Image-based modelling of ocean surface circulation from satellite acquisitions

Dominique Béréziat ${ }^{1,2}$ and Isabelle Herlin ${ }^{3,4}$

${ }^{1}$ Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, 75005, Paris, France
${ }^{2}$ CNRS, UMR 7606, LIP6, 75005, Paris, France
3 Inria, B.P. 105, 78153 Le Chesnay, France
${ }^{4}$ CEREA, joint laboratory ENPC - EDF R\&D, Université Paris-Est, 77455 Marne la vallée, France

Objective

- Estimation of surface circulation (2D motion $\mathbf{w}(\mathbf{x}, t)$) from an image sequence $T(\mathbf{x}, t)$
- Data Assimilation

Figure: Satellite data acquired over the Black Sea. Circulation

- Important issue for pollutant transport and meteorology forecast

State-of-the-art

Image Processing

- Image structures as tracer of the sea surface circulation
- Optical flow methods:
- They compute translational displacement between two observations
- They are ill-posed (the Aperture Problem) and required spatial regularization
- Validity of brightness constancy assumption?
\Rightarrow not physically suited for ocean circulation

State-of-the-art

- Circulation: advanced 3D oceanographic models are available (Navier-Stokes, see NEMO project (http://www.nemo-ocean.net) for instance)
- But: only a thin upper layer of ocean is observable (from satellite)
- From 3D Navier-stokes and various simplifications, a 2D ocean surface circulation model is derived \rightarrow shallow water equations
- Compute an optimal solution w.r.t. the model and fitting observations: use of Data Assimilation techniques
- Need of an observation model: link between state vector and observations

State-of-the-art

Proposed method

- Shallow water model requires information on temperature and upper layer thickness
- Temperature: available from Sea Surface Temperature images (NOAA-AHVRR sensors)
- Layer thickness: not available from remote sensing
\Rightarrow We propose a method to compute surface circulation from SST image and without information on the upper layer thickness
\Rightarrow Use of a rough model, missing information will be represented in an additional model
\Rightarrow Solution is computed using a weak 4D-Var formulation

Model

Shallow water equations

- State vector is velocity, $\mathbf{w}=(u, v)^{T}$, surface temperature $\left(T_{s}\right)$ and upper layer thickness (η):

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}+f v-g^{\prime} \frac{\partial \eta}{\partial x}+K_{w} \Delta u \tag{1}\\
\frac{\partial v}{\partial t} & =-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-f u-g^{\prime} \frac{\partial \eta}{\partial y}+K_{w} \Delta v \tag{2}\\
\frac{\partial \eta}{\partial t} & =-\frac{\partial(u \eta)}{\partial x}-\frac{\partial(v \eta)}{\partial y}-\eta\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \tag{3}\\
\frac{\partial T_{s}}{\partial t} & =-u \frac{\partial T_{s}}{\partial x}-v \frac{\partial T_{s}}{\partial y}+K_{T} \Delta T_{s} \tag{4}
\end{align*}
$$

- K_{w}, K_{T} are diffusive constants, f the Coriolis parameter and g^{\prime} the reduced gravity (see paper for details)
- Functions \mathbf{w}, T_{s} and η are defined on a space-time domain:
$\Omega \times[0, T], \Omega \subset \mathbb{R}^{2}$

Model

Shallow water equations

- Geophysical forces (in red) are grouped

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}+f v-g^{\prime} \frac{\partial \eta}{\partial x}+K_{w} \Delta u \tag{5}\\
\frac{\partial v}{\partial t} & =-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-f u-g^{\prime} \frac{\partial \eta}{\partial y}+K_{w} \Delta v \tag{6}\\
\frac{\partial \eta}{\partial t} & =-\frac{\partial(u \eta)}{\partial x}-\frac{\partial(v \eta)}{\partial y}-\eta\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \tag{7}\\
\frac{\partial T_{s}}{\partial t} & =-u \frac{\partial T_{s}}{\partial x}-v \frac{\partial T_{s}}{\partial y}+K_{T} \Delta T_{s} \tag{8}
\end{align*}
$$

in a hidden part, $\mathbf{a}=\left(a_{u}, a_{v}\right)^{T}$, named "additional model"

Proposed model

- The previous system is rewritten as:

