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Summary. Dynamic cluster methods for interval data are presented. Two methods
are considered: the first method furnish a partition of the input data and a corre-
sponding prototype (a vector of intervals) for each class by optimizing an adequacy
criterion which is based on Mahalanobis distances between vectors of intervals. The
second is an adaptive version of the first method. Experimental results with artificial
interval data sets show the usefulness of these methods. Otherwise, the adaptive
method outperforms the non-adaptive one concerning the quality of the clusters
which are furnished by the algorithms.

1 Introduction

Cluster analysis have been widely used in numerous fields including pattern
recognition, data mining and image processing. Their aim is to group data
into clusters such that objects within a cluster have high degree of similarity
whereas objects belonging to different clusters have high degree of dissimilar-
ity.

The dynamic cluster algorithm (Diday and Simon (1976)) is a partitional
clustering method whose aim is to obtain both a single partition of the input
data and the identification of a suitable representation or prototype (means,
axes, probability laws, groups of elements, etc.) for each cluster by locally min-
imizing an adequacy criterion which measures the fitting between the clusters
and their representation. The k-means algorithm with class prototype updated
after all objects have been considered for relocation, is a particular case of dy-
namic clustering with adequacy function equal to squared error criterion such
that class prototypes equal to clusters centers of gravity (Jain et al. (1999)).

In the adaptive version of the dynamic cluster method (Diday and Govaert
(1977)), at each iteration there is a different measure to the comparison of each
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cluster with its own representation. The advantage of these adaptive distances
is that the clustering algorithm is able to recognize clusters of different shapes
and sizes.

Often, objects to be clustered are represented as a vector of quantitative
features. However, the recording of interval data has become a common prac-
tice in real world applications and nowadays this kind of data is widely used
to describe objects. Symbolic Data Analysis (SDA) is a new area related to
multivariate analysis and pattern recognition, which has provided suitable
data analysis methods for managing objects described as a vector of intervals
(Bock and Diday (2000)).

Concerning partitioning clustering methods, SDA has provided suitable
tools. Verde et al. (2001) introduced a dynamic cluster algorithm for inter-
val data considering context dependent proximity functions. Chavent and
Lechevallier (2002) proposed a dynamic cluster algorithm for interval data
using an adequacy criterion based on Hausdorff distance. Souza and De Car-
valho (2004) presented dynamic cluster algorithms for interval data based on
adaptive and non-adaptive city-block distances.

The main contribution of this paper is to introduce two dynamic cluster
methods for interval data. The first method furnishes a partition of the input
data and a corresponding prototype (a vector of intervals) for each class by
optimizing an adequacy criterion which is based on Mahalanobis distances
between vectors of intervals (section 2). The second is an adaptive version of
the first method (section 3). In both methods, the prototype of each cluster
is represented by a vector of intervals, where the bounds of each interval are
respectively, for a fixed variable, the average of the set of lower bounds and
the average of the set of upper bounds of the intervals of the objects belonging
to the cluster for the same variable. In order to show the usefulness of these
methods, several artificial interval data sets ranging from different degree of
difficulty to be clustered were considered. The evaluation of the clustering
results is based on an external validity index in the framework of a Monte
Carlo experience (section 4). Finally, in section 5 are given the conclusions.

2 A dynamic cluster with non-adaptive Mahalanobis
distance for interval data

Let E = {s1,...,sn} be a set of n symbolic objects described by p interval
variables. Each object s; (i = 1,...,n) is represented as a vector of inter-
vals x; = ([al,b}],...,[al,bf])T. Let P be a partition of E into K clusters
Cy,...,Ck, where each cluster Cy (k=1,...,K) has a prototype Ly, that is
also represented as a vector of intervals y, = ([a, 81, - .-, [ah, BY])T.

According to the standard dynamic cluster algorithm, our method look
for a partition P = (C4,...,Ck) of a set of objects into K clusters and its
corresponding set of prototypes L = (L1,...,Lk) by locally minimizing an
adequacy criterion usually defined in the following way:
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K

K
Wi(P,L) =Y Ap(Li) =Y > d(xiyy) (1)

k=1 k=1i€C}

where 0(x;,y;,) is a distance measure between an object s; € C}, and the class
prototype Ly, of C.

