
DECIM
v2 ∗

C. Berbain1, O. Billet1, A. Canteaut2, N. Courtois3, B. Debraize3,4, H. Gilbert1,

L. Goubin4, A. Gouget5, L. Granboulan6, C. Lauradoux2, M. Minier2,

T. Pornin7 and H. Sibert5

Abstract

Decim is a hardware oriented stream cipher with 80-bit key and 64-bit IV which was
submitted to the ECRYPT stream cipher project. The design of Decim is based on
both a nonlinear filter LFSR and an irregular decimation mechanism called the ABSG.
As a consequence, Decim is of low hardware complexity. Recently, Hongjun Wu and
Bart Preneel pointed out two flaws in the stream cipher Decim. The first flaw concerns
the initialization stage and the second one, which is the more serious flaw, concerns the
filter used in the keystream generation algorithm; the ABSG mechanism is not affected
by these two flaws. In this paper, we propose a new version of Decim, called Decim

v2,
which does not only appear to be more secure, but also has a lower hardware complexity
than Decim.

1 Introduction

Decim [3] is a hardware oriented stream cipher submitted to the ECRYPT Stream Cipher
Project [1]; we now call it Decim

v1. It has been developed around the ABSG mechanism
which provides a method for irregular decimation of pseudorandom sequences. The general
running of Decim

v1 (and also Decim
v2) consists in generating a binary sequence y in a

regular way from a Linear Feedback Shift Register (LFSR) which is filtered by a Boolean
function. The sequence y is next filtered by the ABSG mechanism.

Recently, Hongjun Wu and Bart Preneel [6] found two flaws in the stream cipher Decim
v1.

The first flaw concerns the initialization stage, i.e. the computation of the initial inner state
for starting the keystream generation. In a nutshell, the initialization mechanism of Decim

v1

works as follows.
1France Télécom Recherche et Développement, 38/40 rue du Général Leclerc, F-92794 Issy les Moulineaux

cedex 9, {come.berbain,olivier.billet,henri.gilbert}@francetelecom.com
2INRIA-Rocquencourt, projet CODES, domaine de Voluceau, B.P. 105, F-78153 Le Chesnay cedex,

{anne.canteaut,marine.minier,cedric.lauradoux}@inria.fr
3Axalto Smart Cards, 36-38, rue de la Princesse - B.P. 45, F-78431 Louveciennes cedex,

{ncourtois,bdebraize}@axalto.com
4Laboratoire PRiSM, Université de Versailles, 45 avenue des Etats-Unis, F-78035 Versailles cedex,

louis.goubin@prism.uvsq.fr
5France Télécom Recherche et Développement, 42 rue des Coutures, BP 6243, F-14066 Caen cedex,

{aline.gouget,herve.sibert}@francetelecom.com
6Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris cedex 05,

louis.granboulan@ens.fr
7Cryptolog International, 16-18 rue Vulpian, F-75013 Paris, thomas.pornin@cryptolog.com
∗Work partially supported by the French Ministry of Research RNRT Project “X-CRYPT” and by the

European Commission via ECRYPT network of excellence IST-2002-507932.

1



1. Filling of the LFSR from a 80-bit secret key and a 64-bit public IV.

2. 192 updates of the LFSR. One update consists of the three following steps:

(a) Computation of the feedback value (in a nonlinear way);

(b) Application of one among two permutations over 7 elements of the current LFSR
state; the choice of the permutation is controlled by the output of the ABSG;

(c) Shifting by one position of the LFSR.

The aim of the permutations is to provide high nonlinearity during the initialization stage.
However, the side effect of the permutations is that a large number of elements of the LFSR
(after the initial filling) may never be updated with a high probability during the initialization
process. This flaw allowed Hongjun Wu and Bart Preneel to mount an efficient key recovery
attack on Decim

v1. For Decim
v2, we propose a simpler and more secure initialization proce-

dure than the one of Decim
v1 (in particular, the permutations involved in the initialization

procedure of Decim
v1, which imply a significant increase of the hardware cost, are removed

in Decim
v2).

The main flaw pointed out by Hongjun Wu and Bart Preneel [6] is in the keystream gen-
eration algorithm which is described in Figure 1. More precisely, the flaw is in the generation

z

...

...

