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Abstract

Using the algebra of dioids, we further examine the analogy be-
tween timed event graphs and conventional linear systems by
showing that some periodic inputs of the former behave as co-
sine inputs for the latter. In particular, we give a meaning to
such notions as “phase shift” and “amplification gain”, which
allow us to talk about the Black and Bode plots for discrete
event systems. In this theory, classical concepts of Convex Anal-
ysis such as inf-convolution and Fenchel conjugate play the parts
that convolution and Laplace transform play in the conventional
case.

1 Introduction

Event graphs constitute a special class of Petri nets in
which transitions admit several incoming and outgoing
arcs whereas places admit single upstream and down-
stream arcs. In this way, only synchronization constraints
(logical AND) can be represented, whereas alternative
choices (corresponding to logical OR) cannot be repre-
sented. A fork—several outgoing arcs from a transition—
represents for example the simultaneous broadcasting of
messages in several directions. A join—several incoming
arcs—represents the requirement of simultaneous avail-
ability of resources in order to perform a task. Consid-
ering timed event graphs and performance evaluation, a
fork mathematically translates into the equality of either
the dates of the corresponding event occurrences or the
numbers of event occurrences up to any given time. As
for joins, they involve max or min operations whether we
consider dates or number of events.

These max or min operations would a priori classify
timed event graphs as nonlinear and even nonsmooth sys-
tems. But it has been shown that, using the so-called
algebra of dioids, it is possible to consider these systems
as linear systems, and to develop a theory for them which
bears much resemblance with the conventional linear sys-
tem theory. A fairly comprehensive account of this emerg-
ing theory has been given in [3]. It has been shown how
to develop “state space” models in either the time do-
main (playing with numbers of event occurrences at time
t called counters ct) or the event domain (using dates of oc-
curences of events of rank n called daters dn). These state
space models have their “input-output” model counter-
parts (transfer matrices). A two-dimensional event-time
domain representation has also been proposed. Among
other results and concepts, it has been shown that the
asymptotic behaviour of such autonomous systems can be
characterized in terms of eigenvalues and eigenvectors; sta-
bility and stabilization by dynamic output feedback have
been investigated, etc. . .

∗Also with INRIA.

The aim of the present paper is to pursue this strik-
ing analogy with the conventional theory by studying the
counterpart of the Black and the Bode plots. In particular,
it is well known that, after a transient behaviour, a cosine
input through a stable time-invariant linear system yields
an amplified and phase shifted cosine output at the same
frequency. Mathematically, this may be stated as follows:
eigenfunctions of rational transfer functions are cosines at
various frequencies and the eigenvalues are the complex
numbers the modulus and the argument of which represent
respectively the amplification gains and the phase shifts.
The variation of these quantities as a function of the fre-
quency are represented by the Black or the Bode plots.

We shall obtain similar results with some adaptation for
the class of timed event graphs. The role of cosines will be
played by some periodic inputs; it will be shown that any
linear system driven by this kind of input delivers the same
kind of output up to some phase shift and amplification
gain. The role of phase shift and amplification gain are
interchanged when switching from the counter to the dater
point of view.

In the classical case, the amplification gain and the
phase shift at each frequency ω are obtained by evaluating
the Laplace transform of the transfer function, say H(s),
at s = jω. It should be realized that in this process, H(s)
which is initially considered as a formal rational function
of the derivative operator—or more precisely of its Laplace
counterpart s—is also used as a numerical function. The
same kind of trick will be used in the case of transfer func-
tions of timed event graphs. It will be shown that con-
sidering the numerical function associated with a transfer
function amounts to using the Fenchel transform of the im-
pulse response. Here comes the connection with Convex
Analysis which will be further elaborated hereafter.

