the EPIC data base. We look for general dietary patterns,
but taking into account, at the same time, geographical and socio-economic
variation due to country and centres.

For simplicity, we consider only data from a subsample of the EPIC popu-
lation consisting 4,852 of French women distributed in seven centres :

Also, we limit ourselves to an analysis of data from a 24-hour recall ques-
tionnaire concerning intake of sixteen food-groups. Thus, we will only discuss
clustering for 2-level systems: subjects (first level) and centre (second level), in
our case.

The approach we propose is based on two key ideas :

1) A preliminary data reduction using a Kohonen Self Organizing Map (SOM)
is performed. As a result, the individual measurements are replaced by the
means of the individual measurements over a relatively small number of
micro-regimens corresponding to Kohonen neurons. The micro-regimens
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can now be treated as new cases and the means of the original variables
over micro-regimens as new variables. This reduced data set is now small
enough to be treated by classical clustering algorithms. A further ad-
vantage of the Kohonen reduction is that the vector of means over the
micro-regimens can safely be treated as multivariate normal, owing to
the central limit theorem. This is a key property, in particular because
it permits the definition of an appropriate dissimilarity measure between
micro-regimens.

2) The multilevel feature of the problem is treated by a statistical model
wich assumes a mixture of distributions, each distribution representing,
in our example, a regimen or dietary pattern. Although more complex
dependencies can be modeled, here we will assume that the centres only
affect the mixing coefficients, and not the parameters of the distributions.
Thus we look for general dietary patterns assuming that centers differ
from each other only in the distribution of the local population across the
general dietary patterns.

While the idea of a preliminary Kohonen reduction followed by the applica-
tion of a classical clustering algorithm is not entirely new [12], [1] and [14], this
work differs from previous attempts in several respects the most important of
which are :

a) the Kohonen chart is trained by an the initialization based on principal
component analysis;

b) the choice of clustering algorithm is guided by the multilevel aspect of the
problem at hand;

c) the clustering algorithm is based on a statistical model.

Thus this work continues the author’s research program which aims to de-
velop data analytic strategies integrating KDDM and classical data analysis
methods [6] and [7].

1.2 Data Reduction by Kohonen SOM’s

We consider p measurements performed on n subjects grouped in C classes,
{Gc, c = 1, . . . , C}. We denote these measurements by (G(i), x(i)), i = 1, . . . , n,
where for the i−th subject G(i) denotes the class (the centre, in our example),
and x(i) the p-vector of measurements (the 16 food-group intake variables); or,
in matrix form, D = [G|X].

In this section we describe the first step of the proposed approach, which
consists in reducing the n × p matrix X to a m × p matrix, m ¿ n. To do
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this, we first pass the data matrix X through a Kohonen SOM consisting of
m units (neurons) disposed in a rectangular sheet with connections along two
perpendicular axis.

1.2.1 Kohonen SOM’s and PCA initialization

We recall that in a Kohonen SOM the neurons of the rectangular sheet are
associated to a grid of prototypes in the p-dimensional space which represents
the row-vectors of the data matrix: the sheet is supposed to represent the
grid with a minimum distortion, so that a SOM can be seen as a non-linear
version of classical data reduction techniques such as a Principal Component
Analysis (PCA). In order to specify a SOM, one needs to specify initial values
of the sheet’s connection weights and of the position of the prototypes. Then,
the data points are repeatedly sent through the SOM, each passage causing an
update of both the connection weights and the position of the prototypes, i.e an
alteration of both the sheet in 2-dimensional space and the grid in p-dimensional
space. Normally, this process converges, in that the changes at each passage
become negligible.

In the original approach, initial weights were chosen at random; however,
as the efficacy of the algorithms crucially depends on the initialization, much
effort has been devoted to improving this first step. The distinguishing feature
of our construction consists in designing the sheet with the help of the results
of PCA performed on X. It is advantageous to choose the dimensions of the
grid, a and b, (m = ab), such that :

a

b
=
√

λ1√
λ2

where λ1 and λ2 denote the first and second eigenvalues of the PCA, see
figure 1.1. Also, the initial connection weights and position of the prototypes are
obtained from the two first eigenvectors of the PCA. The details are described in
[8], where it is also shown that PCA initialization presents substantial practical
advantages over several alternative approaches.