LFSR

Filter

ABSG

y

Figure 1: Decim keystream generation

of the sequence y which is the output of the filter (the sequence y is next decimated by the
ABSG mechanism). In a few words, this flaw is due to the fact that the sequence y is di-
rectly the output of a symmetric Boolean function which is not correlation-immune of order
1. There exists a correlation between the outputs of the function associated to two input
vectors which have one element in common. By using this weakness, Hongjun Wu and Bart
Preneel show a correlation between some bits of the keystream sequence and then they show
that the keystream of Decim

v1 is heavily biased. For Decim
v2, we propose a simpler and

more secure filter than the one of Decim
v1 by choosing a filter which is correlation immune

of order 1.
The outline of the paper is as follows. In Section 2, we give an overview of Decim

v2 and
we describe the slight modifications between Decim

v1 and Decim
v2. In Section 3, we provide

a full description of Decim
v2. In Section 4, we explain the design modifications. In Section 5,

2



we discuss the hardware implementation of Decim
v2. In Section 6, we discuss the security

properties of Decim
v2. Finally, we conclude in Section 7.

2 Overview of Decimv2

In accordance with the specification given by the Ecrypt stream cipher project, Decim
v2

takes as an input a 80-bit length secret key and a 64-bit length public initialization vector.

2.1 Keystream generation

The size of the inner state of Decim
v2 is unchanged, i.e. 192 bits. The keystream generation

mechanism is described in Figure 2. The bits of the internal state of the LFSR are numbered
from 0 to 191, and they are denoted by (x0, . . . , x191). The sequence of the linear feedback
values of the LFSR is denoted by s = (st)t≥0.

ciphertext

191 x0x1

ABSG
z z’ c

...

...

y

f

Buffer

M message

x

Figure 2: Decim
v2 keystream generation

The Boolean function f is a 13-variable quadratic symmetric function which is balanced.
Let xi1 , . . . , xi14 denote the 14 initial internal state bits of the LFSR that are the inputs of
the filter. The sequence y outputs by the filter is defined by:

yt = f(si1+t, . . . , si13+t)⊕ si14+t

The ABSG takes as an input the sequence y = (yt)t≥0. The sequence output by the ABSG
is denoted by z = (zt)t≥0. The buffer mechanism guarantees a constant throughput for the
keystream; we choose a 32 bit-length buffer and the buffer outputs 1 bit for every 4 shifts by
one position of the LFSR (see [3] for details).

Remark 1 For the keystream generation, the gap between Decim
v1 and Decim

v2 is the
choice of the filter. In Decim

v1, the filter is a vectorial function defined by:

F : F
14
2 −→ F

2
2; xi1 , . . . , xi14 7→ (f(xi1 , . . . , xi7), f(xi8 , . . . , xi14))

where f is a 7-variable symmetric Boolean function which is balanced but which is not corre-
lation immune of order 1.

3



2.2 Key/IV setup

The initial filling of the LFSR from the key and the initialization vector is modified in Decimv2

compared to Decim
v1 (see Section 3). The Key/IV setup mechanism consists in clocking

4× 192 = 768 times the LFSR using the nonlinear feedback which is described in Figure 3.

f

191 x0x1

...

...x

Figure 3: Key/IV setup mechanism

Remark 2 For the initialization stage, the main differences between Decim
v1 and Decim

v2

are the filling of the LFSR which is changed, the deletion of the permutations and the choice
of the filter. As a consequence, the number of clocks in the initialization stage increases from
192 up to 768.

3 Specification

In this section, we describe each component of Decim
v2 and we describe the changes between

Decim
v1 and Decim

v2; we refer to [3] when no modification has been done.

3.1 The filtered LFSR

This section describes the filtered LFSR that generates the sequence y (the sequence y is the
input of the ABSG mechanism).

The LFSR (unchanged). The underlying LFSR is a maximum-length LFSR of length 192
over F2. It is defined by the following primitive feedback polynomial:

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 + X131 + X94 + X77 + X46

+X17 + X16 + X5 + 1 .