The results presented in this paper can be explained us-
ing the time domain counter representation, the event do-
main dater representation or the two-dimensional domain
representation. We shall limit ourselves to the first and
third points of view after having given the relationships
that allow one to pass from one to another representation.
Using for example the counter description, a striking anal-
ogy will be established between conventional linear and
min-linear systems, convolution and inf-convolution, and
Laplace and Fenchel transforms. Most of the results will
be stated here without or with sketchy proofs because of
the lack of space. A more complete account of this theory
will appear elsewhere.
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2 Event graph models using the dioid algebra

2.1 Dater approach

In this section, we recall some basic facts about modeling
event graphs with dioids and some properties of the alge-
bra. The reader is referred to [3] for details. An example
of a timed event graph is given below with its initial mark-
ing and with holding times put on places (with no loss of
generality, we may assume that transitions are fired in-
stantaneously, i.e. with null duration—see [3]). For every
transition, say for one labelled xi, we number the succes-
sive firings in the order they occur using an index n ∈ Z
starting from an arbitrary, possibly negative, initial value
(common to all transitions). There is an absolute clock
giving a beep every unit of time, these beeps being also
numbered in Z by an index t. When the firing of xi num-
bered n occurs while the clock delivers the beep numbered
t, we set xin = t. The mapping n 7→ xin associated with
transition xi is called the dater function of this transition.

It is not hard to see that the following equations must hold
for the above example

x1
n = max (x2

n−1, u
1
n + 3) x2

n = max (x1
n + 1, u2

n−1 + 1)
x3
n = max (x1

n, x
2
n + 1, x3

n−1 + 2) yn = max (x2
n−1, x

3
n + 3) (1)

The dioid Zmax = (Z ∪ {−∞},max,+) is an agebraic
structure with two operations, max as addition (denoted
by ⊕) and + as multiplication (denoted by ⊗ or simply
omitted), where ε := −∞ plays the role of the null ele-
ment and e := 0 the role of the identity element. We refer
the reader to [3] to learn the main properties of this struc-
ture. One essential feature is that ⊕ is idempotent which
means that x⊕x = x,∀x. The combinatorial properties of
dioids (i.e. associativity, commutativity of ⊕ and ⊗, and
distributivity of ⊗ over ⊕), plus other familiar properties
such that ε ⊗ x = ε,∀x, allow matrix manipulations in a
conventional way. With these notations at hand, the third
equation (1) now reads

x3
n = x1

n ⊕ 1x2
n ⊕ 2x3

n−1

In matrix notations, system (1) can be written in the form

xn = A0xn⊕A1xn−1⊕B0un⊕B1un−1; yn = C0xn⊕C1xn−1 (2)

where it is left to the reader to construct the matrices.
This model is in the event domain since index n numbers

events. Following the conventional approach, one can then
introduce the formal backward shift operator in counting,
namely γ such that γxin = xin−1 and the γ-transform sig-
nals Xi(γ) =

⊕
n∈Z x

i
nγ

n (with the convention that xin = ε
for n less than the origin of counting). Xi(γ) is a Laurent

series with coefficients in Zmax; let us denote this set by
Zmax¿γÀ. Then from (2), one derives an implicit equa-
tion for the vector X 1, namely

X = (A0 ⊕ γA1)X ⊕ (B0 ⊕ γB1)U

which is solved by X = (A0 ⊕ γA1)∗ (B0 ⊕ γB1)U with
the notation a∗ := e ⊕ a ⊕ a2 ⊕ . . . (see [3]). Finally, one
gets the input-output representation (transfer matrix)

Y = HU with H(γ) = (C0 ⊕ γC1) (A0 ⊕ γA1)
∗ (B0 ⊕ γB1)

Zmax¿γÀ is also a dioid with the addition and multipli-
cation derived from those of Zmax in the conventional way.
But it is not the one that we need. Indeed, since firings are
numbered in the order in which they occur, we must have
xn ≥ xn−1 which is equivalent to xn = xn ⊕ xn−1 implying
that X = X ⊕ γX which in turn implies that X = γ∗X.
This leads us to consider the following equivalence relation

X(γ) ≡ X ′(γ)⇐⇒ γ∗X(γ) = γ∗X ′(γ)

The quotient of Zmax¿γÀ by this equivalence relation is
also a dioid denoted hereafter by Zmax (this amounts to re-
placing xn by supm≤n xm). In addition to the conventional
calculation rules of Zmax¿γÀ, we have the following sim-
plification rule for monomials

tγn ⊕ tγm = tγmin(n,m) (equality in Zmax) (3)