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}+a_{u} \tag{9}\\
\frac{\partial v}{\partial t} & =-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}+a_{v} \tag{10}\\
\frac{\partial T_{s}}{\partial t} & =-u \frac{\partial T_{s}}{\partial x}-v \frac{\partial T_{s}}{\partial y}+K_{T} \Delta T_{s} \tag{11}
\end{align*}
$$

- with

$$
\begin{align*}
& a_{u}=f v-g^{\prime} \frac{\partial \eta}{\partial x}+K_{w} \Delta u \tag{12}\\
& a_{v}=-f u-g^{\prime} \frac{\partial \eta}{\partial y}+K_{w} \Delta v \tag{13}
\end{align*}
$$

where η verifies Eq.(3)

Proposed model

- The additional model a is now considered as an unknown that we want to retrieve
- The state vector is $\mathbf{X}=\left(\begin{array}{ll}\mathbf{w} & T_{s}\end{array}\right)^{T}$, and the model ruling the evolution in time of \mathbf{X} is summarized as:

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial t}(\mathbf{x}, t)+\mathbb{M}(\mathbf{X})(\mathbf{x}, t)=\binom{\mathbf{a}(\mathbf{x}, t)}{0} \quad \mathbf{x} \in \Omega, t \in(0, T] \tag{14}
\end{equation*}
$$

with

$$
\mathbb{M}(\mathbf{X})=\left(\begin{array}{c}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} \\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} \\
u \frac{\partial T_{s}}{\partial x}+v \frac{\partial T_{s}}{\partial y}+K_{T} \Delta T_{s}
\end{array}\right)
$$

Initialization and Observation model

- Need of an initial condition for $\mathbf{X}(0)$:

$$
\begin{equation*}
\mathbf{X}(\mathbf{x}, 0)=\mathbf{X}_{b}(\mathbf{x})+\varepsilon_{B}(\mathbf{x}), \quad \mathbf{x} \in \Omega \tag{15}
\end{equation*}
$$

ε_{B} Gaussian with covariance matrix B

- Observations are SST images, $T\left(t_{i}\right)$, available at some given dates t_{1}, \cdots, t_{N}
- The observation operator \mathbb{H} projects the state vector in the observation space. It is defined as:

$$
\begin{equation*}
\mathbb{H}(\mathbf{X})=T_{s} \tag{16}
\end{equation*}
$$

- Link between state vector and observation:

$$
\begin{equation*}
\mathbb{H}(\mathbf{X})\left(\mathbf{x}, t_{i}\right)=T\left(\mathbf{x}, t_{i}\right)+\varepsilon_{R}\left(t_{i}\right), \quad \mathbf{x} \in \Omega, i=1, \cdots, N \tag{17}
\end{equation*}
$$

ε_{R} Gaussian with covariance matrix R

Data assimilation

- To solve:

$$
\begin{align*}
\frac{\partial \mathbf{X}}{\partial t}(\mathbf{x}, t)+\mathbb{M}(\mathbf{X})(\mathbf{x}, t) & =\binom{\mathbf{a}(\mathbf{x}, t)}{0} \quad \mathbf{x} \in \Omega, t \in(0, T] \tag{18}\\
\mathbb{H}(\mathbf{X})\left(\mathbf{x}, t_{i}\right) & =T\left(\mathbf{x}, t_{i}\right)+\varepsilon_{R}\left(t_{i}\right), \quad \mathbf{x} \in \Omega, i=1, \cdots, N \\
\mathbf{X}(\mathbf{x}, 0) & =\mathbf{X}_{b}(\mathbf{x})+\varepsilon_{B}(\mathbf{x}), \quad \mathbf{x} \in \Omega
\end{align*}
$$

$$
\begin{align*}
& \text { we minimize the cost function } J \text { : } \\
& \qquad J\left(\varepsilon_{B}, \mathbf{a}\left(t_{1}\right), \cdots, \mathbf{a}\left(t_{N}\right)\right)=\left\langle\varepsilon_{B}, B^{-1} \varepsilon_{B}\right\rangle+\gamma \sum_{i=1}^{N}\left\|\nabla \mathbf{a}\left(t_{i}\right)\right\|^{2}+ \\
& \qquad \sum_{i=1}^{N}\left\langle\mathbb{H}(\mathbf{X})\left(t_{i}\right)-T\left(t_{i}\right), R^{-1}\left(\mathbb{H}(\mathbf{X})\left(t_{i}\right)-T\left(t_{i}\right) \varepsilon_{B}\right\rangle\right. \tag{19}
\end{align*}
$$

under the constraint of Eq.(18)