Let x;;, = (al,...,al)T and x;u = (b,...,b%)T be two vectors, respec-
tively, of the lower and upper bounds of the intervals describing x;. Consider
also yi, = (ak,...,a)T and y,; = (Bi,...,B87)7 be two vectors, respec-

tively, of the lower and upper bounds of the intervals describing y,,.
We define the distance between the two vectors of intervals x; and y,, as:
6(xi,yy) = d(xir, yir,) + d(xiv, i) (2)

where

d(Xir,¥rr) = (Xir = ¥rr) Mr(XiL — ¥Yr1) (3)

is the Mahalanobis distance between the two vectors x;7, and y,; and,

dxiv,Yew) = Xiv — o) Mo (Xiv — yio) (4)

is the Mahalanobis distance between the two vectors x;; and y,;.
The matrices M, and My are defined, respectively, as:

(i) My = ( det(onolL))l/p p_ololL, where Q,,,;;, is the pooled covariance
matrix with det(Q,,,z) # 0, i-e.,

(n1 — l)le +...+ (nK - I)SKL
onolL = _ (5)
n+...+ng— K

In equation (5), Sy, is the covariance matrix of the set of vectors {x;r /i €
Cr} and ny, is the cardinal of Cp, (k=1,...,K).

(ii) My = ( det(onolU))l/” Qp_olozU: where Q.7 is the pooled covariance
matrix with det(Q,,.7) # 0, i-e.,

(n1 — I)SlU +...+ (nk - I)SKU
onolU = . (6)
n+...+ng— K

In equation (6), Syy is the covariance matrix of the set of vectors {x;i//s; €
Cr} and ny, is again the cardinal of Cy, (k=1,...,K).
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2.1 The optimization problem

In this method the optimization problem is stated as follows: find the vector
of intervals y, = ([}, B;), - - -, [}, BF]) which locally minimizes the following
adequacy criterion:

Ap(Ly) = Z (xir, = yyr,) "Mz (xir, — yir) + (7)
1 €Ch
Z (xiv — YkU)TMU(XiU — Vo)
1 €Ch

The problem now becomes to find the two vectors y,; and y,;; minimizing
the criterion A¥(Ly,). According to Govaert (1975), the solution for y,; and
¥ are obtained from the Huygens theorem. They are, respectively, the mean
vector of the sets {x;1/s; € Cr} and {x;i/s; € Ci}.

Therefore, y,, is a vector of intervals whose bounds are, for each variable j,
respectively, the average of the set of lower bounds and the average of the set
of upper bounds of the intervals of the objects belonging to the cluster Cf.

2.2 The algorithm

The dynamic cluster algorithm with non-adaptive Mahalanobis distance has
the following steps:

1. Initialization. Randomly choose a partition {C; ...,Ck} of E.
2. Representation step.
For k =1 to K compute the vector y;, = ([ag, Bt], ..., [oh, BY])
where o] is the average of {al/s; € Cj} and ] is the average of {b]/s; €
Cet,i=1,...,p.
3. Allocation step.
test < 0

fori =1ton do
define the cluster C}, such that
kx = arg ming—1 . x (xir. — ypr) " Mr(xip, — yrp)+
(xiv — YkU)TMU(XiU ~Yiv)
ifi e Cy and kx # k
test + 1
Crs = Crsx U {si}

4. Stopping criterion.
If test = 0 then STOP, else go to (2).
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3 Dynamical cluster with adaptive Mahalanobis distance
for interval data

The dynamic cluster algorithm with adaptive distances (Diday and Govaert
(1977)) has also a representation and an allocation step but there is a different
distance associated to each cluster. The algorithm looks for a partition in K
clusters, its corresponding K prototypes and K different distances associated
with the clusters by locally minimizing an adequacy criterion which is usually
stated as:

K

K
Wo(P,L) =Y AF(Lk,0k) =Y Y 0k(xi,y5) ®)

k=1 k=1i€Cy

where 0y, (x;,y;) is an adaptive dissimilarity measure between an object s; €
Cy and the class prototype Ly of Cj.

According to the intra-class structure of the cluster C}, we consider here
an adaptive Mahalanobis distance between an object s; and a prototype Ly,
which is defined as:

k(xi,¥3) = (%ip — ¥pr) Mar(XiL — yiz) + 9)
(xiv — YkU)TMkU(XiU ~Yiv)
where My, and Mgy, are matrices associated to the cluster Cj, both of de-

terminant equal to 1.