2.2 Counter approach

A dater function, say n 7→ dn is generally noninvertible al-
though it is monotone nondecreasing, since several events
may occur at the same time or no event may occur at a
specified time t. That is the equation dn = t may have
one, several, or no solution in n. In such an instance, we
may use, as a substitute for a solution, the concept of the
“smallest oversolution”, i.e.

ct = inf
dn≥t

n (4)

or that of the “largest undersolution”, i.e.

c̄t = sup
dn≤t

n (5)

In words, it means that we may adopt as the definition
of the counter at time t “the smallest number over events
that occur at or after t” or alternately “the largest number
over the events that occur before or at t”. It can be proved
that

c̄t = ct+1 − 1 (6)

Whichever definition we retain, it can be seen, by direct
reasoning on the Petri net shown earlier, that counters sat-
isfy similar equations as daters except that min replaces
max, the delays on index t (now we operate in the time
domain!) for a pair of transitions separated by a place is
given by the holding time of the place, and the “coeffi-
cient” in Zmin = (Z ∪ {+∞},min,+) is given by the ini-
tial marking of that place. In Zmin (now ⊕ has a different

1Upper case letters for vectors or scalars denote γ-transforms, i.e. X
is a shorter notation for X(γ)
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meaning), if for example xit denotes the counter attached
to transition xi, we get

x1
t = 1x2

t ⊕ u1
t−3 x2

t = x1
t−1 ⊕ 1u2

t−1
x3
t = x1

t ⊕ x2
t−1 ⊕ 1x3

t−2 y = 1x2
t ⊕ x3

t−3

Considering the formal backward shift operator δ in dat-
ing such that δxt = xt−1, we can code signals {xt} by their
δ-transforms

⊕
t∈Z xtδ

t and convert the above equations
in the conventional way to eventually get a transfer ma-
trix H(δ) from the input vector U(δ) to the output vector
Y (δ). The entries of these vectors lie in Zmin¿δÀ, the set
of Laurent series in δ with coefficients in Zmin. But again,
we must “filter” all signals to consider only nondecreas-
ing ones. The inequality xt ≥ xt−1 now translates into
xt−1 = xt−1 ⊕ xt thanks to the new meaning of ⊕. This
subsequently translates into X = X ⊕ δ−1X which implies
that X =

(
δ−1
)∗
X. Finally, we are led to introduce the

following equivalence relation

X(δ) ≡ X ′(δ)⇐⇒
(
δ−1)∗X(δ) =

(
δ−1)∗X ′(δ) (7)

Practically, it means that xt is replaced by infs≥t xs. The
quotient of Zmin¿δÀ by this equivalence relation is a dioid
denoted by Zmin. In addition to the conventional calcula-
tion rules for Zmin¿δÀ, we have the additional simplifi-
cation rule for monomials

nδt ⊕ nδs = nδmax(t,s) (equality in Zmin) (8)

Notice that since a monomial nδt in Zmin is coded as tγn in
Zmax, it is clear that the rule above simply translates into
tγn⊕sγn = max(t, s)γn which can be seen as a consequence
of the fact that in Zmax, coefficients belong to Zmax. The
dual comment could have been done for (3).

2.3 Two-dimensional domain

Because of the symmetrical roles played by the coefficients
and the exponents in either Zmax or Zmin, it is reasonable to
introduce a two-dimensional domain representation. The
two shift operators γ and δ are involved as formal variables
in Laurent series with boolean coefficients: this set is de-
noted by B¿γ, δÀ. A monomial tγn or nδt will simply
be coded as γnδt. In addition to the conventional addition
and multiplication rules for series derived from those for
boolean coefficients (in particular, addition is idempotent
for series as it is for boolean numbers), we must draw the
consequences of (3) and (8), namely that

γnδt ⊕ γnδs = γnδmax(t,s) and γnδt ⊕ γmδt = γmin(n,m)δt (9)

Again this new structure is a dioid which can be inter-
preted as the quotient of B¿γ, δÀ by the equivalence re-
lation

X(γ, δ) ≡ X ′(γ, δ)⇐⇒ γ∗
(
δ−1
)∗
X(γ, δ) = γ∗

(
δ−1
)∗
X ′(γ, δ)

(10)
where the equality on the right-hand side is in B¿γ, δÀ.
This quotient dioid is called MinMax¿γ, δÀ or simplyM
for short.

