
Nsp/Premia Manual

Jean-Philippe Chancelier Jérôme Lelong

November 29, 2017

1 How Premia is embedded into Nsp

For long, the only way to use Premia was from the command line. With the growing of Premia
every year, the need of real graphical user interface has become more and more pressing. The
idea of embedding the Premia library in a Matlab-like Scientific Software has come up quite
naturally. Unlike a standalone graphical user interface, embedding Premia into Matlab-like
Scientific Software provides two ways of accessing the library either through the scripting
language or using the graphical capabilities of the software. The possibility of accessing the
Premia functions directly at the interpreter level makes it possible to make Premia interact
with other toolboxes. Since the license of Premia gives right to freely distribute the version
of Premia two year older that the current release, it was important that the scientific soft-
ware used can be freely obtained and has extensive graphical feature. Nsp fulfilled all these
conditions.
The inheritance system of Nsp enables to easily add new objects in the interpreter. This is
how we introduced a new type named PremiaModel, through which the wide range of pricing
problems described in Premia and their corresponding pricing methods are made available
from Nsp. The results obtained in a given problem can be used in any post-treatment routines
as any other standard data.
For practitioners, the daily valuation of a complex portfolio is a burning issue. Given a bunch
of pricing problems to be solved, which are implemented in Premia, how can we make the
most of Nsp and the Premia toolbox? First, we needed a way to describe a pricing problem
in a way that is understandable by Nsp so that it can create the correct instance of the
PremiaModel class. We implemented the load and save methods for such an instance relying
on the XDR library (eXternal Data Representation). This way, any PremiaModel object can
be saved to a file in a format which is independent of the computer architecture; these files can
be reloaded later by any Nsp process. Then, a bunch of pricing problems can be represented
by a list of files created either from the scripting language or using the graphical interface.
Let us give an example of how to create such a file. To save the pricing of an American call
option in the one dimensional Heston model using a finite difference method, one can use the
following instructions

Examples

P = premia_create()

P.set_asset[str="equity"]

P.set_model[str="Heston1dim"]

P.set_option[str="PutAmer"]

1

P.set_method[str="FD_Fem_Achdou"]

save(’fic’, P)

Creating an instance of the PremiaModel class and setting its parameters are very intuitive.
The object saved in the file fic can reloaded using the command load(’fic’).

2 A scripting approach

The PremiaModel toolbox can be loaded into Nsp by running exec loader.sce in the direc-
tory nsp of Premia.

2.1 General functions

In this section, arguments written between square brackets are optional. All the indices start
from 1.

premia init ()

Description

Create the PremiaModel type.

premia create ()

Description

Create an instance of a PremiaModel object and return its address.

premia get assets ()

Description

Return a the names of the different asset types handled by Premia.

premia get models ([asset=str])

Parameters

str is a string parameter. It must be one of the values returned by premia_get_assets.
This argument is optional and describes the type of underlying assets. When no
asset argument is passed, the default value is asset=equity.

Description

Return the list of models available for the given asset type.

premia get families ([n], [asset=str])

Parameters

n is the index of the family considered. It starts counting at 1.

2

str is a string parameter. It must be one of the values returned by premia_get_assets.
This argument is optional and describes the type of underlying assets. When no
asset argument is passed, the default value is asset=equity.

Description

Return the name of the n−th family available for the underlying asset type given by
the optional argument asset=str. When the argument n is not given, the function
returns the names of the different families available for the given asset type.

premia get family (family, [model], [asset=str])

Parameters

family is the index of the family to be considered within the list returned by premia -
get families.

model is the index of the model to be considered within the list returned by premia -
get models.

str is a string parameter. It must be one of the values returned by premia_get_assets.
This argument is optional and describes the type of underlying assets. When no
asset argument is passed, the default value is asset=equity.