3.1 The optimization problem

The optimization problem has two stages:

a) The class C}, and the matrices My, and My (k=1,..., K) are fixed.
We look for the prototype Ly of the class C}, which locally minimizes

Ai(Lka‘sk) = Z (XiL - YkL)TMkL(XiL - YkL) + (10)
1€ Ch
Z (xiv — YkU)TMkU(XiU —Yrv)
1€ Ch

As we know from subsection 2.1, the solutions for afc ;, and BiU are, re-
spectively, the average of {a},s; € Ci}, the lower bounds of the intervals
[al,b]], s; € Ck, and the average of {b,s; € Ci}, the upper bounds of the

[

intervals [a/, /], s; € Cy.

R
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b) The class Cj and the prototypes Ly (k= 1,..., K) are fixed.

We look for the distance dy of the class Cy which locally minimizes the
criterion A? with det(Myz) = 1 and det(Mgy) = 1.

According to Diday and Govaert (1977), the solutions are: Mz = (det
Q.. )P Q,;Ll where Q. is the covariance matrix of the lower bounds of
the intervals belonging to the class C, with det(Q,,;) # 0 and My = (det
QkU)l/” Q,;I} where Qs is the covariance matrix of the upper bounds of
the intervals belonging to the class Cy, with det(Qyr) # 0.

3.2 The algorithm

The initialization, the allocation step and the stopping criterion are nearly the
same in the adaptive and non-adaptive dynamic cluster algorithm. The main
difference between these algorithms occurs in the representation step when it is
computed for each class k, (k = 1,..., K) the matrices My = (det(Q,;))'/?
Q;; and My = (det(Qup))/” Q-

Remark. If a single number is considered as an interval with equal lower
and upper bounds, the results furnished by these symbolic-oriented methods
are identical to those furnished by the standard numerical ones when usual
data (vector of single quantitative values) are used. Indeed, the clusters and
the respective prototypes are identical.

4 Experimental results

To show the usefulness of these methods, experiments with two artificial inter-
val data sets, of different degrees of clustering difficulty (clusters of different
shapes and sizes, linearly non-separable clusters, etc), are considered. The ex-
periments have three stages: generation of usual and interval data (stages 1
and 2), and evaluation of the clustering results in the framework of a Monte
Carlo experience.

4.1 Usual data sets

Initially, we considered two standard quantitative data sets in 2. Each data
set has 450 points scattered among four clusters of unequal sizes and shapes:
two clusters with ellipsis shapes and sizes 150 and two clusters with spherical
shapes of sizes 50 and 100. The data points of each cluster in each data
set were drawn according to a bi-variate normal distribution with correlated
components.

Data set 1, showing well-separated clusters, is generated according to the
following parameters:

a) Class 1: u; = 28, pz = 22, 02 =100, 012 = 21,03 =9 and p1» = 0.7;
b) Class 2: 3 = 65, us = 30, U% =9, 015 = 28.8, U% =144 and pi» =0.8;
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c) Class 3: g =45, pp =42, 07 =9, 012 = 6.3, 05 =9 and p12 = 0.7;
d) Class 4: u; =38, o = —1, 02 = 25, 015 = 20, 03 = 25 and pi2 = 0.8;

Data set 2, showing overlapping clusters, is generated according to the
following parameters:

a) Class 1: uy; = 45, pz = 22, 02 =100, 012 = 21, 03 =9 and p;» = 0.7;
b) Class 2: u; =65, 2 = 30, 02 =9, 515 = 28.8, 02 = 144 and p;» = 0.8;
¢) Class 3: g =57, o = 38,07 =9, 012 = 6.3, 05 =9 and p;» = 0.7;

d) Class 4: g =42, ps = 12, 0% = 25, 012 = 20, 05 =25 and p,12=10.8;

4.2 Interval data sets

Each data point (21, 22) of the data set 1 and 2 is a seed of a vector of intervals
(rectangle): ([21 —71/2, 21 +711/2],[22 — 72/2, 22 + 72/2]). These parameters
1,72 are randomly selected from the same predefined interval. The intervals
considered in this paper are: [1,8],[1,16],[1,24],[1, 32], and [1,40]. Figure 1
shows interval data set 1 with well separated clusters and Figure 2 shows
interval data set 2 with overlapping clusters.