The filter (changed). The filter function is the 14-variable Boolean function defined by:

F : F
14
2 −→ F2; a1, . . . , a14 7→ f(a1, . . . , a13)⊕ a14

where f is the symmetric quadratic Boolean function defined by:

f(a1, . . . , a13) =
⊕

1≤i<j≤13

aiaj

⊕

1≤i≤13

ai

The tap positions of the filter are:

191− 186 − 178− 172 − 162− 144 − 111− 104 − 65− 54− 45− 28− 13− 1

4



and the input of the ABSG at the stage t is:

yt = f(st+191, st+186, st+178, st+172, st+162, st+144, st+111, st+104, st+65, st+54, st+45, st+28, st+13)⊕st+1

3.2 Decimation (unchanged)

This part describes how the keystream sequence z is obtained from the sequence y. The
ABSG algorithm is given in Figure 4.

Input: (y0, y1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← yi, zj ← yi+1;
2. i← i + 1;
3. while (yi = e) i← i + 1;
4. i← i + 1;
5. output zj

6. j ← j + 1

Figure 4: ABSG Algorithm

3.3 Buffer mechanism (unchanged)

The rate of the ABSG mechanism is irregular and therefore we use a buffer in order to
guarantee a constant throughput. We choose a buffer of length 32 and for every 4 bits that
are input into the ABSG, the buffer is supposed to output one bit exactly. With these
parameters, the probability that the buffer is empty while it has to output one bit is less than
2−89.

If the ABSG outputs one bit when the buffer is full, then the newly computed bit is not
added into the queue, i.e. it is dropped. Assuming that the initial inner state is computed
(it is denoted by z0, . . . , z191), the ABSG mechanism starts at the beginning loop and the
buffer is empty. The keystream generation process starts when the buffer is full.

3.4 Key/IV Setup

This subsection describes the computation of the initial inner state for starting the keystream
generation. Notice that the ABSG mechanism is not used anymore during the initialization
stage.

3.4.1 Initial filling of the LFSR (changed)

The secret key K is a 80-bit key denoted by K = K0, . . . ,K79 and the initialization vector
IV is a 64-bit IV denoted by IV0, . . . , IV63.

5



The initial filling of the LFSR is done as follows.

xi =























Ki 0 ≤ i ≤ 79

Ki−80 ⊕ IVi−80 80 ≤ i ≤ 143

Ki−80 ⊕ IVi−144 ⊕ IVi−128 ⊕ IVi−112 ⊕ IVi−96 144 ≤ i ≤ 159

IVi−160 ⊕ IVi−128 ⊕ 1 160 ≤ i ≤ 191

The number of possible initial values of the LFSR state is 280+64 = 2144.

3.4.2 Update of the LFSR state

The LFSR is clocked 4× 192 = 768 times using a nonlinear feedback relation. Let yt denote
the output of f at time t and let lvt denote the linear feedback value at time t > 0. Then,
the value of x191 at time t is computed using the equation:

x191 = lvt ⊕ yt .

Notice that there is no bit of the LFSR state output during this step.

4 Design rationale

The rationale behind the design of Decimv2 relies on the fact that the main ideas behind
Decimv1, namely, to filter and then decimate the output of an LFSR using the ABSG mecha-
nism was in no way questioned. Thus, the core of Decim

v2 is a single Boolean function-based
filtering, followed by an ABSG-based decimation.

4.1 The filter

In Decim
v2 (and also in Decim

v1) a Boolean function is used to filter the LFSR whereas the
Shrinking Generator or the Self-Shrinking Generator are both directly applied on LFSRs. The
linear complexity of the sequence outputs by an LFSR with a primitive feedback polynomial
is the length of the LFSR. The interest of the filter is to significantly increase the linear
complexity of the sequence which is the input sequence of the ABSG mechanism. That comes
to significantly increase the minimal length of the equivalent LFSR which generates the same
sequence as those outputs by the filtered LFSR.

The choice of the filter is very important since the filter must not introduce some weak-
nesses in the stream cipher (as it is the case for Decim

v1). An important property for the
filter is that the output of the filter must be uniformly distributed. In Decim

v1, the 7-variable
Boolean function f used in the filter is balanced, i.e., the value of f is uniformly distributed
in {0, 1} when the evaluation of f is done uniformly over {0, 1}7.

Decim
v1 is a hardware-oriented stream cipher and the filter must have a low-cost hardware

implementation. In Decim
v1, the filter is a symmetric Boolean function f (i.e. the value of

f only depends on the Hamming weight of the input) in order to reduce the hardware cost
and the function f is balanced.