- γ term is introduced to prevent numerical instabilities

Weak 4D-Var formulation

Computation of ∇J

Theorem 1

Let $\lambda(\mathbf{x}, t)$ be an auxiliary variable (named adjoint variable) as solution of:

$$
\begin{align*}
\lambda(T) & =0 \tag{20}\\
-\frac{\partial \lambda(t)}{\partial t}+\left(\frac{\partial \mathbb{M}}{\partial \mathbf{X}}\right)^{*} \lambda & =\mathbb{H}^{T} R^{-1}[\mathbb{H} \mathbf{X}(t)-T(t)] \quad t=t_{i} \tag{21}\\
& =0 \quad t \neq t_{i} \tag{22}
\end{align*}
$$

Then, gradient of J is:

$$
\begin{align*}
\frac{\partial J}{\partial \varepsilon_{B}} & =2\left(B_{I}^{-1} \varepsilon_{B}+\lambda(0)\right) \tag{23}\\
\frac{\partial J}{\partial \mathbf{a}\left(t_{i}\right)} & =2\left(-\gamma \Delta \mathbf{a}\left(t_{i}\right)+\lambda\left(t_{i}\right)\right) \tag{24}
\end{align*}
$$

Weak 4D-Var formulation

Algorithm

(1) Forward pass: integrate forward in time $\mathbf{X}(t)$, compute J
(2) Backward pass: integrate backward in time $\lambda(t)$, compute ∇J
(3) Perform a steepest descent using numerical solver and get new values for $\mathbf{X}(0)$ and $\mathbf{a}\left(t_{i}\right), i=1 \cdots N$
(9) Repeat steps 1, 2, 3 up to convergence

Implementation

- Eq. (18) must be discretized:
- In time: Euler scheme
- In space:
- components u and v are transported by a non linear advection (Burger equations): Godunov scheme
- component I_{s} is transport by a linear advection: a first order up-wind
- Adjoint model: operator $\left(\frac{\partial \mathbf{M}}{\partial \mathbf{X}}\right)^{*}$ in Eq. (21) is formally defined as a dual operator:

$$
\left\langle\phi,\left(\frac{\partial \mathbb{M}}{\partial \mathbf{X}}\right)^{*} \psi\right\rangle=\left\langle\left(\frac{\partial \mathbb{M}}{\partial \mathbf{X}}\right) \phi, \psi\right\rangle
$$

It must be determined from the discrete model $\mathbb{M}_{\text {dis }}$: we use an automatic differentiation software,
Tapenade [Hascoët and Pascual, 2013]

- Steepest descent is performed by BFGS solver [Byrd et al., 1995]

Data assimilation setup

- Model: temperature diffusion is neglected $\left(K_{T}=0\right)$
- Initial condition $\mathbf{X}_{b}=\left(\begin{array}{ll}\mathbf{w}_{b} & I_{b}\end{array}\right)^{T}$:
- no information available on initial velocity, we set $\mathbf{w}_{b}=\overrightarrow{0}$
- I_{b} is initialized to the first available observation $I\left(t_{1}\right)$
- Covariance matrix B : without information on initial velocity we choose $\varepsilon_{B}=\left(\begin{array}{lll}0 & 0 & \varepsilon_{B_{I_{s}}}\end{array}\right)$ and we have:

$$
\left\langle\varepsilon_{B}, B^{-1} \varepsilon_{B}\right\rangle=\left\langle\varepsilon_{B_{l_{s}}}, B_{l_{s}}^{-1} \varepsilon_{B_{l_{s}}}\right\rangle
$$

- Matrix $B_{I_{s}}$: chosen diagonal, each element is set to 1 (1 Celsius degree means 25% of image dynamics)
- Covariance matrix R : chosen diagonal, each element is set to 1
- γ : empirically fixed

Results

A first satellite experiment

- A sequence of four SST images was acquired over Black Sea on October $10^{\text {th }}, 2007$