We refer the reader to [3] for the interpretation of an
element A =

⊕
i∈A γ

niδti of M as an information set2. In
short, a monomial γnδt is to be interpreted as the following
piece of information:

2For convenience, A will denote at the same time a subset of Z2 and
a collection of indices i indexing the points of that subset.

“The event numbered n occurs at the earliest at time t.”

This piece of information, say [b] on the picture below, is
stronger than all other pieces of information lying in the
south-east cone with vertex [b], as [d] and [c] (think of it!).
This is the graphical translation of (9) or (10).
⊕ in M amounts to ∪ for the corresponding informa-

tion sets (hence a polynomial is a union of cones as in the
picture above), ⊗ in M is the vector sum of sets, the null
element ε inM is the polynomial with coefficients all null,
which corresponds to the empty set, and the identity ele-
ment e is the monomial γ0δ0 which can also be represented
as γ∗

(
δ−1
)∗—see (10)—and which corresponds to the cone

with vertex at the origin.

For the event graph shown earlier, it can be shown that
the input-ouput 2-D representation reduces to

Y = δ5 (γδ2)∗ (δ3U 1 ⊕ γU 2)
It corresponds to the above simpler event graph which
nevertheless has exactly the same input-output behaviour
(i.e. the same transfer matrix) as the previous one.

2.4 Passing from one representation to another

Suppose we are given an information set A =
⊕

i∈A γ
niδti .

We recover the corresponding dater function dAn by

dAn = sup
i∈A,ni≤n

ti

Conversely, the set A can be obtained from the dater func-
tion by

A = {(ni, ti) ∈ Z2 | ti ≤ dAni} (11)

In Section 2.2, we proposed two possible definitions of
the counter function, namely (4) and (5). We shall retain
the former definition for reasons to be given later on in
this section. Eq. (4) gives the way we pass from the dater
to the counter function. Conversely, it can be proved that

dn = sup
ct≤n

t

Now given an information set A, we have that

cAt = inf
i∈A,ti≥t

ni

Conversely, the set A can be obtained from the counter
function by

A = {(ni, ti) ∈ Z2 | ni ≥ cAti} (12)

This means that a piece of information (n, t) should be
interpreted as

“Up to time t, the counter reaches at most the value n”



Finally, the three elements
⊕

i∈A γ
niδti ,

⊕
n∈Z γ

nδd
A
n and⊕

t∈Z γ
cAt δt of M are the same as long as the above rela-

tionships hold. Had we taken (5) as the definition of the
counter function, because of (6) we would have to consider⊕

t∈Z γ
c̄At +1δt+1 instead of the previous expression with cAt ,

which would have made things rather complicated when
multiplying such expressions by one another.

3 Numerical functions associated with an infor-
mation set and its associated counter function

3.1 Support function of the information set

For any given subset A ⊂ Rn, it is common to define the
so-called support function (see [4]) as

∀p ∈ Rn, SA(p) := sup
x∈A
〈p, x〉 (13)

where 〈., .〉 denotes the scalar product. On the other hand,
SA may be defined as the Fenchel conjugate of the indica-
tor function of A defined as

IA(x) =
{0 if x ∈ A

+∞ otherwise

SA(p) = max
x∈Rn

(〈p, x〉 − IA(x))

SA is convex as the upper hull of a family of affine func-
tions. From a classical theorem (see [1, pp. Proposition
4.4]), if X̂(p) denotes the set of points x for which the
supremum is achieved in (13) (if any), one has that

∂SA(p) = X̂(p) (14)

where ∂f denotes the subdifferential of a convex function
f . As a subdifferential, X̂(p) is a monotone multivalued
operator, that is

∀p1, p2,∀x1 ∈ X̂(p1), x2 ∈ X̂(p2), 〈p1 − p2, x1 − x2〉 ≥ 0 (15)

In fact, SA only characterizes the (closed) convex hull of
A (denoted by coA), the indicator function of which can
be recovered from SA by using the Fenchel conjugate once
more. It also clear that SA is positively homogeneous of
degree one, that is

