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Abstract

Tumor angiogenesis is the process by which new blood vessels are formed and enhance the oxy-

genation and growth of tumors. As angiogenesis is recognized as being a critical event in cancer

development, considerable efforts have been made to identify inhibitors of this process. Cytostatic

treatments that target the molecular events of the angiogenesis process have been developed, and

have met with some success. However, it is usually difficult to preclinically assess the effectiveness

of targeted therapies, and apparently promising compounds sometimes fail in clinical trials.

We have developed a multiscale mathematical model of angiogenesis and tumor growth. At

the molecular level, the model focuses on molecular competition between pro- and anti-angiogenic

substances modeled on the basis of pharmacological laws. At the tissue scale, the model uses partial

differential equations to describe the spatio-temporal changes in cancer cells during three stages of

the cell cycle, as well as those of the endothelial cells that constitute the blood vessel walls.
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This model is used to qualitatively assess how efficient endostatin gene therapy is. Endostatin

is an anti-angiogenic endogenous substance. The gene therapy entails overexpressing endostatin in

the tumor and in the surrounding tissue. Simulations show that there is a critical treatment dose

below which increasing the duration of treatment leads to a loss of efficacy.

This theoretical model may be useful to evaluate the efficacy of therapies targeting angiogenesis,

and could therefore contribute to designing prospective clinical trials.

Key words: multiscale mathematical modeling, angiogenesis, tumor growth, cell cycle,

pharmacological law, optimization of cancer treatments.

1. Introduction

Tumor angiogenesis is a process by which new blood vessels are formed from the existing vascu-

lature and carry additional nutrients and oxygen to tumor cells, allowing them to proliferate. The

development of the primary tumor mass and the metastatic dissemination of tumor cells require

angiogenesis. It is generally accepted that a tumor, which needs nutrients and oxygen to grow, can-

not increase beyond a few millimeters cubed without an enhanced blood supply (Folkman, 1990).

During tumor growth, a molecular cascade drives the transition from the avascular stage to the

vascular stage: new vessels are formed from the surrounding existing vasculature, migrate towards

the tumor cells, and penetrate the tumor mass to deliver oxygen and nutrients to the tumor cells.

This also means that some tumor cells can escape from this primary tumor, and enter the blood-

stream via the newly formed immature and permeable blood vessels to form new tumor masses,

also known as metastases, at distant parts of the body (Zetter, 1998; Folkman, 2002). In most

cases, the presence of metastases is correlated with the malignancy of the tumor, and indicates a

poor prognosis for the patient (Zetter, 1998).

Indeed, angiogenesis, or new vessel formation, results from a complex molecular balance between

numerous pro-angiogenic and anti-angiogenic endogenous substances (Hanahan and Folkman, 1996).
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The complexity of angiogenesis is partly due to the existence of a number of such factors. In breast

cancer for instance, up to seven distinct pro-angiogenic factors can be expressed (Relf et al., 1997).

Over the last 25 years, several mathematical models of angiogenesis have been developed (see

(Mantzaris et al., 2004) for a review). Discrete mathematical models, based on cellular automata,

have usually been used to predict the structure of extra- and intra-tumoral vascular networks. An-

derson and Chaplain have published the first discrete model of tumor-induced angiogenesis. This

model was derived from a continuous model (Anderson and Chaplain, 1998). Several more recent

publications are based on the same approach (Plank et al., 2004; Kevrekidis et al., 2006). Contin-

uous models of tumor-induced angiogenesis are based on ordinary or partial differential equations

governing the change in endothelial cell density, and the concentrations of tumor pro-angiogenic

factors and of fibronectin (a component of the extracellular matrix). From the physical point of

view, these models focus mainly on the endothelial cell diffusion, chemotaxis and haptotaxis (An-

derson and Chaplain, 1998; Kevrekidis et al., 2006). It has also been proposed that mathematical

models of angiogenesis can be coupled with those of tumor growth. In (Zheng et al., 2005), the

authors have proposed a vascular tumor growth model in which the tumor growth model proposed

by Byrne and Chaplain (Byrne and Chaplain, 1996) is coupled with a continuous-discrete model of

angiogenesis, such as that described by Anderson and Chaplain in (Anderson and Chaplain, 1998).

In (Hogea et al., 2006), the authors have coupled a model of tumor growth with a simplistic contin-

uous model of angiogenesis. Several models of vascular tumor growth also include some mechanical

constraints, such as wall shear stress, pressure. For instance, in (Alarcón et al., 2005), Alarcón

and colleagues have coupled a cellular automaton with ordinary differential equations (ODEs) to

describe some of the interactions that occur between the tissue scale, including vascular structural

adaptation, the cellular scale and the intracellular scale. In (Bartha and Rieger, 2006; Lee et al.,

2006; Welter et al., 2008), the authors have used models based on probabilistic cellular automata to

investigate the mechanisms leading to abnormal tumor vasculature, and the effects of such vascular

heterogeneities on tumor growth and drug delivery. In order to circumvent the numerical cost of

such cellular automata, Macklin and colleagues (Macklin et al., 2009) have decided to combine a

continuous model of tumor growth with a discrete model of tumor-induced angiogenesis, such as

that described by McDougall and colleagues in (McDougall et al., 2006). Thanks to this combi-

nation, they were able to take into account the impact of blood flow on changes in the vascular
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network. Due to their complexity, these models are only qualitative, and even so can only integrate

one or two of the molecular factors that drive the angiogenesis process. Moreover, the underlying

tumor growth model is often very simplistic and fails to take cell cycle regulation into account.

Since the angiogenic process was first identified as a key process in tumor development a few years

ago, pharmaceutical companies have been looking for inhibitors. Several anti-angiogenic molecules

have been identified and tested in clinical trials but, as is all too often the case with targeted thera-

pies, efficacy has been difficult to demonstrate. This makes it rather difficult to assess attempts to

optimize treatment. New anti-cancer drugs are designed to target a particular cancer process, unlike

standard chemotherapeutic compounds that have a cytotoxic effect on all proliferative cells. Tar-

geted therapies, which are also known as ”cytostatic treatments”, act mainly at the molecular level.

For instance, some anti-angiogenic drugs, the best known being Bevacizumab (Avastin, Roche),

prevent vascular endothelial growth factor (VEGF), a pro-angiogenic endogenous substance, from

binding to Flk-1 receptors. These receptors are located on the membrane of endothelial cells, which

constitute blood vessels. Such anti-angiogenic drugs inhibit endothelial cell proliferation and, in

consequence, prevent new blood vessels from forming, without any direct toxic effect on healthy cells.

To make it possible to analyze the effect of such molecular-targeted treatments by means of

mathematical models, we need to include the main molecular entities in multiscale models of tu-

mor growth. In this paper we describe a pharmacologically-based continuous mathematical model

of angiogenesis and tumor growth. At the molecular level, we were careful to use pharmacologi-

cal laws to model the activation of angiogenesis as the result of the binding of major angiogenic

molecular substances to their respective receptors. This molecular-level model was embedded in the

macroscopic model, based on reaction-diffusion partial differential equations, which described the

spatio-temporal change in the densities of the unstable and stable endothelial cells that constitute

the blood vessel wall. At each of the time steps in the model, sources of oxygen were defined accord-

ing to the spatial disposition of the endothelial cells. The oxygen concentration was then computed,

and introduced as an input signal into the cell cycle model of tumor cells. Indeed, depending on the

local concentration of oxygen, we assumed that cancer cells would proliferate, die, or enter the qui-

escent compartment. In the model, quiescent cells, deprived of oxygen, secrete vascular endothelial

growth factor (VEGF). This in turn activates angiogenesis, and this constitutes the feedback loop

4



of the model.

We applied our model to an analysis of the efficacy of a new anti-angiogenesis treatment. This

treatment relies on the overproduction of an endogenous anti-angiogenic substance known as endo-

statin, which is commonly secreted by tumor cells (O’Reilly et al., 1997). Endostatin is a 20-kDa,

C-terminal fragment of collagen XVIII, and has been shown to be a potent endogenous inhibitor

of angiogenesis (O’Reilly et al., 1997). Endostatin gene therapy consists of infecting tumor cells

with adenoviruses encoding a wild-type endostatin gene (Folkman, 2006). When feasible, these

adenoviruses are injected directly into the tumor mass, which induces targeted local overexpression

of endostatin. This approach is currently being evaluated in clinical trials (Lin et al., 2007; Li et al.,

2008). However, as is often the case for targeted anti-cancer therapies, it is hard to identify the

best treatment strategy.