Description

Return the list of options belonging the family−th family in the model−th model for
the asset described by str. When no model argument is given, the names of all the
options available in family−th family are returned. If no option of the given family is
compatible with the model, an empty string matrix is returned.

premia get methods (family, option, model, [asset=str])

Parameters

family is the index of the family to be considered. This index can be guessed using
premia get families.

option is the index of the option to be considered within the list of options available
in the given family for the model defined by model.

model is the index of the model to be considered. This index can be guessed using
premia get models.

str is a string parameter. It must be one of the values returned by premia_get_assets.
This argument is optional and describes the type of underlying assets. When no
asset argument is passed, the default value is asset=equity.

Description

Return the names of the methods available to carry out the pricing problem defined
by the arguments. The return value is a string matrix.

load[fic]

Parameters

3

fic is the name of a file.

Description

Load the PremiaModel object stored in the file fic. The file must have been created
by the method save.

2.2 PremiaModel’s methods

The following methods can be applied to a PremiaModel object M returned by the function pre-
mia create using the syntax M.method[] for instance. Note that unlike functions, parameters
are passed to methods within square brackets and not braces.

The symbol | separates complementary parameters. This is actually a concise way of de-
scribing two or possibly more ways of calling a method. The use of curly braces to group
parameters means that these parameters must either be all used together or all ignored. Note
that the curly braces must not be typed into Nsp.

get asset[]

Description

Return the name of the underlying asset.

get model[]

Description

Return the name of the model.

get models[]

Description

Return the names of the models available for the already set asset type.

get option[]

Description

Return the name of the option.

get family[n]

Description

Return the names of the options of the n-th family which can priced in the already set
model. When no option is available in that family, an empty string matrix is returned.

get method[]

Description

Return the name of the method.

4

get methods[]

Description

Return the names of the methods available to solve the Premia problem.

get model values[]

Description

Return the list of parameters of the model.

get option values[]

Description

Return the list of parameters of the option.

get method values[]

Description

Return the list of parameters of the method. When the method does not need any
parameter, an empty list is returned.

set asset[str=asset]

Parameters

asset is a string parameter. It must be one of the values returned by premia get assets

Description

Set the underlying asset.

set model[n | str=model]

Parameters

n is the index of the model to be set in the list returned by get models[], ie within the
list of compatible models.

model is a string parameter. It must be one of the values returned by premia get -
models called with the asset type of the object or get models[].

Examples

M=premia_create();

M.set_asset[str="credit"];

models=premia_get_models(asset=M.get_asset[])

M.set_model[models(2)];

Equivalently, the list of available models for the already set asset type can be obtained
by the method get models[].

5

M=premia_create();

M.set_asset[str="credit"];

models=M.get_models[];

M.set_model[models(2)];

Description

Set the model.

set option[{n family, n option} | str=option]

Parameters

n family is the index of the family in which the option is picked up. The index is
computed within the restricted list of families compatible with the model already
set.

n option is an integer parameter. It is the index within the n_family−th family of
the option to be set. Note that the index is taken in the restricted list of options
belonging to the given family which are compatible with the model

option is a string parameter. It must be one of the values returned by premia get -
families called with the parameters corresponding to the object.

Description

Set the option using either the two parameters n_option and n_family or the unique
parameter str=option. When the two parameter form is used, the option set is the
n_option

set method[n | str=method]

Parameters

n is an integer parameter. This is the index of the method to be chosen in the restricted
list of pricing methods available for the given asset, model ans option.

method is a string parameter. It must be one of the values returned by premia get -
methods called with the parameters corresponding to the object.

Description

Set the method using either the parameter n or str=method. The list of available
methods can be obtained using the method get methods[].

set model values[L]

Parameters

L is a list parameter. It must have the same structure as the one returned by get -
model values[].

6

Description

Set the different parameters of the model. The list L must define all the parameters.
There is no way to specify just a few of them, instead you can get the list returned by
get model values[], modify a few values and set it back using set model values[].

set option values[L]

Parameters

L is a list parameter. It must have the same structure as the one returned by get -
option values[].

Description

Set the different parameters of the option. The list L must define all the parameters.
There is no way to specify just a few of them, instead you can get the list returned by
get option values[], modify a few values and set it back using set option values[].

set method values[L]

Parameters

L is a list parameter. It must have the same structure as the one returned by get -
method values[].