1.2.2 Binning of the original data matrix using a Kohonen Map

As a result of the training process, the SOM associates to each subject a unique
neuron-prototype pair, which we shall refer to as micro-regimen. Each micro-
regimen , Br, r = 1, . . . , m, can be considered as a bin in which similar individ-
uals are grouped. We shall denote by nr the number of subjects in Br and by
nr,c the number of subjects in Br∩Gc. Let also x̄r and x̄

(c)
r denote the vectors of

the means of x(i) taken over Br and over Br ∩Gc respectively. Figure 1.2 gives
a graphical representation of the bins [10] : in each bind the dot is proportional
to bin size and the graph is a profile of the input variables.
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Figure 1.1: Initialization by PCA

Figure 1.2: Kohonen map
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Already at this stage, an exploratory analysis of the two-way table {nr,c; r =
1, . . . , m, c = 1, . . . , C}, would be instructive: e.g. Correspondence Analysis
(CA) of the table, ordering its rows and columns according to the factor scores
and eventually clustering rows and columns, is likely to shed some light on the
relationship between centers and micro-regimens.

Our goal, however, is to look for macro-regimens, (dietary patterns in our
example), by clustering micro-regimens. To proceed further, we assume here
that the expected value of x and its variance-covariance matrix may depend
on the micro-regimens but not on the centers. It follows that if nr,c is large
enough, then, by the central limit theorem, x̄

(c)
r is approximately multivariate

normal Np(µr,
1

nr,c
Σr) and the maximum likelihood estimate of µr and Σr are :

x̄r =
1
nr

∑

i∈Br

x(i) and Vr =
1
nr

∑

i∈Br

(x(i) − x̄r)T (x(i) − x̄r)

1.2.3 Dissimilarity for micro-regimens

From these consideration, a natural definition for a dissimilarity between two
bins Br and Bs follows. This is the likelihood ratio statistic (LRS) comparing
the hypothesis that x̄

(c)
r and x̄

(c)
s have different distributions with the hypothesis

that they have the same distribution.

d(Br, Bs) = 2
C∑

s=1

log[
Np(x̄

(c)
r |x̄r,

1
nr,c

Vr)Np(x̄
(c)
s |x̄s,

1
ns,c

Vs)

Np(x̄
(c)
r |x̄r∪s,

1
nr,c

Vr∪s)Np(x̄
(c)
s |x̄r∪s,

1
ns,c

Vr∪s)
] (1.1)

where Np(.|µ,Σ) is the density function of a multivariate normal Np(µ,Σr)
and

x̄r∪s =
nrx̄r + nsx̄s

nr + ns
and (1.2)

Vr∪s =
1

nr + ns
[nrVr + nsVs + nr.ns(x̄r − x̄s)(x̄r − x̄s)t]. (1.3)

1.3 Clustering multi-level systems

While the dissimilarity of equations (1) and (2) is very natural in our context,
other ones can be usefully defined, for example those proposed in the symbolic
data analysis literature [4]. Once the choice of dissimilarity has been made,
several standard algorithms can be applied to the bins. Since the number of
bins (m ¿ n) may be chosen to be relatively small, a panoply of ascending
approaches becomes accessible. Moreover, several dissimilarity-based divisive
approaches are available. Among these, some conceptual clustering algorithms
[5] seem particularly promising as the one used in this work, see next section.
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Figure 1.3: Relation between center and regimens

Suppose now that a clustering algorithm has been deployed. As a result, the
m micro- regimens are grouped to produce k ¿ m macro-regimens. Further-
more, the 2-way table {mi,c; i = 1, . . . , k, c = 1, . . . , C} obtained by crossing
centers with macro-regimens can be analyzed by CA as outlined in the pre-
vious section. Finally, proportions of subjects following different regimens in
each centre would usefully summarize local characteristics, while a description
of the clusters would give insight on the nature of the macro-regimens found in
the general population.

1.3.1 A two level statistical model

A statistical model may now be proposed. This can be useful for efficiently
extracting information from the data, as it suggests a family of model-based
clustering algorithms which explicitly account for the multi-level structure of
the data. For a two-level system we suppose that the reduced data vector
x̄

(c)
r has as distribution a mixture of k multivariate normal distributions, each

corresponding to a macro-regimen, or dietary pattern in our example. Thus the
density can be written as :

f(x̄(c)
r ) =

k∑

i=1

αi(Gc)Np(x̄(c)
r |µi, ∆i) (1.4)

A more complex model would include dependence of the µ’s and the ∆’s on c.
The interest of such a model is limited, although it could eventually be used
to check the adequacy of the one we propose. The simpler model is of greater
interest, especially for our dietary data example, because it allows identifica-
tion of general patterns which are to be found in all centres albeit in different
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proportions. For instance we may expect that the mediterranean diet is not
an exclusive characteristics of mediterranean regions; though more frequently
encountered in these regions, it can be chosen as a way of eating normally,
perhaps for health reasons, by people living in all areas of France, and indeed,
of Europe.