Using the multiscale model of tumor growth and angiogenesis to carry out a qualitative analysis

of the effect of this treatment, we provide some indications about the best way to optimize this

cancer treatment strategy.

2. Underlying biological hypotheses and an overall view of the mathematical model

Due to the complexity of the problem, we first collected biological information from the litera-

ture, and made some simplified hypotheses about the various biological phenomena involved. The

diagram shown in Figure 1 was developed in collaboration with biologists. It provides a schematic

description of the relationships between the different entities we will model in this study.

Our model includes two main species of cells. The first is that of the endothelial cells that

constitute the wall of blood vessels. We distinguished between unstable and stable endothelial cells,

and assumed that only stable endothelial cells could constitute a source of oxygen supply for the

tumor. As we discuss below, our approach was a continuous one. This means that we were not
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Figure 1: Summary of the biological entities and interactions taken into account in our mathematical model. The

actions of activating substances (VEGF, angiopoietin-1 (Ang1)) are depicted by blue arrows, whereas those of

inhibitors (endostatin, angiopoietin-2 (Ang2)) are depicted by red arrows. We distinguished between two species of

cells: endothelial cells (unstable and stable), and tumor cells (proliferative, quiescent or hypoxic, and apoptotic).

Quiescent tumor cells secrete VEGF molecules that stimulate the proliferation of endothelial cells and their migration

towards tumor cells. Moreover, competition between angiopoietin-1 and angiopoietin-2 regulates the stabilization of

endothelial cells and, consequently, the maturation of the newly-formed blood vessels. These new vessels increase

the supply of oxygen to the tumor cells. Finally, we modeled the action of a treatment leading to endostatin

overproduction that, as we shall see in this papier, modifies the entire process of tumor growth and angiogenesis.

modeling blood vessels as discrete objects, but rather as continuous densities of endothelial cells

that potentially constitute sources of oxygen. As we describe below, the regulation of stable and

unstable endothelial cells results from molecular competition between activators and inhibitors of
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angiogenesis.

The second type of cells we took into account was cancer cells. In our model, we distinguished

between three types of cancer cells: proliferative, quiescent and apoptotic cells. Transitions between

these states are mainly governed by the local concentration of oxygen.

We use the word ”apoptosis” to refer to cell death of all kinds.

2.1. Model of tumor growth

Our mathematical model of tumor growth is based on a published age-structured model of

the cell cycle applied to investigating the therapeutic benefits of various cancer treatment strate-

gies (Ribba et al., 2006a,b, 2009). In our model, tumor cells can be in three different states:

proliferative, quiescent, and apoptotic. Proliferative cells progress through the cell cycle, and du-

plicate. However, if the oxygen concentration is not sufficient for the cells to proliferate, the cells

become quiescent (or hypoxic) cells. In this state, cells are assumed to secrete vascular endothelial

growth factor (VEGF), an activator of angiogenesis, that diffuses into the surrounding tissue until it

reaches the endothelial cells (Ferrara, 2002). If the environmental conditions become more favorable,

these quiescent cells can revert to the proliferative state. However, if the oxygen concentration falls

below a critical threshold, acute hypoxia will lead to cell apoptosis (Blagosklonny and Pardee, 2002;

DeVita et al., 2005). At this stage, we made no attempt to take into account the biomechanical as-

pects of tumor growth. This hypothesis is discussed in detail in the Discussion section of this paper.

This model therefore consists of a multiscale framework, combining a hypoxia-driven cell cycle

regulation model and a macroscopic spatial tumor growth model, in which cell populations are

modeled as a multiphase fluid governed by Darcy’s law. The output from the cell cycle model is the

net proliferation rate of the entire cell population. This information is used at the macroscopic level

to compute the motion of tumor cells in the computational domain. The spatial locations of the

density of stable endothelial cells are calculated thanks to the macroscopic level of the model. These

locations constitute new oxygen sources, and so are used to compute the field of oxygen. This field

of oxygen becomes the input signal for the cell cycle model, which computes the densities of prolif-

erative, hypoxic and apoptotic cells, depending on the oxygen available to tumor cells (see Figure 2).
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Figure 2: Multiscale aspect of the model (inspired of (Ribba et al., 2009)). The motion of tumor cells in the

computational domain is computed at the macroscopic level, resulting, through the angiogenesis process, in new

sources of oxygen. Thus, the new field of oxygen becomes the input signal of the cell cycle model, which computes

the density of proliferative, hypoxic and apoptotic cells.

2.2. Model of angiogenesis

Our angiogenesis model focuses on the spatio-temporal change in the density of endothelial

cells. As we have already said, we distinguished between unstable and stable endothelial cells.

Unstable endothelial cells naturally undergo random diffusion. They proliferate in response to the

stimulus of the VEGF molecules secreted by hypoxic tumor cells. At the molecular level, we used

conventional pharmacological laws to model the binding of VEGF to Flk-1 receptors (also known

as KDR or VEGFR-2) on the membranes of the unstable endothelial cells (Ferrara, 1999a, 2002).

However, VEGF stimulation is modulated by the antagonist endostatin, which is also produced by

tumor cells, and which competes with VEGF to bind to Flk-1 receptors (Kim et al., 2002). VEGF-

stimulated unstable endothelial cells therefore proliferate and migrate along the gradient of VEGF

concentration, i.e. towards the hypoxic cell population (Ausprunk and Folkman, 1977; Paweletz and

Knierim, 1989; Ferrara, 1999b). At this stage, we ignored that endothelial cells and extracellular

matrix could interact during the process of migration, and could lead to the haptotactic motion.

This motion has been modeled in several papers (Anderson and Chaplain, 1998; Zheng et al., 2005;

Macklin et al., 2009; McDougall et al., 2006). Non-stimulated, unstable endothelial cells do not

proliferate, and eventually die (Benjamin and Keshet, 1997; Ferrara, 1999b).
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We assumed, though without modeling this, that unstable cells instantaneously form imma-

ture tubular structures that are a prerequisite for the appearance of mature blood vessels able to

carry oxygen. In our model, the transition from unstable to stable endothelial cells leads the im-

mature vessels to turn into mature and functional blood vessels. This transition is mediated by

cell-to-cell contact, regulated through the competitive binding of angiopoietin-1 and angiopoietin-2

to Tie2 receptors located on the membrane of unstable endothelial cells (Partanen et al., 1992).

Angiopoietin-1 is expressed by mural cells, which play an important role in the maturation of new

blood vessels (Sundberg et al., 2002). Angiopoietin-2 is produced both by tumor cells and by un-

stable endothelial cells (Etoh et al., 2001; Ahmad et al., 2001; Koga et al., 2001; Tanaka et al.,

2002; Moon et al., 2003; Hu et al., 2003). Angiopoietin-1 is known to promote contact between en-

dothelial cells, whereas angiopoietin-2 blocks the activation of Tie2 by angiopoietin-1 (Davis et al.,

1996; Maisonpierre et al., 1997). In our model, when the contact between endothelial cells reaches

a sufficient level, proliferation, migration and apoptosis stop, and unstable endothelial cells revert

to being stable cells. As we have already pointed out, the presence of stable endothelial cells is a

prerequisite for the appearance of functional blood vessels able to carry oxygen to the tumor cells.

In our model, we simply assumed that unless the density of stable endothelial cells was zero, a

microscopic source would diffuse oxygen into the surrounding tissue. This oxygen would then be

consumed by tumor cells. Finally, we assumed that the tumor mass could disrupt the behavior of

unstable endothelial cells, but, at this stage, we did not take into account its possible impact on

the behavior of the whole vascular network.

In conclusion, we adopted a somewhat phenomenological approach to modeling the angiogenesis

process. This is inherent to the continuous approach we chose to use. However, we claim that

it suffices to qualitatively study how efficient innovative anti-angiogenic treatments are. We will

return to this topic in the Discussion section of this paper.

2.3. Endostatin-based treatment model

Endostatin-based cancer treatment involves enhancing the concentration of the angiogenesis in-

hibitor endostatin in order to reduce the binding of VEGF to Flk-1 receptors and, consequently, to

9



reduce the activation of unstable endothelial cells. Endostatin has been shown to promote blood

vessel regression (O’Reilly et al., 1997; Folkman, 2006; Kim et al., 2002; Sauter et al., 2000).