∀λ ≥ 0, SA(λp) = λSA(p)

We can apply this to an information set A considered
as a subset of either R2 or Z2, since this will make no
difference as far as the support function is concerned. Let
p ∈ R2 in (13) be equal to (γ, δ). Since A is unbounded in
the south-east direction, it is obvious that

γ > 0 or δ < 0⇒ SA(γ, δ) = +∞
We have that

SA(γ, δ) = sup
i∈A

(γni + δti) (16)

It means that the usual coding of A in M, namely⊕
i∈A γ

niδti , is to be interpreted as a numerical function
since, in the dioid notations where the product is the arith-
metic sum, a monomial γnδt is the arithmetic expression
nγ + tδ; as for ⊕ of the formal power series (translating
“union”), it is to be taken as max.

Since SA is positively homogeneous, it suffices to know
its values for all the values of the ratio σ = −δ/γ for
σ ∈ [0,+∞] (remember that SA is non trivial only for
γ ≤ 0 and δ ≥ 0). σ is the slope of the line γy + δx = 0.

3.2 Numerical function associated with the
counter function

Consider the counter function cA associated with A. Using
the description of A provided by (12) in (16) we get

SA(γ, δ) = sup
n≥cAt

(γn+ δt)

Since we are going to consider only nonpositive values of
γ, n must be taken as small as possible, that is n = cAt .
Hence we come up with the formula

SA(γ, δ) = sup
t∈Z

(
γcAt + δt

)
Therefore, it turns out that SA(−1, δ) =

(
cA
)∗ (δ) where(

cA
)∗ is exactly the Fenchel conjugate of function cA. In-

deed, it will appear more convenient to consider

CA(δ) = −SA(−1, δ) = −
(
cA
)∗

(δ) = − sup
t∈Z

(
δt− cAt

)
which will be the numerical function associated with the
counter function.

4 Basic operations on information and counters,
and their numerical counterparts

The two basic operations of a dioid, addition and multipli-
cation, correspond to the two basic operations of system
theory consisting in cascading systems in parallel and in
series. In this section, we examine how these two opera-
tions are related to our various representations, namely

1. information sets as particular subsets of Z2 which ex-
tend south-east;

2. indicator functions associated with those subsets;

3. M-coding of those subsets:

4. support functions of those subsets;

5. counter functions;

6. their associated numerical functions.

Items 1, 2, 3, 5 lie in isomorphic dioids whereas items 4,
6 are in dioids which are isomorphic to each other but
only homomorphic to the previous ones (that is there ex-
ist mappings from the former to the latter which are not
bijective but which preserve addition and multiplication).

The following table summarizes the situation. The sym-
bol ¤ denotes “inf-convolution” defined as [4] (f¤g)(x) :=
infy f(x − y) + g(y). Here however, we need a “discrete”
inf-convolution, that is the “inf” is taken over Z. All “inf”,
“sup” and “+” operations concerning functions are point-
wise operations. It is recalled that, ∀A,SA(γ, δ) = +∞
when either γ > 0 or δ < 0 and CA(σ) = −∞ when σ < 0.

Sum Zero Product Identity

1 A ∪ ∅ +
(vector sum)

cone at the
origin

2 IA inf IA ≡ +∞ ¤ IA(n, t) = 0 iff
n ≥ 0 and t ≤ 0

3 ⊕γniδti ⊕ ε
(null series) ⊗ e = γ0δ0

4 SA sup SA ≡ −∞ + SA(γ, δ) = 0 iff
γ ≤ 0 and δ ≥ 0

5 cA inf cA ≡ +∞ ¤ 0 for t ≤ 0
+∞ for t > 0

6 CA inf CA ≡ +∞ + CA(σ) = 0
for σ ≥ 0



5 Line functions and their use in spectral analysis

5.1 Line functions as eigenfunctions

A “line function of slope σ” is a “best discrete approxi-
mate” of the linear function y = σx in the (t, n)-plane.
Let us first introduce the following notation: for any real
number a, [a] will be the smallest integer number larger
than or equal to a (e.g. [-0.95]=0). Then, a line function
of slope σ—denoted by Lσ—is precisely the signal char-
acterized by the counter function cLσt = [σt],∀t ∈ Z (we
assume that σ ≥ 0). Pictorially, in the 2-D domain, if
time is still represented along the y-axis—instead of the
x-axis, then draw a line with slope 1/σ and keep all points
of the Z2-grid to the right hand of this line. Notice that