Figure: October $10^{\text {th }} 2007$, over Black Sea

Results

Velocity retrieved

(a) [Sun et al., 2010]

(b) Proposed method

Figure: Motion computed between the first and second observation

Quantitative evaluation on satellite images

- No ground-truth on satellite data, how to evaluate?
- We propose to compute the trajectory of some characteristic points in order to evaluate algorithms in term of transport
- A comparison with state-of-the-art is performed
- We proceed as follow:
- Manual selection of a characteristic point in the first observation
- A map of signed distance is computed
- Distance map is transported by the velocity field that we want to evaluate [Lepoittevin et al., 2013]
- Computation of local maximum in transported map gives the characteristic point position along the sequence

Result

Characteristic points

Figure : Evolution of some characteristic points

Satellite Experiment \#2

Observations

- Sequence acquired on October $8^{\text {th }}, 2005$

(a) 30 min
(b) 10 h 30 min
(c) 12 h
(d) 15 h 30 min

Figure: October $8^{\text {th }} 2005$, over Black Sea

Satellite Experiment \#2

Motion results

Figure: Motion computed between the first and second observation

Satellite Experiment \#2

Characteristic points

(a) First observation

Figure: Evolution of some characteristic points

Satellite Experiment \#2

Characteristic points

(a) Second observation

Figure: Evolution of some characteristic points

Satellite Experiment \#2

Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points

Satellite Experiment \#2

Characteristic points

(a) Last observation

Figure: Evolution of some characteristic points

Satellite Experiment \#3

 Observations- Sequence acquired on July $27^{\text {th }}, 2007$

(a) 30 min

(b) 8 h 15 min

(c) 13 h

(d) 22 h 30 min

(e) 24 h 30 min

Satellite Experiment \#3

Motion results

(a) [Sun et al., 2010]

(b) Proposed method

Figure: Motion computed between the first and second observation

Satellite Experiment \#3

Characteristic points

(a) First observation

Figure : Evolution of some characteristic points

Satellite Experiment \#3

Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points

Satellite Experiment \#3

Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points

Satellite Experiment \#3

Characteristic points

(a) Fourth observation

Figure : Evolution of some characteristic points

Satellite Experiment \#3

Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points

Satellite Experiment \#4
 Observations

- Sequence acquired on May $14^{\text {th }}, 2005$

(a) 30 min
(b) $2 h 55 \mathrm{~min}$

(c) 5 h 15 min
(d) 7 h 15 min

(e) $16 h 15 \mathrm{~min}$

Inzía UPMC

Satellite Experiment \#4

Motion results

(b) Proposed method

Figure : Motion computed between the first and second observation

Satellite Experiment \#4

Characteristic points

(a) First observation

Figure: Evolution of some characteristic points

Satellite Experiment \#4

Characteristic points

(a) Second observation

Figure: Evolution of some characteristic points

Satellite Experiment \#4

Characteristic points

(a) Third observation

Figure: Evolution of some characteristic points

Satellite Experiment \#4

Characteristic points

(a) Fourth observation

Figure: Evolution of some characteristic points

Satellite Experiment \#4

Characteristic points

(a) Last observation

Figure: Evolution of some characteristic points

Concluding remarks

- Determination of surface circulation using a rough model \mathbb{M}
- Dynamics not modelled by \mathbb{M} is captured in a
- Analysis of a retrieved and comparison with a shallow water model
- Experiments on synthetic models (Temperature and upper layer thickness) with ground truth

屁 Byrd, R. H., Lu, P., and Nocedal, J. (1995).
A limited memory algorithm for bound constrained optimization. Journal on Scientific and Statistical Computing, 16(5):1190-1208.
Rascoët, L. and Pascual, V. (2013).
The Tapenade Automatic Differentiation tool: Principles, Model, and Specification.
ACM Transactions On Mathematical Software, 39(3).
Repoittevin, Y., Herlin, I., and Béréziat, D. (2013).
Object's tracking by advection of a distance map.
In ICIP.
Sun, D., Roth, S., and Black, M. (2010).
Secrets of optical flow estimation and their principles.
In ECCV.
目 Suter, D. (1994).
Motion estimation and vector splines.
In CVPR.