In this paper, we are interested in an endostatin gene therapy that involves the local infection of

tumor cells with adenoviruses encoding the wild-type endostatin gene. This results in the overpro-

duction of endostatin by the cancer cells. As we were intending to carry out a qualitative analysis

of the efficacy of this treatment strategy, we modeled the administration of the adenoviruses rather

simply. We assumed that the adenovirus particles had been rendered replication-deficient (Lin et al.,

2007), and that this would homogeneously induce the overproduction of endostatin by quiescent

and proliferative tumor cells. We also assumed that the diffusion of the adenoviruses outside the

tumor could be neglected, and so we did not take into account their possible impact on endothelial

and other healthy cells, assuming that it would be negligible compared to their effect on the tumor

cells.

In what follows, we studied the effectiveness of a single administration of adenoviruses to avoid

the issue of a possible immune response, that can occur following the first administration of treat-

ment, and could therefore modify the efficacy of subsequent administrations.

3. Equations of the mathematical model

Our virtual tumor is described by the densities of tumor cells (number of tumor cells per unit

of volume) in the proliferative, quiescent and apoptotic phases.

Newly-formed blood vessels are represented by the density of endothelial cells (continuous ap-

proach), with a distinction being made between stable and unstable cells. Unstable cells proliferate

and migrate towards the source of VEGF, whereas stable cells, which are required for blood to flow,

are static.

We modeled the tissue concentrations of the biochemical substances investigated (VEGF, endo-

statin, angiopoietin-1 and angiopoietin-2) and oxygen.
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Our model is based on a set of reaction-diffusion partial differential equations, that describes

the evolution of the densities and concentrations of the species we took into account. The inter-

action between these species and regulation rules are described by a non-linear dependence of the

coefficients of the equations.

Table 1 summarizes the notations used in this section.

Variable Description

Ω Computation domain

n Density of unstable endothelial cells

nS Density of stable endothelial cells

[V EGF ] VEGF concentration

[endos] Endostatin concentration

[Ang1] Angiopoietin-1 concentration

[Ang2] Angiopoietin-2 concentration

[O2] Oxygen concentration

P Density of proliferative tumor cells

Q Density of quiescent tumor cells

A Density of apoptotic tumor cells

M Density of healthy cells

Table 1: Notations used in the mathematical model.

All variables (local densities and concentrations) are assumed to be functions of space (denoted

by x), and time (denoted by t). To simplify, we will omit symbols indicating time and space

dependencies, and will write, for instance, n instead of n(x, t).
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3.1. Densities of endothelial cells

As we have already explained, unstable endothelial cells undergo four processes: proliferation

(until a maximum value denoted by Nmax is reached), diffusion, chemotaxis in response to VEGF

stimuli and depending on the VEGF concentration gradient, and maturation.

Consequently, at the space position x and time t, the density of unstable endothelial cells is

governed by:

∂n

∂t
= ∇ · (De ∇n)

︸ ︷︷ ︸

diffusion

+ α n

(

1 −
n + nS

Nmax

)

︸ ︷︷ ︸

proliferation

−∇ ·

(

χ n

(

1 −
n + nS

Nmax

)

∇[V EGF ]

)

︸ ︷︷ ︸

chemotaxis

−
∂nS

∂t
︸︷︷︸

maturation

(1)

where De is the diffusion coefficient, α the proliferation rate, χ the chemotaxis rate. (See equation

(2) for details about
∂nS

∂t
.)

Thus, we modeled the proliferation of unstable endothelial cells using a logistic-type growth

model, incorporating a logistic-type inhibition function to describe the fact that the number of

endothelial cells cannot exceed the maximum value Nmax (due to tissue carrying capacities, for

instance). This inhibition function was also introduced into the chemotaxis term to model the

natural affinity of endothelial cells for one another: the higher the local density of these cells, the

fewer endothelial cells move away. Moreover, we assumed that the diffusion of unstable endothelial

cells would be sharply reduced in places where the tumor density was too high, as a result of pressure

effects and lack of space. To simplify, the diffusion coefficient, De, was taken to be usually constant,

equal to Ce, but to be multiplied by a constant ce,d < 1 in places where the tumor density (P + Q)

was above a given threshold τe,d, so we get:

∀t, ∀x ∈ Ω De(x, t) = Ce ∗ λe,d(x, t)

where

λe,d(x, t) =







ce,d < 1 if P (x, t) + Q(x, t) > τe,d

1 else

(see section 3.6 for details about P and Q)

We assumed that the proliferation and migration rates (α and χ respectively in equation (1))

depended on the biochemical species effects on endothelial cells. So, in our model, α and χ depend

on VEGF (see below).
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Effect of VEGF on the proliferation of unstable endothelial cells. VEGF promotes the proliferation

of endothelial cells by binding to Flk-1 receptors. However, this binding is regulated by endostatin,

which is a VEGF antagonist at these receptors. This means that the effect of VEGF is regulated

by endostatin. To model the effect of VEGF on the proliferation of unstable endothelial cells

(denoted by EV EGF,prolif) in the presence of endostatin, we used the standard pharmacological

Emax model in order to take into account the differences between the molecular properties of

VEGF and endostatin (see Appendix A for details):

EV EGF,prolif =
EmaxV EGF,prolif

1 +
KD,V EGF

[V EGF ]

(

1 +
[endos]

KD,endos

)

where EmaxV EGF,prolif denotes the maximum effect of VEGF on unstable endothelial cell prolif-

eration, and KD,V EGF (resp. KD,endos) the dissociation constant of VEGF (resp. endostatin) at

its Flk-1 receptor.

As expected, according to the previous equation, increasing the endostatin concentration in-

duces a decrease in the effect of VEGF on proliferation.

However, unstable endothelial cells are known to die if the proliferation rate is not high enough.

Consequently, the proliferation rate becomes negative if EV EGF,prolif is below a given threshold

(denoted by Eminprolif ). We modeled this condition using the PA function defined below:

PA(u) = (
Ap + u

2
) − (

Ap − u

2
) tanh(102(u − Eminprolif)) ∀u ≥ 0

where Eminprolif is the minimum value of EV EGF,prolif , below which the proliferation rate becomes

negative (value Ap).

As for the diffusion process, we assumed that endothelial cells would proliferate less in places

where tumor density was too high, because of pressure effects and lack of space. So we assumed

the proliferation rate to be multiplied by a given constant ce,p < 1 in places where tumor density

was above a given threshold τe,p. This was equivalent to multiplying the proliferation rate by λe,p

defined as follows:

λe,p =







ce,p < 1 if P + Q > τe,p

1 else
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Figure 3: Representation of the PA function. Eminprolif corresponds the minimum value of EV EGF,prolif , below

which cellular proliferation no longer occurs; Ap is a negative constant representing the cell death rate.

The proliferation rate is finally given by the following expression:

α = PA(EV EGF,prolif ) λe,p

Effect of VEGF on the chemotaxis of unstable endothelial cells. We assumed that the chemotactic

rate χ depended on VEGF binding to Flk-1 receptors. Using the Emax model, as before, we

obtained:

χ = λe,c

EmaxV EGF,chemo

1 +
KD,V EGF

[V EGF ]

(

1 +
[endos]

KD,endos

)

where EmaxV EGF,chemo denotes the maximum effect of VEGF on unstable endothelial cell chemo-

taxis, and KD,V EGF (resp. KD,endos) the dissociation constant of VEGF (resp. endostatin) at its

Flk-1 receptor.
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As before, we multiplied the chemotactic coefficient by a constant ce,c < 1, where the tumor

density was above a given threshold τe,c:

λe,c =







ce,c < 1 if P + Q > τe,c

1 else

Moreover, in our model, unstable endothelial cells become stable through the maturation process.

This maturation process depends on the effects of angiopoietins as they bind to the Tie2 receptors.

Effect of angiopoietins on endothelial cell maturation. As before, the pharmacological Emax model

was used to model the combined impact of angiopoietin-1 and its antagonist, angiopoietin-2, on the

maturation of unstable endothelial cells:

EAng1 =
EmaxAng1

1 +
KD,Ang1

[Ang1]

(

1 +
[Ang2]

KD,Ang2

)

where EmaxAng1 represents the maximum effect of angiopoietin-1 on unstable endothelial cells, and

KD,Ang1 (resp. KD,Ang2) the dissociation constant of angiopoietin-1 (resp. -2) at the Tie2 receptor.

We also assumed that endothelial cells matured when EAng1 was above a given threshold

EAng1min
. In consequence, the evolution of the density of stable (mature) endothelial cells is given

by the following expression:

∂nS

∂t
= µ H(EAng1 − EAng1min

) H(n + nS − Nmin) n (2)

where µ denotes the maturation rate, H the Heaviside function, EAng1min
and Nmin are the mini-

mum value of EAng1 and that of endothelial cell density required for maturation, respectively. We

assumed µ, EAng1min
and Nmin to be positive constants.