Description

Set the different parameters of the method. The list L must define all the parameters.
There is no way to specify just a few of them, instead you can get the list returned by
get method values[], modify a few values and set it back using set method values[].

compute[]

Description

Compute the quantities of interest (price and delta generally). This is a void method.
See get method results[] to withdraw the results of the computation.

get compute err[]

Description

If the computation run by compute[] did not end successfully, this method returns
the corresponding error message. When the computation ended successfully, an empty
string matrix is returned.

get method results[]

Description

Return a list containing the values computed by the compute[] method. If the com-
pute[] method has not been called yet, an empty list is returned.

7

get method results iter[]

Description

Returns two arguments. The first one is a list of 2 or 3 matrices depending on whether
the iteration was performed on one or two parameters. The first matrix (resp. first two
matrices) contains the values taken by the parameter (the two parameters) on which we
iterated. The last matrix contains the prices for the values of the parameter(s) given
by the first (resp. first two) matrices. The second returned argument is a string matrix
containing the names of the variables over which the iteration was performed.

is with iter[]

Description

Return a boolean telling if we have iterated on some parameters.

get help[type]

Parameters

type is a string parameter. It can be one of the keywords “model”, “option” or
“method”.

Description

Display the PDF help corresponding to the object referred to by the type variable.

save[]

Description

Save a PremiaModel object to a file in a format that can be easily reloaded into Nsp
(see function load). The format of the file is independent of the architecture.

3 The graphical interface

To access the graphical interface, one must execute the file interface.sci located in the
directory nsp.

3.1 Basic usage

premia ()

Description

Launch the graphical interface and returns a PremiaModel object linked to the interface,
which means that this object is modified each time you change a parameter in the
interface.

Examples

8

P = premia ()

// .. do some changes in the interface

P.get_method[] //returns the name of the method

Once all the different parameters are properly set, the computation is launched with the
button ‘‘Compute’’.

3.2 Advanced usage

The interface has three menus : File, Help, Tools, explained below.

File menu The File menu provides the ability to save or reload a PremiaModel object from
a file. This is equivalent to using load or save.

Help menu The Help menu provides a fast and easy access to Premia’s scientific docu-
mentation. You can directly access the help concerning the model, the option or the pricing
method. This help is displayed in an external PDF viewer.

Tools menu The Tools menu is intended to be used with parameter iteration. It is possible
to use a vector for a parameter which is normally real valued and its means that the prices
must be computed for the different values specified in the vector. The different results can
be withdrawn using the method get method results iter[] and are stored internally so that
the values can be plotted using the function Draw from the Tools menu. If a second set of
computations is carried out iterating on an other parameter, the size of the two iterations
must be the same because the new results are concatenated to the previous ones and plotted
on the same graph. This is particularly useful to compare different methods for instance.
The function Clear Data clears the variable in which the results of the iterations are stored.
The function Clear Graph clears the graph which can be redrawn using the function Redraw

as far as the Clear Data function has not been called.
Finally, it is possible to add a legend to the graph using the Legend function. The format of
the legend is the following leg1@leg2@leg3... where leg1, leg2 and . . . are strings. The
position of the legend can also be specified ’ul’ (upper left), ’ur’ (upper right), ’ dl’ (lower
left) or ’dr’ (lower right).

9

Index

compute, 7

get asset, 4
get compute err, 7
get family, 4
get help, 8
get method, 4
get method results, 7
get method results iter, 7
get method values, 5
get methods, 4
get model, 4
get model values, 5
get models, 4
get option, 4
get option values, 5

is with iter, 8

load, 3

premia, 8
premia create, 2
premia get assets, 2
premia get families, 2
premia get family, 3
premia get methods, 3
premia get models, 2
premia init, 2

save, 8
set asset, 5
set method, 6
set method values, 7
set model, 5
set model values, 6
set option, 6
set option values, 7

10

	How Premia is embedded into Nsp
	A scripting approach
	General functions
	PremiaModel's methods

	The graphical interface
	Basic usage
	Advanced usage