CLσ (δ) =
{ 0 if δ = σ
−∞ otherwise

Consider a SISO system with a transfer function H
driven by an input U equal to some Lσ. Let Y = HU .
From the above considerations, it should be clear that

CY (δ) =
{CH(σ) if δ = σ
−∞ otherwise

Using the usual ⊗ for + in dioid notations, this can also
be summarized in the following form

∀δ ∈ R, CY (δ) = CH(σ)⊗ CU (δ)

which shows that, in terms of the associated numerical
functions, every line function behaves as an eigenfunction
with respect to every transfer function. Going back from
the numerical function to the original counter function in-
volves some loss of information since only convex hulls can
be characterized in this way. Therefore, we are going to
establish a stronger result by manipulating the counter
functions directly.

We have

CH(σ) = inf
θ∈Z

(
cHθ − σθ

)
= ν − στ (17)

with ν = cHτ for every τ belonging to the “arg inf”, a set
which depends of course on both H and σ. For the time
being, we assume that this set is nonempty, that is the
“inf” is reached, which happens whenever it is not equal
to −∞. We shall consider the case CH(σ) = −∞ later on.

Then

cYt = inf
θ∈Z

(
cHθ + cUt−θ

)
= inf

θ∈Z

(
cHθ + [σ(t− θ)]

)
= [inf

θ∈Z

(
cHθ − σθ

)
+ σt]

since [.] is a monotone function and since cHθ is an integer

= [σ(t− τ) + ν] from (17)
= [σ(t− τ)] + ν since ν is integer

Finally
cYt = ν ⊗ cUt−τ (18)

It is clear that every line input behaves as an eigenfunction
for every transfer function and that the “phase shift” τ and

the “amplification gain” ν are two integers which can be
obtained from (17).

In M, the same fact is expressed by the “eigenvalue-
eigenvector” equation

H(γ, δ)U(γ, δ) = γνδτU(γ, δ)

where τ and ν are (non uniquely) defined by the equation
SH(−1, σ) = (−1)νστ (r.h.s. in the dioid notations).

This is similar to what happens with functions ejωt in
conventional Linear System Theory. Notice that transients
are avoided here by letting our line functions start at t =
−∞, but a similar result could have been obtained for
asymptotics if we had started them at t = 0. However,
two remarks are in order at this point.

First, we do not claim that the family of line functions
{Lσ}σ≥0 forms a “basis” for all signals that are of interest
for discrete event systems, as is the case for {ejωt}ω≥0 in
the conventional case (Fourier analysis). Hence knowing
the response of a given system to each line function does
not allow one to compute its response to other inputs in
general. As already seen, SH only characterizes the convex
hull of the information set of the impulse response, which
is sufficient for these line function inputs, but which will
not be sufficient for more general inputs. More on this
topic in a forthcoming paper.

Secondly, timed event graphs exhibit a “low-pass” effect,
which was already well understood (see [2]). Namely, such
systems3 have their own “limit rate” under which periodic
inputs can be normally processed, but over which only
this typical limit rate can be observed at the output (and
tokens accumulate inside). This translates into the fact
that the infimum is equal to −∞ in (17). More specifically,
it should be clear that CH is a nonincreasing function of σ
and if

lim
t→+∞

cHt /t = σ0 (19)

then ∀σ > σ0, CH(σ) = −∞. In this case, we may consider
in (17) that τ = +∞ (and ν = limt→+∞ cHt ). That is,
the corresponding line functions are indefinitely delayed
by the system. This never happens if σ0 = +∞, which
corresponds to timed event graphs without circuits. Oth-
erwise, σ0 is given by the smallest ratio, among all circuits
of the graph, of the total number of tokens over the total
number of “bars” (holding time units) along those circuits
(see [2] for the dual statement in the dater point of view).