3.2. VEGF concentration

VEGF is secreted by quiescent tumor cells, diffuses into the surrounding tissue, binds to specific

receptors located on endothelial cell membranes, and disappears naturally. As in the foregoing
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tumor modeling framework, we assumed that the process of molecular diffusion occurred on a

much shorter time scale than that of cell division (Ribba et al., 2005). Therefore, in our model,

the VEGF concentration reaches steady-state instantaneously, and so is supposed to satisfy the

following equation:

0 =
∂[V EGF ]

∂t
= ∇ · (DV ∇[V EGF ])

︸ ︷︷ ︸

diffusion

+ αV Q
︸ ︷︷ ︸

production

− βV n
︸ ︷︷ ︸

binding

− δV [V EGF ]
︸ ︷︷ ︸

natural decay

(3)

where DV is the diffusion coefficient, αV the production rate, βV the binding rate, δV the degra-

dation rate. DV , αV and δV are taken to be positive constants.

As we said before, endostatin is a competitive inhibitor of VEGF at the Flk-1 receptors. We

therefore modeled the binding rate of VEGF to its receptors as follows:

βV =
βmax,V

1 +
KD,V EGF

[V EGF ]

(

1 +
[endos]

KD,endos

)

where βmax,V denotes the maximum binding rate of VEGF to Flk-1 receptors, KD,V EGF (resp.

KD,endos) is the dissociation constant of VEGF (resp. endostatin) at its Flk-1 receptor. These

three parameters are all positive constants.

3.3. Endostatin concentration

Endostatin is released by living tumor cells (proliferative and quiescent), diffuses into the sur-

rounding tissue, binds to specific Flk-1 receptors, and disappears naturally. As for VEGF, we

assumed that the endostatin concentration also reached steady-state instantaneously. The endo-

statin concentration therefore satisfies the following equation:

0 =
∂[endos]

∂t
= ∇ · (Dendos ∇[endos])

︸ ︷︷ ︸

diffusion

+ αendos (P + Q)
︸ ︷︷ ︸

production

− βendos n
︸ ︷︷ ︸

binding

− δendos [endos]
︸ ︷︷ ︸

natural decay

(4)

where Dendos is the diffusion coefficient, αendos the production rate, βendos the binding rate, δendos

the degradation rate. Dendos, αendos and δendos are positive constants.
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As VEGF and endostatin are competitive inhibitors, the binding rate of endostatin to its Flk-1

receptors is modeled by:

βendos =
βmax,endos

1 +
KD,endos

[endos]

(

1 +
[V EGF ]

KD,V EGF

)

where βmax,endos denotes the maximum binding rate of endostatin to Flk-1 receptors, KD,endos

(resp. KD,V EGF ) is the dissociation constant of endostatin (resp. VEGF) at its Flk-1 receptor. As

before, these three parameters are all positive constants.

3.4. Concentrations of the angiopoietins

As we said above, angiopoietin-1 is expressed by mural cells, which play an important role in

the maturation process of new blood vessels. As our model does not integrate mural cells, we will

assume the angiopoietin-1 concentration to be uniformly constant (equal to [Ang1]0), which seems

a plausible hypothesis (Metheny-Barlow and Li, 2003).

Angiopoietin-2 is produced by tumor cells and by unstable endothelial cells, and it diffuses into

the surrounding tissue, binds to specific receptors Tie2, and disappears naturally. Making the same

assumptions as for the VEGF equation, we can write:

0 =
∂[Ang2]

∂t
= ∇ · (DA2 ∇[Ang2])

︸ ︷︷ ︸

diffusion

+ α1,A2 (P + Q) + α2,A2 n
︸ ︷︷ ︸

production

− βA2 n
︸ ︷︷ ︸

binding

− δA2 [Ang2]
︸ ︷︷ ︸

natural decay

(5)

where DA2 stands for the diffusion coefficient, α1,A2 and α2,A2 the production rates, βA2 the binding

rate, δA2 the degradation rate. DA2, α1,A2, α2,A2 and δA2 are positive constants. As before, we

expressed the binding rate of angiopoietin-2 to Tie2 receptors as follows:

βA2 =
βmax,A2

1 +
KD,A2

[Ang2]

(

1 +
[Ang1]

KD,A1

)

where βmax,A2 denotes the maximum binding rate, KD,A2 (resp. KD,A1) is the dissociation constant

of angiopoietin-2 (resp. angiopoietin-1) at its Tie2 receptor.
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3.5. Oxygen concentration

As we said above, the angiogenesis model is coupled to the tumor growth model by oxygen

concentration.

Oxygen is delivered by the pre-existing vasculature and by the vessels newly-formed as a result

of angiogenesis. We assumed that oxygen diffuses through the vessels wall into the surrounding

tissue, is consumed by both healthy and tumor cells, and disappears naturally. We also assumed

that the new sources of oxygen resulting from the angiogenic process had a constant concentration

([O2]max), and were located in those spaces where the density of stable endothelial cells was strictly

positive (represented, for a given time t, by {x ∈ Ω | nS(x, t) 6= 0}).

Moreover, as before, we assumed that the oxygen concentration reached its steady-state instan-

taneously. Accepting these hypotheses, we wrote the equation governing the oxygen concentration

as follows:






0 =
∂[O2]

∂t
= ∇ · (DO ∇[O2])

︸ ︷︷ ︸

diffusion

− (β1,O P + β2,O Q + β3,O M) [O2]
︸ ︷︷ ︸

consumption

− δO [O2]
︸ ︷︷ ︸

natural decay

[O2] = [O2]max where nS 6= 0

(6)

where DO is the diffusion coefficient, β1,O, β2,O and β3,O the consumption rates, δO the degradation

rate. DO, β1,O, β2,O and β3,O, δO and [O2]max are all positive constants.

3.6. Densities of tumor cells and healthy cells

Our mathematical model of tumor growth, coupled with the angiogenesis model presented above,

is based on a model published in several different papers (Ribba et al., 2006a,b, 2009). In our model,

the tumor is described by the densities of tumor cells in the proliferative, quiescent, and apoptotic

states.

The densities of tumor cells in these states are denoted by P1, P2 for the two proliferative

phases, Q for the quiescent phase and A for apoptosis, respectively. This model takes into account

the progression of tumor cells in the cell cycle by introducing the notion of age, denoted by a (age-

structured model). However, we considered that only proliferative cells actually changed with age,

so P1 and P2 depend on space x, time t and age a, whereas Q and A only depend on space x and

time t.
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We then supposed the total proliferative cell density to be given by:

P (x, t)
def
=

∫ amax,P1

0

P1(x, t, a) da +

∫ amax,P2

0

P2(x, t, a) da ∀x ∈ Ω, ∀t

where amax,P1 and amax,P2 represent the maximum duration of the proliferative states represented

by P1 and P2 respectively.

Cell division, leading to new cells, is assumed to create passive advection of tumor and healthy

cells.

In our model, the transition between the proliferative (P1) and the quiescent (Q) phases is gov-

erned by both hypoxia and overpopulation (when cells lack the space to proliferate), whereas the

transition between the quiescent and apoptotic (A) phases is mediated solely by hypoxia. Figure 4

shows a schematic illustration of cell cycle regulation.

Figure 4: Schematic representation of our age-structured cell cycle regulation model. We took into account two

proliferative phases P1 and P2, one quiescent phase Q, and one apoptotic phase A. At the end of the P1 phase,

environmental conditions are checked; this checking is modeled through functions f and g. In a context of overpop-

ulation or hypoxia, proliferative cells become quiescent (through function f). If the hypoxic stress is too high, cells

can become apoptotic (through function g). If the environmental conditions become more favorable, quiescent cells

can revert to the proliferative phase. We suppose that mitosis occurs at the end of the P2 phase, leading to the

generation of new cells.
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Functions f and g model the environmental conditions, with:

f(x, t) =







1 if
∫ amax,P1

0
P1(x, t, a) da + 2

∫ amax,P2

0
P2(x, t, a) da

+Q(x, t) ≤ τo and [O2](x, t) ≥ τ1,h

0 else

and g(x, t) =







1 if [O2](x, t) ≥ τ2,h

0 else

where τo is the overpopulation threshold, and τ1,h and τ2,h the hypoxia thresholds (with τ1,h > τ2,h).

Let us note that we added a coefficient 2 before the P2 density in the expression of the function

f as cancer cells divide unconditionally once they are in the phase P2.