It is easy to see how this 2-level model can be generalized to three- and
multi-level systems by introducing, for example, a country level and treating
centers-within-country by random effects. This, however, will not be pursued
here.

1.3.2 Estimating parameters by the EM algorithm

In many situations, a reasonable description of the data is amply sufficient.
Then the statistical model of equation (3) serves as useful guidance, but the
exploratory approach outlined above is all that is needed: indeed, it produces
both a reasonable guess for the number of clusters and rough estimates of means,
variance-covariance matrices and mixing coefficients. On the other hand, when
more precise estimates are desired, these rough ones can be used to initialize an
iterative algorithm for maximum likelihood estimation. Here, as we are dealing
with a mixture model, the EM algorithm seems an appropriate choice, with
the dependence of the mixing coefficients on centre introducing only a minor
additional complication.

The EM is applied as follows :
a) The complete data are : (x̄(c)

r , ρ(r)), where ρ(r) is the (actually unknown)
regimen to which the r-th microregimen belongs;

b) The likelihood of the complete data is :

l = logL =
C∑

c=1

m∑

r=1

k∑

i=1

log[α(t)
i (Gc) +Np(x̄(c)

r |µi,
1

nr,c
∆i)]

c) At step t, let :

p(t)(c|i, x̄(c)
r ) =

α
(t)
i (Gc)Np(x̄

(c)
r |µt

i,
1

nr,c
∆t

i)
∑k

j=1 α
(t)
j (Gc)Np(x̄

(c)
r |µt

j ,
1

nr,c
∆t

j)

Then the iteration equations from the EM approach can be shown to be :

µ
(t)
i =

1
n

C∑

c=1

m∑

r=1

p(t−1)(c|i, x̄(c)
r )).x̄(c)

r

∆(t)
i =

1
n

C∑

c=1

m∑

r=1

p(t−1)(c|i,m(r,c))(x̄(c)
r )− µ

(t−1)
i )T (x̄(c)

r )− µ
(t−1)
i )
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Table 1.2: Proportion of the 6 regimens: overall and by centre

Regimens Overall Alsace Aquitaine Bretagne Ile-de Languedoc Nord -Pas Rhone
-Lorraine Loire -France -Roussillon -de-Calais -Alpes

regim 1 0,56 0,58 0,59 0,49 0,58 0,54 0,46 0,61
regim 2 0,19 0,18 0,18 0,20 0,14 0,21 0,28 0,18
regim 3 0,08 0,08 0,07 0,12 0,09 0,08 0,08 0,06
regim 4 0,03 0,02 0,04 0,03 0,03 0,04 0,02 0,03
regim 5 0,10 0,10 0,08 0,11 0,10 0,08 0,13 0,09
regim 6 0,04 0,04 0,04 0,05 0,05 0,04 0,03 0,04

p(t)(c|i, x̄(c)
r ) =

1
nc

m∑

s=1

p(t−1)(c|i, x̄(c)
s ))

1.4 Extracting dietary patterns from the nutritional
data

We return now to the subset of the EPIC data base describing dietary habits of
4,852 French women. Figure 1.2 summarises the Kohonen SOM analysis of the
data based on a 10×10 sheet. Since one bin is empty, 99 distinct regimens were
identified. Both a standard ascending algorithm [12] and a conceptual clustering
algorithm [5] applied to the micro-regimens, suggest 4, 6 or 9 classes or dietary
patterns. The results of the 6-class analysis are summarised in Figure 1.4, which
shows the first factorial plane of the CA representing the relationship between
centres and dietary pattern; Figure 1.4, which shows the Zoom Star graphs
[13] of the eight most discriminating variables describing dietary patterns; and
Table 1.4 which gives a rough estimate of the proportions of subjects following
the six dietary patterns, overall and by centre.

An example of interpretation is as follows: regimen 1 is characterized by high
consumption of meat and vegetables; regimen 2 by high soups and low vegetable
consumption; regimen 3 by high fish and low meat consumption (respectively
13% and 3% of the total weight of food intake); regimen 4 by high meat and
low fish consumption; regimen 5 by high alcohol and meat consumption; and
regimen 6 by high consumption of dairy products, eggs and vegetables and
low consumption of fish, alcoholic beverage and legumes. Also, the Nord-Pas-
de-Calais region is positively associated to regimen 2 and 5 and negatively to
regimen 1; similarly, there is a positive association of Bretagne-Pays-de-Loire
with regimen 3 and a negative association with regimen 1; and finally, Rhone-
Alpes is positively associated to regimen 1.
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Figure 1.4: The 6 regimens by Zoom Stars
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