Fig. 1. Interval data set 1 showing well-separated classes

4.3 The Monte Carlo Experience

The evaluation of these clustering methods was performed in the framework
of a Monte Carlo experience: 100 replications are considered for each interval
data set, as well as for each predefined interval. In each replication a clustering
method is run (until the convergence to a stationary value of the adequacy
criterion W; or W) 50 times and the best result, according to the criterion
W1 or W, is selected.
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Fig. 2. Interval data set 2 showing overlapping classes

Remark. As in the standard Mahalanobis (adaptive and non-adaptive) dis-
tance methods for dynamic cluster, these methods have sometimes a problem
with the inversion of matrices. When this occurs, the actual version of these
algorithms stops the current iteration and re-starts a new one. The stopped
iteration is not take into account among the 50 which should be run.

The average of the corrected Rand (CR) index (Hubert and Arabie (1985))
among these 100 replications is calculated. The CR index assesses the degree
of agreement (similarity) between an a priori partition (in our case, the par-
tition defined by the seed points) and a partition furnished by the clustering
algorithm.

IfU = {u1,...,up,...,ur} is the partition given by the clustering solu-
tion, and V' = {vy,...,0.,...,vc} is the partition defined by the a priori
classification, the CR index is defined as:

S (9) () TS () S ()
%[Ef:l (n2) + Zf:l (néj)] - (g)_l Z?:l (n2) Zf:l (nz'j)

where n;; represents the number of objects that are in clusters u; and v;;
n;. indicates the number of objects in cluster u;; n ; indicates the number of
objects in cluster v;; and n is the total number of objects.

CR can take values in the interval [-1,1], where the value 1 indicates a
perfect agreement between the partitions, whereas values near 0 (or negatives)
correspond to cluster agreements found by chance (Milligan (1996)).

Table 1 shows the values of the average CR index according to the dif-
ferent methods and interval data sets. This table also shows suitable (null
and alternative) hypothesis and the observed values of statistics following a
Student’s t distribution with 99 degrees of freedom.

CR =

(11)
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Table 1. Comparison between the clustering methods

Range Interval Data Set 1 Interval Data Set 2

of values |Non-Adaptive|Adaptive|Hy : p1 < p|Non-Adaptive|Adaptive|Hp : p1 < p
of v; i=1,2| Method Method |Hg : p1 > p|  Method Method |Hg : 1 > i

vi € [1, 8] 0.778 0.996 80.742 0.409 0.755 13.266
v € [1,16 0.784 0.986 82.182 0.358 0.688 22.609
vi € [1,24 0.789 0.963 61.464 0.352 0.572 20.488
vi € [1,32 0.802 0.937 39.181 0.349 0.435 18.204
i € [1,40 0.805 0.923 29.084 0.341 0.386 9.2851

As the interval data set used to calculate the CR index by each method
in each replication is exactly the same, the comparison between the proposed
clustering methods is achieved by the paired Student’s t-test at a significance
level of 5%. In these tests, u1 and p are, respectively, the average of the CR
index for adaptive and non-adaptive methods.

From the results in Table 1, it can be seen that the average CR indices for
the adaptive method are greater than those for the non-adaptive method in
all situations. In addition, the statistic tests support the hypothesis that the
average performance (measured by the CR index) of the adaptive method is
superior to the non-adaptive method.

5 Conclusions

In this paper, dynamic cluster methods for interval data are presented. Two
methods are considered: the first method furnish a partition of the input data
and a corresponding prototype (a vector of intervals) for each class by optimiz-
ing an adequacy criterion which is based on Mahalanobis distances between
vectors of intervals. The second is an adaptive version of the first method. In
both methods the prototype of each class is represented by a vector of inter-
vals, where the bounds of these intervals for a variable are, respectively, the
average of the set of lower bounds and the average of the set of upper bounds
of the intervals of the objects belonging to the class for the same variable.
The convergence of these algorithms and the decrease of their partitioning
criterions at each iteration is due to the optimization of their adequacy cri-
terions at each representation step. The accuracy of the results furnished by
these clustering methods were assessed by the corrected Rand index consid-
ering artificial interval data sets ranging from different degrees of clustering
difficulties in the framework of a Monte Carlo experience. Concerning the av-
erage CR index, the method with adaptive distance clearly outperforms the
method with non-adaptive distance.
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