The tumor cell density evolution equations are described below:

∂P1

∂t
+

∂P1

∂a
+ ∇ · (vP1

P1) = 0 (7)

∂P2

∂t
+

∂P2

∂a
+ ∇ · (vP2

P2) = 0 (8)

∂Q

∂t
+ ∇ · (vQ Q) = g (1 − f) P1(a = amax,P1) −

[
∂f

∂t

]+

Q(t−) +

[
∂g

∂t

]
−

Q(t−) (9)

∂A

∂t
+ ∇ · (vA A) = (1 − g) P1(a = amax,P1) −

[
∂g

∂t

]
−

Q(t−) (10)

where

[
∂ ·

∂t

]+

(resp.

[
∂ ·

∂t

]
−

) represents the positive (resp. negative) part of
∂ ·

∂t
, and vP1

, vP2
,

vQ, vA represent the velocity of tumor cells in the proliferative, quiescent and apoptotic states

respectively. Since, as we said, the advection movement is passive, we assumed that vP1
= vP2

=

vQ = vA, denoted by v in the following.

To model the transition between the two proliferative states, we supposed that the boundary

conditions for age were given by:







P1(a = 0) = 2P2(a = amax,P2)

P2(a = 0) = fP1(a = amax,P1) +

[
∂f

∂t

]+

Q(t−)
(11)
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Expansion of tumor cells induces a similar passive movement of healthy cells; so the density of

healthy cells is assumed to be governed by:

∂M

∂t
+ ∇ · (vM M) = 0 (12)

where vM represents the velocity of healthy cells, with vM = v.

Note that, in our model, apoptotic cells (cells in phase A) do not disappear. Indeed, assuming

the total density of cells (healthy cells plus tumor cells) to be equal to a constant, N0, we set :

M + P + Q + A = N0 (13)

By deriving this equality with respect to time, we get:

∇ · v =
1

N0
P2(amax,P2) (14)

From this equation, we get ∇ · v ≥ 0, which means that tumor volume expands.

To determine the velocity, v, we use a Darcy-type law:

v = −∇φ (15)

where φ is a potential.

From equation (14) and (15), we get an expression for the velocity, v, that enables us to solve

equations (7)-(10), (12).

Further details can be found in (Ribba et al., 2006a,b, 2009).

3.7. Endostatin-based treatment

We considered a single intratumoral administration of adenoviruses encoding the endostatin

gene. We supposed that this treatment would induce an increase in endostatin production by

proliferative and quiescent tumor cells. We therefore modeled this administration by adding a
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production term to the equation (4):

0 = ∇ · (Dendos ∇[endos]) + αendos (P + Q) − βendos n − δendos [endos]

+ Cendos αendos (P + Q) 1[t1;t2]
︸ ︷︷ ︸

overproduction due to treatment

(16)

where Cendos denotes the overproduction rate, and [t1; t2] represents the time interval over which

endostatin is overproduced.

The overproduction rate can be linked to the dose or strength of the treatment, whereas the

overproduction time interval can be linked to duration of treatment.

3.8. Summary of the model

Table 2 shows a summary of the macroscopic mathematical model, and Table 3 a summary

of the molecular model. A summary of the parameters used for the computations is presented in

Table 4 of the Appendix B.

3.9. Evaluation of therapeutic effects

As intratumoral administrations of adenoviruses encoding the endostatin gene are intended to

slow tumor growth by delaying the development of a vascular network, we have introduced two

criteria for the comparison of the benefits of treatment, illustrated in Figure 5.

Simulating the treatment administration at the very early stage of tumor growth, we first con-

sidered the time taken for the tumor to grow to more than a given size represented by the threshold

τg. In this criterion, the duration of treatment (interval [t1; t2] in equation (16)) was integrated into

the time considered. Consequently, we also considered the time between the end of treatment (i.e.

t2 ) and the time when the tumor size exceeded the threshold τg.

Obviously, the greater these criteria, the more effective the treatment.
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Entity Model equation

Density of unstable endothelial cells

(ECs)

∂tn = ∇ · (De ∇n) + α n
“

1 −
n+nS
Nmax

”

−∇ ·
“

χ n
“

1 −
n+nS
Nmax

”

∇[V EGF ]
”

− ∂tnS

Density of stable ECs ∂tnS = µ H(EAng1 − EAng1min
) H(n + nS − Nmin) n

Concentration of VEGF 0 = ∇ · (DV ∇[V EGF ]) + αV Q − βV n − δV [V EGF ]

Concentration of endostatin 0 = ∇ · (Dendos ∇[endos]) + αendos (P + Q) − βendos n − δendos [endos]

+Cendos αendos (P + Q) 1[t1;t2]

Concentration of angiopoietin-1 [Ang1] = [Ang1]0

Concentration of angiopoietin-2 0 = ∇ · (DA2 ∇[Ang2]) + α1,A2 (P + Q) + α2,A2 n − βA2 n − δA2 [Ang2]

Concentration of oxygen 0 = ∇ · (DO ∇[O2]) − (β1,O P + β2,O Q + β3,O M) [O2] − δO [O2]

[O2] = [O2]max where nS 6= 0

Density of proliferative tumor cells ∂tP1 + ∂aP1 + ∇ · (v P1) = 0 ∂tP2 + ∂aP2 + ∇ · (v P2) = 0

P1(a = 0) = 2P2(a = amax,P2
) P2(a = 0) = fP1(a = amax,P1

) + [∂tf ]+ Q(t−)

Density of quiescent tumor cells ∂tQ + ∇ · (v Q) = g (1 − f) P1(a = amax,P1
) − [∂tf ]+ Q(t−) + [∂tg]− Q(t−)

Density of apoptotic tumor cells ∂tA + ∇ · (v A) = (1 − g) P1(a = amax,P1
) − [∂tg]− Q(t−)

Density of healthy cells ∂tM + ∇ · (v M) = 0

Table 2: Summary of the equations of the macroscopic model.

3.10. Boundary and initial conditions

Boundary conditions. We assumed that the various quantities in our mathematical model did not

cross the boundary of the computational domain (Ω). This can be modeled by setting Neumann

conditions at the boundary of the model:

∂n

∂~ν ∂Ω
= 0,

∂nS

∂~ν ∂Ω
= 0,

∂[V EGF ]

∂~ν ∂Ω
= 0,

∂[endos]

∂~ν ∂Ω
= 0,

∂[Ang2]

∂~ν ∂Ω
= 0,

∂[O2]

∂~ν ∂Ω
= 0

where ~ν represents the outgoing normal vector to Ω boundary and
∂

∂~ν
is defined by:

∂ζ

∂~ν
= ∇ζ · ~ν for all function ζ defined on Ω.
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Parameter Description Expression Equation

De Rate of diffusion of endothelial cells (ECs) Ce ∗ λe,d (1)

α Rate of proliferation of ECs PA(EV EGF,prolif) ∗ λe,p where (1)

EV EGF,prolif =
EmaxV EGF,prolif

1+
KD,V EGF

[V EGF ]

„

1+
[endos]

KD,endos

«

χ Rate of chemotaxis of ECs λe,c
EmaxV EGF,chemo

1+
KD,V EGF

[V EGF ]

„

1+
[endos]

KD,endos

« (1)

EAng1 Effect of angiopoietin-1 on maturation
EmaxAng1

1+
KD,Ang1

[Ang1]

„

1+
[Ang2]

KD,Ang2

« (2)

βV Binding rate of VEGF to Flk-1
βmax,V

1+
KD,V EGF

[V EGF ]

„

1+
[endos]

KD,endos

« (3)

βendos Binding rate of endostatin to Flk-1
βmax,endos

1+
KD,endos

[endos]

„

1+
[V EGF ]

KD,V EGF

« (4)

βA2 Binding rate of angiopoietin-2 to Tie2
βmax,A2

1+
KD,A2
[Ang2]

„

1+
[Ang1]
KD,A1

« (5)

Table 3: Summary of the molecular model.

Initial conditions. We simulated the mathematical model presented here in two dimensions. The

computational domain was a square.

In our simulation settings, the tumor is circular and stands in the middle of the domain. We

considered the tumor to be surrounded by four pre-existing blood vessels composed of both stable

and unstable endothelial cells (Figure 6).