5.2 Black and Bode plots

The Black plot in conventional system theory is the
set of points whose coordinates are (ϕ(ω), log r(ω)) :=
(argH(jω), log |H(jω)|) when ω varies. The Bode plot is
the pair of plots ϕ(ω) and log r(ω) against logω. By anal-
ogy, we may here define the Black plot as the set of points
(ν(σ), τ(σ)) as σ varies from 0 to +∞, and the Bode plot
as the pair of plots of ν(σ) and τ(σ) against log σ. No-
tice that both ν(σ) and τ(σ) are additive— conventional
addition—for systems in series, as it is also the case for
ϕ(ω) and log r(ω) in conventional system theory. Notice
also that for the Black plot, τ(σ) which appears as the
phase shift in the counter point of view, but which would
appear as the amplification gain in the dater point of view,

3we still consider only SISO systems to make things simple
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is put along the y-axis, as it is usually done for t in our
representation.

Actually τ(σ) and ν(σ) are not uniquely defined by (17).
They are multivalued but nondecreasing functions. To
prove this, we notice that this pair is also a member of
the set arg max(n,t)∈H(γn + δt) when σ = −δ/γ. Hence,
recalling (15), one has that

(ν(σ1)− ν(σ2)) (γ1 − γ2) + (τ(σ1)− τ(σ2)) (δ1 − δ2) ≥ 0

whenever σ1 = −δ1/γ1 and σ2 = −δ2/γ2. Then, if we pick
γ1 = γ2 = −1 and δ1 = σ1, δ2 = σ2, we see that τ(σ) is a
monotone multivalued function, whereas with δ1 = δ2 = 1
and γ1 = −1/σ1, γ2 = −1/σ2, we see the same thing for
ν(σ).

With these definitions, it is clear that the Black plot
is simply the set of all points of Z2 lying on the border
of the convex hull of the information set relative to the
transfer function H. As for the Bode plot, it is a pair of
staircase multifunctions. The points where these are truly
multivalued correspond to the slopes that appear in the
above mentioned convex hull.

5.3 Example

To close this section, let us examine the following example

H(γ, δ) = γδ2 ⊕
(
γ2δ
)∗

corresponding to the Petri net
on the right. The next pic-
ture shows the graph of cH , the
shaded area corresponding to the
information set, and the solid
line delineating its convex hull.

Observe that σ0 as defined by (19) is equal to 2 (look
at the circuit of the graph).

All points of the Z2 grid lying on the broken solid line
belong to the Black plot. On this picture, the line function
Lσ with σ = 5/3 is represented by the straight line. It can
be checked that

H(γ, δ)
⊕
t∈Z

γ[5t/3]δt = γ1δ2
⊕
t∈Z

γ[5t/3]δt

For σ = 5/3, the shifts ν = 1 and τ = 2 are explained
by the picture. On this same picture, it can be seen that
CH(5/3) = −7/3.

On the next drawing, the input U = L5/3 and its corre-
sponding shifted output Y are depicted. The “horizontal”
difference cYt −cUt fluctuates between -2 during 2 time units
over 3, and -3 for the remaining 1 over 3. The average is

thus −(2× 2/3)− (3× 1/3) = −7/3 = CH(5/3). This ob-
servation can be explained as follows. From (18), we have
that

cYt − cUt = [σ(t− τ)] + ν − [σt]

It should be clear that the average value of the right-hand
side is ν − στ which is precisely equal to CH(σ) according
to (17).

Finally, the pair of Bode plots are shown below.

6 Conclusion

In conclusion, we offer the following table which should be
self-explanatory.

min-linear systems conventional linear systems

min, +
∫
, ×

cYt = infτ∈Z
(
cHt−τ + cUτ

)
y(t) =

∫
R h(t− τ)u(τ) dτ

cLσt = [σt] xω(t) = ejωt

CH(σ) = inf t∈Z
(
cHt − σt

)
H(jω) =

∫
R h(t)e−jωt dt

CY (σ) = CH(σ) + CU (σ) Y (s) = H(s)U(s)
H(γ, δ)Lσ(γ, δ) =

γν(σ)δτ(σ)Lσ(γ, δ)
H(s)Xω(s) =

elog r(ω)ejϕ(ω)Xω(s)
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