At time zero of simulation, tumor density in the central cluster is given by a Gaussian distribution

(see color degradation in the central tumor cluster in Figure 6). We also supposed that this tumor

was composed of both proliferative and quiescent cells with:

P1(x, t = 0, a) = P2(x, t = 0, a) ≤ Q(x, t = 0) ∀x ∈ Ω, ∀a (17)

Initially, the endothelial cells are uniformly distributed in the clusters representing existing blood

vessels, with:

nS(x, t = 0) = 2n(x, t = 0) =
Nmax

2
∀x ∈ Ω (18)

The initial concentrations of VEGF, endostatin, angiopoietin-2 and oxygen are set to be equal

to the steady-state solution of their respective equations (equations (3)-(6)).
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Figure 5: The two criteria used to evaluate treatment efficacy. Criterion 1 represents the time required by the tumor

to exceed a given size threshold (denoted by τg). This time includes the treatment period. Criterion 2 is the time

interval between the end of treatment and growth of the tumor above the threshold τg.

4. Numerical results

We simulated the computational model, with the initial conditions mentioned above, on a

100*100 discrete elements grid. The partial differential equations of our model were discretized

using a finite volume method. We also used a penalization method to ensure that the concentration

of oxygen was fixed in the functional blood vessels. Our time unit is the half-day (12 hours (h)),

and our space unit is the millimeter (mm).

4.1. Tumor growth and angiogenesis without treatment

We first present simulation results of the model in the absence of treatment (see Figure 7).

Initially, the tumor cells consume the oxygen available in their environment as a result of diffusion

from the existing oxygen sources. As the tumor cells proliferate, the local oxygen concentration
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Figure 6: Initial conditions of the densities of unstable and stable endothelial cells and of tumor cells. Tumor cells are

located in the middle of the domain. Four existing blood vessels composed of endothelial cells surround the tumor.

soon becomes inadequate, and hypoxia occurs. Proliferative tumor cells revert to the quiescent

state, and those subjected to the most severe hypoxia (primarily in the center of the tumor) simply

die (they move into the apoptotic compartment and no longer appear in any of the pictures). In

response to hypoxic stress, quiescent cells secrete VEGF. VEGF molecules diffuse into the domain,

reach the endothelial cells, and stimulate the unstable cells to proliferate and migrate towards tumor

cells (see Figure 7, t = 10). Through the process of maturation described above, endothelial cells

form functional blood vessels (see Figure 7, t = 30 and t = 70).

As soon as the local concentration of oxygen increases in the tumor region as a result of the

formation of new vessels, the peripheral tumor cells begin to proliferate (see Figure 7, t = 145).

At the end of this simulation, the tumor is composed of an apoptotic center, surrounded by

quiescent cells, which in turn are surrounded by proliferative cells (see Figure 7, t = 159). This

configuration is consistent, for instance, with conventional subcutaneous xenografted mouse models.

4.2. Endostatin-based treatment effects

The model was then used to simulate the effect of endostatin overproduction from t = 30 to

t = 60, as described in section 3.7 (Cendos = 100). Figure 8 depicts the change in endothelial cell

density during simulated treatment (left panel) compared to the untreated condition (right panel).
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Figure 7: From top to bottom: spatio-temporal evolution of the densities of endothelial cells (unstable plus stable)

and tumor cells. Left panel, pictures show the spatio-temporal evolution of endothelial cells (density) proliferating

and migrating from the existing vessels towards the tumor cells. The fine contour line demarcates the area of

the tumor. Right panel, pictures show the spatio-temporal evolution of tumor cell density. The fine contour line

demarcates the distribution of endothelial cells.
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In the early stages of simulation, there is no change in the behavior of the system (see Figure 8,

t = 25). Subsequently, endostatin overproduction leads to regression of the vasculature (see Fig-

ure 8, t = 45). This results from the binding of endostatin molecules to Flk-1 receptors instead

of VEGF molecules. As a consequence, the unstable endothelial cells are no longer sufficiently

stimulated, and some of them die. However, as soon as endostatin overproduction stops, angiogen-

esis starts again (see Figure 8, t = 65). Nevertheless, the treatment has induced a delay in vessel

growth, and at the end of the simulation phase, as expected, tumor vasculature is less developed in

the treated condition, as a consequence of endostatin overproduction (see Figure 8, t = 159). This

delay in blood vessel formation leads to slower tumor growth, as shown in Figure 9.

We further compared the change in tumor density in the presence and absence of endostatin

overproduction by analyzing the change in the sum of proliferative and quiescent tumor cells and

that in the sum of endothelial cells throughout the whole computation model. As shown in Figure 10,

endostatin overproduction delays endothelial cell proliferation, and in consequence slows tumor

growth.

4.3. Influence of treatment design

In what follows, we use the treatment efficacy criteria presented in section 3.9 to analyze the

influence of treatment design on tumor growth. In our computation model, treatment or endostatin

overproduction, is characterized by two factors: the duration of overproduction, and the degree of

overproduction (coefficient Cendos in equation (16)). The former can be assimilated to treatment

duration, and the second to the dose or strength of the treatment.

Figure 11 shows the time course of efficacy criterion 1 (the total time taken for the tumor to

grow above a given threshold after treatment stops) with respect to the degree of overproduction

(or overproduction rate) and for different overproduction durations. It soon becomes apparent that

it might be more effective to increase the duration of overproduction rather than increasing its

degree.

All the curves depicted display three phases: a gradual increase, followed by a transient sharp

increase and finally a plateau. At low overproduction rates, the time course of the efficacy criterion

evolution is the outcome of a classical model of competition between agonists and antagonists at a

given receptor. In our model, endostatin competes with VEGF, which activates the proliferation
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Figure 8: From top to bottom: spatio-temporal evolution of endothelial cell density with (left panel) and without

(right panel) endostatin overproduction (from t = 30 to t = 60). The fine contour line outlines the tumor.
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Figure 9: Tumor density at time t = 159 (end of simulation) with (left panel) and without (right panel) endostatin

overproduction. The fine contour line outlines the endothelial cells.
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Figure 10: Left: time course of the total number of tumor cells with (red curve) and without (blue curve) treatment.

Right: the same for the total number of endothelial cells (unstable plus stable).

and migration of endothelial cells, to bind to the Flk-1 receptor (see section 3.1). A switch occurs

when the concentration of endostatin becomes too high relative to that of VEGF. Consequently,

the unstable endothelial cells proliferate less, and tend to die (see Figure 3), leading to a sharp

increase in the efficacy criterion. Finally, the system tends towards a classical saturation phase,

during which the endostatin concentration is such that VEGF cannot bind to Flk-1 receptors any-

more. The proliferation rate of the endothelial cells reaches its lowest (negative) value (see Figure 3).

Interestingly, analyzing the same behavior for criterion 2 (time between stopping treatment and

the tumor’s reaching a size above a given threshold) leads to a different overall curve pattern (see

Figure 12).
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Figure 11: Change in the tumor growth time criterion depending on variations in the degree and duration of the

overproduction (one curve for each duration).

Figure 12: Change in the time between the cessation of overproduction and reaching a tumor size above the critical

threshold, depending on variations in the rate and duration of the overproduction. All the curves intersect at one

point corresponding to an overproduction rate denoted by ”R”.

As can be seen in Figure 12, the curves intersect at a single point. This means that there is

an overproduction rate (referred to as ”R” in what follows) for which efficacy criterion 2 remains

unchanged despite an increase in the duration of treatment. ”R” corresponds to the endostatin
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overproduction rate that leads to an unstable endothelial cell proliferation rate equal to 0. If this

happens, angiogenesis is not simply reduced, but stops completely; consequently, however long the

treatment lasts, angiogenesis starts again under the same conditions as pertained when it stopped.

Analyzing the system using criterion 2, which ”eliminates”the duration of treatment, naturally leads

to a steady state situation at this point. For overproduction rates of less than ”R”, lengthening the

duration of treatment has a deleterious effect, as the tumor starts growing more quickly after

treatment stops. This is known as the ”rebound”effect. In our model, this results from inhibition of

VEGF binding to Flk-1 receptors, thus increasing the concentration of free VEGF (since, although

angiogenesis is slowed, the quiescent tumor cells still produce VEGF). As soon as the treatment

stops, VEGF massively binds to Flk-1 receptors, leading to rapid endothelial cell proliferation and

powerful activation of the angiogenic process. In contrast, for endostatin overproduction rates above

”R”, simulations indicate that there is a slight therapeutic advantage as result of lengthening the

duration of treatment. This results from the decrease in the number of unstable endothelial cells

as a result of a high concentration of endostatin (see Figure 3), leading to a decrease in the number

of Flk-1 receptors. In consequence, the rebound effect is damped down.

This simple analysis highlights the difficulty of optimizing treatment design, as efficacy may

depend on the multiscale features of the processes of tumor growth and angiogenesis.

5. Discussion

The process of tumor angiogenesis is recognized as being a key process in tumor development. In

consequence, anti-angiogenesis therapies are being investigated throughout the world as a promising

way to treat cancer patients. In this paper, we propose a mathematical model of angiogenesis

and tumor growth. This model is based on a set of partial differential equations that describe the

behavior of endothelial cells, that constitute blood vessel walls, tumor cells, as well as of some major

pro- and anti-angiogenic substances, such as vascular endothelial growth factor (VEGF), endostatin,

angiopoietin-1 and angiopoietin-2. At the molecular level, the model focuses on VEGF/endostatin

competition to bind to Flk-1 receptors, and on angiopoietin-1/angiopoietin-2 competition to bind
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to Tie2 receptors. These binding processes regulate the whole process of blood vessel formation.

At the macroscopic level, the model describes the spatio-temporal patterns of stable and unstable

endothelial cells and tumor cells during the different phases of the cell cycle.

Compared to most of the existing models, this new model of angiogenesis offers an extra degree

of complexity, particularly at the molecular level. This makes it possible to study the activation of

angiogenesis related to the molecular properties of the main pro- and anti-angiogenic endogenous

substances. As a result, this model could be used to analyze the impact of the molecular mecha-

nisms of angiogenesis on the dynamics of tumor growth.

By injecting adenoviruses directly into the tumor mass, endostatin gene therapy triggers an

increase in the production of endostatin by tumor cells, thus resulting in higher local expression

of this VEGF antagonist. By simulating the effect of endostatin gene therapy on the system, we

highlighted the existence of a critical treatment dose (referred to as a critical rate of endostatin

overproduction). Below this threshold dose, increasing the duration of the treatment can actually

have a deleterious effect due to the emergence of a rebound effect in the angiogenesis process. In

contrast, above this critical dose, increasing the duration of treatment may improve its efficacy. In-

terestingly, these results show some similarity to those reported by Ribba and colleagues in (Ribba

et al., 2006b), where the authors used a multiscale, avascular tumor growth model to investigate

the effects of anti-invasive treatments.

At this point, we should point out the main limitations of our work. First of all, the study

presented here is a qualitative study. The model used is so complex, in particular due to its spatial

structure, that it cannot be used as a quantitative tool. Nevertheless, a qualitative analysis of this

type can still be used in a multiscale manner to investigate complex questions, such as how to opti-

mize innovative anti-cancer drug delivery. However, some of the parameters, in particular those used

in the pharmacological laws, can be estimated or quantified on the basis of existing published results.

One of the major discussion issues relates to our decision to model the angiogenesis process by

means of continuous partial differential equations. Several previous publications have presented

continuous angiogenesis models, but discrete models seemed to be more relevant for modeling the

formation of blood vessels. However, as in any modeling experiment, the choice of mathematics
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should depend on the objective of the study. In our case, we claim that a continuous model is suf-

ficient to qualitatively analyze how efficient molecular-targeting angiogenesis drugs are. Obviously,

in some cases, this may not be the case. For instance, some anti-VEGF drugs, such as Bevacizumab

(Avastin, Roche), are known to modify vessel structure and are also thought to homogenize tumor

vasculature. In this particular case, discrete models would be required, in particular to integrate

important factors such as the permeability of blood vessels. However, most innovative cytostatic

drugs impact on the molecular mechanisms of angiogenesis rather than directly affecting the struc-

ture of newly-formed blood vessels.

Some of the modeling hypotheses we used are also open to question. From a biological point of

view, we are aware that we chose to ignore some phenomena that could be seen as key processes in

vascular tumor growth but, for this first study, we had to compromise between the consistency of

the model and its complexity. For this first step in our investigations, we chose to focus on the main

mechanisms involved in vascular tumor growth in order to be able to analyze the global impact of

anti-angiogenic substances. Nevertheless, we implemented the model in a way that would make it

easier in the future to include additional biological phenomena.

In future work, we plan to consider several extensions of the model proposed in this paper. For

instance, we have not so far taken various biomechanical aspects into account. These aspects can

affect the growth both of the tumor and of the vascular network. We currently assume that the

motion of the tumor cells is solely due to cell division. In fact, some biomechanical phenomena, such

as the mechanical stress exerted by the surrounding host tissue, and cell-cell and cell-extracellular

matrix adhesion, are also known to impact on tumor growth (see (Kumar and Weaver, 2009) for

a review). We could take these biomechanical effects on tumor growth into account on the basis

of the work of Bresch and colleagues (Bresch et al., 2009a,b), Gerisch and Chaplain (Gerisch and

Chaplain, 2008), or Araujo and McElwain (Araujo and McElwain, 2005a,b). Stress, cell-cell and

cell-extracellular matrix adhesion can also affect endothelial cells, and, in our work, we took the

natural affinity of endothelial cells for one another into account (see Section 3 for details). We could

also consider haptotaxis as Anderson and Chaplain did (Anderson and Chaplain, 1998), haptotaxis

being the sensitivity of endothelial cells to the concentration gradient of some endogenous substances

promoting adhesion to the extracellular matrix. We could also draw inspiration from the work of

Tosin and colleagues (Tosin et al., 2006), where the authors introduced an internal force within the
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population of endothelial cells, and modeled the interactions between the endothelial cells and the

extracellular matrix involving an elastic force.

We could also take biomechanical interactions between the tumor and the vascular network

into account. For instance, a phenomenon of vascular collapse and regression in tumors has been

experimentally observed (Goldacre and Sylven, 1962). This phenomenon is still poorly understood,

but could be a consequence of the interstitial pressure, or of biomechanical stresses more generally,

created by the growing tumor mass (Boucher et al., 1990). Vascular collapse and regression is

responsible for reducing the supply of nutrients and oxygen and so, potentially, for inducing quies-

cence in tumor cells. Starting from the model we propose in this paper, we could assume that the

behavior of the density of mature endothelial cells depends on the pressure created by the growing

tumor mass. If this pressure becomes too high, mature endothelial cells might return to the imma-

ture state and die. Araujo and colleagues have developed some mathematical models of the genesis

of stress in growing tumors to analyze the nature and the distribution of the biomechanical stresses

induced by the growth of the tumor mass (Araujo and McElwain, 2005b,c). Moreover, the role

of such biomechanical stresses in vessel collapse and regression, and so in the supply of nutrients

and oxygen, has already been studied using various mathematical models (Baxter and Jain, 1989;

Araujo and McElwain, 2004, 2006; Macklin et al., 2009), which we could draw on to extend our

present model. This could be a good way to model vessel regression, and thus to analyze the effect

of such biomechanical stresses on the development of the vascular network and so on the efficacy of

anti-angiogenic treatment.

Moreover, on the basis of the equations we propose in this paper, a three-dimensional model

could be more realistic. It would also be interesting to test other kinds of 2D geometries, as these

might produce different results.

Finally, with regard to modeling the action of the treatment, it could be interesting to develop

a more mechanistic approach by taking adenovirus diffusion inside the tumor mass into account, as

well as the immune response, and to investigate the influence of such treatment-related parameters

on the overall efficacy on tumor growth and angiogenesis.

Nevertheless, we believe that this modeling approach can be considered for use as a first qual-

itative investigation of the effect of a treatment strategy. If our results are confirmed, it will be

important for clinicians to identify the critical dose in order to optimize endostatin-based treatment
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delivery.

More generally, our present study highlights the difficulty of determining the appropriate anti-

angiogenic treatment strategy. We note that, depending on the treatment schedule, anti-angiogenic

treatment can actually be responsible for increasing the local invasiveness of the tumor. This is one

of the adverse consequences of anti-angiogenic therapies recently described in (Bergers and Hanahan,

2008; Ebos et al., 2009; Pàez-Ribes et al., 2009). In (Bergers and Hanahan, 2008), the authors

proposed some explanations of the fact that anti-VEGF therapies can have both favorable and

deleterious effects on patients’ health as a result of increasing the growth of both the primary tumor

and its metastases. Collecting data from the literature, they hypothesized two modes of resistance

to anti-VEGF treatment: evasive resistance, i.e. an adaptation of the tumor to the presence of

the angiogenesis inhibitor, and intrinsic resistance, i.e. a pre-existing lack of responsiveness of the

tumor. Pàez-Ribes and colleagues have also demonstrated the evasive resistance to anti-VEGF

in two mouse models of cancer (Pàez-Ribes et al., 2009). Ebos and colleagues have shown that,

depending on the duration and dose of the treatment, the inhibition of the VEGF receptor by

the same drug can lead to opposite effects on tumor growth (Ebos et al., 2009). They illustrated

the fact that microenvironmental changes in organs, possibly due, for instance, to previous cancer

treatments, could induce intrinsic resistance in the tumor to an angiogenesis inhibitor.

These studies tend to suggest that anti-angiogenic molecules should be combined with cytotoxic

therapy, for instance with chemotherapy, as is usually indicated for Bevacizumab, in order to im-

prove their efficacy against cancer development, i.e. against the development of both the primary

tumor and its metastases, or at least to reduce the occurrence of some deleterious events. The model

we propose in this paper could provide a way of optimizing cancer treatment by investigating the

optimum combination of anti-angiogenic molecules with chemotherapy.
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A. The Emax model

A.1. Effect of an agonist

A ligand can activate or inhibit the receptor to which it binds. If binding results in activation,

the ligand is called an agonist, and if it results in inhibition, it is called an antagonist. The binding

of an agonist to a receptor induces a specific effect. This effect depends on the ligand’s binding

capacities, also known as the affinity of the ligand for the receptor. This affinity is measured in

terms of the dissociation constant (usually denoted by KD), which is the concentration of agonist

bound to 50% of the receptors of a cell membrane.

The relation between the concentration of agonist (dose) and the effect induced is given by the

following expression, also known as the Emax model:

E = ε
Emax

1 +
KD

[C]

where:

• E denotes the effect of the agonist;

• ε ≤ 1 models the agonist intrinsic activity, i.e. its ability to activate the receptor; if ε = 1,

the intrinsic activity is maximal and the agonist is said to be a complete agonist; if ε < 1, the

agonist is said to be a partial agonist;
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• Emax is the maximum effect the agonist can induce by binding to the receptor;

• KD is the dissociation constant of the agonist at the receptor;

• [C] denotes the agonist concentration.

Figure 13: Change of the effect (E) with agonist concentration ([C]). Emax denotes the maximum effect; KD is the

dissociation constant of the agonist at the receptor.

For instance, in the case of tumor-induced angiogenesis, VEGF acts as an agonist at the Flk-1

receptor, and angiopoietin-1 is an agonist at the Tie2 receptor. We assumed that both VEGF and

angiopoietin-1 are complete agonists (ε = 1).

A.2. Effect of an agonist in the presence of a competitive antagonist

A competitive antagonist is a substance that can bind to the receptor at the same binding site

as the agonist. When it does so, this prevents the agonist from binding to this receptor, and thus

decreases the effect produced by the agonist by reducing its affinity for the receptor (that is by

shifting the dose-effect relationship (described in A.1) to the right). So, the effect (E) of an agonist

in the presence of a competitive antagonist is given by:

E = ε
Emax

1 +
KD

[C]

(

1 +
[A]

KD,A

)

where:
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• ε, Emax, KD, [C] are described in A.1;

• [A] denotes the concentration of the antagonist;

• KD,A is the dissociation constant of the antagonist at the receptor.

For instance, in the case of angiogenesis, endostatin is a competitive antagonist of VEGF at the

Flk-1 receptor, and angiopoietin-2 is a competitive antagonist of angiopoietin-1 at the Tie2 receptor.

Unlike competitive antagonists, some substances can decrease the effect of the agonist by binding

to a different binding site: they are known as noncompetitive antagonists. The antagonists we

consider in our model are all competitive antagonists, and so we will not describe the effect of an

agonist in the presence of an uncompetitive antagonist.

B. Summary of the model parameters

In this section, we use the following notations: h (hour), mm (millimeter), M (molarity).

Table 4 shows a summary of the parameters used for the computations.
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Parameter Description Value Units Equation Reference

De Rate of diffusion of endothelial cells (ECs) 6.25e-8 *

8

>

<

>

:

0.5 if P + Q > 0.12

1 else

mm2.h−1 (1)

Nmax Maximum density of ECs 1 cells.mm−2 (1)

EmaxV EGF,prolif Maximum effect of VEGF on EC proliferation 5*10−2 h−1 (1)

Ap Maximum death rate of ECs -2*10−2 h−1 (1)

Eminprolif Minimum value of EV EGF,prolif below which the

EC proliferation rate becomes negative

2*10−2 h−1 (1)

λe,p Restriction function of EC proliferation

8

>

<

>

:

0.5 if P + Q > 0.12

1 else

- (1)

EmaxV EGF,chemo Maximum effect of VEGF on EC chemotaxis 1.25*10−2 mm2.M−1.h−1 (1)

λe,c Restriction function of EC chemotaxis

8

>

<

>

:

0.5 if P + Q > 0.12

1 else

- (1)

EmaxAng1 Maximum effect of angiopoietin-1 on ECs 2*10−1 h−1 (2)

EAng1min
Minimum value of EAng1 required for maturation 5*10−1 h−1 (2)

Nmin Minimum value of EC density required for matu-

ration

9*10−1 cells.mm−2 (2)

µ Maturation rate of ECs 1 h−1 (2)

DV Diffusion rate of VEGF 1.875*10−1 mm2.h−1 (3) (Gabhann and Popel,

2005)(Addison-Smith

et al., 2008)

Table 4: Summary of the model parameters.
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Parameter Description Value Unity Equation Reference

αV Production rate of VEGF 2.11 M.cells−1.mm2.h−1 (3)

βmax,V Maximum binding rate of VEGF to Flk-1 1.25*10−3 M.cells−1.mm2.h−1 (3)

KD,V EGF Dissociation constant of VEGF at Flk-1 10−7 M (1)(3)(4)

δV Degradation rate of VEGF 1.25*10−4 h−1 (3)

Dendos Diffusion rate of endostatin 2.38*10−1 mm2.h−1 (4)

αendos Production rate of endostatin 10 M.cells−1.mm2.h−1 (4)

βmax,endos Maximum binding rate of endostatin to Flk-1 1.25*10−3 M.cells−1.mm2.h−1 (4)

KD,endos Dissociation constant of endostatin at Flk-1 2*10−4 M (1)(3)(4)

δendos Degradation rate of endostatin 1.25*10−4 h−1 (4)

Cendos Rate of endostatin overproduction due to treat-

ment

variable M.cells−1.mm2.h−1 (16)

[Ang1]0 Concentration of angiopoietin-1 4*10−2 M -

KD,Ang1 Dissociation constant of angiopoietin-1 at Tie2 3*10−9 M (2) (Maisonpierre et al.,

1997)

DA2 Diffusion rate of angiopoietin-2 4.5*10−3 mm2.h−1 (5)

α1,A2 Rate of angiopoietin-2 production by tumor cells 3*10−4 M.cells−1.mm2.h−1 (5)

α2,A2 Rate of angiopoietin-2 production by ECs 1.5*10−4 M.cells−1.mm2.h−1 (5)

Table 4: Summary of the model parameters (Contd).
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βmax,A2 Maximum binding rate of angiopoietin-2 to Tie2 3*10−6 M.cells−1.mm2.h−1 (5)

KD,Ang2 Dissociation constant of angiopoietin-2 at Tie2 3*10−9 M (2)(5) (Maisonpierre et al.,

1997)

δA2 Degradation rate of angiopoietin-2 1.25*10−5 h−1 (5)

DO Diffusion rate of oxygen 1 mm2.h−1 (6) (Takahashi et al.,

1966)

β1,O Rate of oxygen consumption by proliferative tu-

mor cells

3 cells−1.mm2.h−1 (6)

β2,O Rate of oxygen consumption by quiescent tumor

cells

1.5 cells−1.mm2.h−1 (6)

β3,O Rate of oxygen consumption by healthy cells 3.75*10−1 cells−1.mm2.h−1 (6)

[O2]max Oxygen concentration in functional blood vessels 8 M (6)

δO Degradation rate of oxygen 10−3 h−1 (6)

amax,P1
Maximum duration of phase P1 12 h (9)-(11)

amax,P2
Maximum duration of phase P2 12 h (11)(14)

τ0 Threshold of overpopulation 0.8 cells.mm−2 (9)(11)

τ1,h Threshold of hypoxia 5.5 M (9)(11)

τ2,h Threshold of severe hypoxia 1.52 M (9)(10)

N0 Total density of tumor cells 1 cells.mm−2 (13)(14)

τg Threshold number of tumor cells for efficacy cri-

teria definitions

1000 cells -

Table 4: Summary of the model parameters (Contd).
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