The attack given by Hongjun Wu and Bart Preneel [6] has shown that it is important to
choose a Boolean function f which is correlation-immune of order 1, i.e. a function such that
there is no correlation between the outputs of the function associated to two input vectors

6



which have one element in common. Since the Boolean function f must also be balanced,
that means that f must be 1-resilient. In Decim

v1, the Boolean function is balanced but it
is not 1-resilient.

The filter of Decim
v2 is constructed from a balanced 13-variable symmetric function

(which is not correlation immune of order 1) and the whole filter F is a 1-resilient Boolean
function.

4.2 Tap positions : filter and feedback polynomial

Assuming knowledge of the keystream z, an attacker will have to guess some bits of the
sequence y in order to attack the function f . The knowledge of the bits of y directly yields
equations in the bits of the initial state of the LFSR. Thus, the number of monomials in the
bits of the initial state of the LFSR that are involved in these equations has to be maximized.
Moreover, this number has to grow quickly during the first clocks of the LFSR. This implies
the following two conditions:

1. each difference between two positions of bits that are input to f should appear only
once;

2. some inputs of f should be taken at positions near the one of the feedback bit (which
means that some inputs should be leftmost on Figure 2).

Finally, the tap positions of the inputs of the Boolean function f and the inputs of the
feedback relation should be independent.

4.3 Key/IV Setup

The components of the keystream generation are re-used for the key/IV setup; we do not
introduce new components.

By using a 80-bit key and a 64-bit IV, the number of possible initial states is at most 2144

which is the case in Decim
v2 whereas the number of possible initial states is 2136 in Decim

v1.
The first attack given in [6] exploits the effects of the permutations π1 and π2 used in

the initialization process. Indeed, some bits of the LFSR are improperly updated. Then,
the attack consists in tracing some bits during the initialization process. In Decim

v2, the
permutations are removed and the number of clocks of the register is increased in order to
ensure that the nonlinearity of the initialization stage is sufficient.

5 Hardware implementation

The number of gates involved in an hardware implementation can be estimated as follows,
based on the estimation for elementary components given in [2], i.e., 12 gates for a flip-flop,
2.5 gates for an XOR, 1.5 gates for an AND and 5 gates for a MUX.

Here, we have the following values for each component in the circuit:

• LFSR: 2339 gates corresponding to 192 flip-flops and 14 XORs (instead of 3334 gates
for Decim

v1).

• Filtering function: 86.5 gates corresponding to 6 Full Adders and 7 XORs (instead of
74 gates for Decim

v1; details on the hardware implementation of quadratic symmetric
functions are given in [3]).

7



• 1-input ABSG, as described in Figure 5: 67 gates corresponding to 2 MUX, 3 XORs, 1
AND, and 4 flip-flops.

m
ux

m
uxdata

Pattern seeker

pattern

command_pattern

1

next

Figure 5: Hardware implementation of the ABSG

Remark 3 For the proposed hardware implementation, the main differences between Decim
v1

and Decim
v2 is that the LFSR has now to be clocked 4 times instead of 2 before outputting a

bit, i.e. Decim
v2 is twice as low as Decim

v1.

Moreover, the throughput of the generator can be doubled at a low implementation cost
by using a simple speed-up mechanism. This can be done with a circuit which computes two
feedback bits for the LFSR, simultaneously, as described in [3, Section 6.1]. This LFSR with
doubled clock rate can be implemented within 192 flip-flops and 28 XORs. One additional
copy of the filtering function is also required, and a 2-input ABSG mechanism must be used
(see [3] for further details).

6 Security properties

The discussion given in [3] on guess-and-determine attacks, distinguishing attacks and also
side channel attacks holds for Decim

v2. Clock-controlled linear feedback shift registers, i.e.
LFSRs that are irregularly clocked according to a decimation sequence which defines the
number of symbols to be deleted before the next output symbol is produced, are immune
to fast correlation attacks [5]. In [4], Golic developed a theory of fast correlation attacks on
irregularly clocked LFSRs based on a linear statistical weakness. This attack may be realistic
in special cases but Decim

v2 may be immune to such type of attack. Indeed, in order to
increase the linear complexity of the sequence (i.e. the minimal length of the equivalent
LFSR that generates the same sequence) that is shrunked by the ABSG mechanism, we use
an LFSR which is filtered by a Boolean function. Like this, the expected linear complexity
of the sequence outputs by the Boolean function is 18528, i.e. the expected minimal length
of the LFSR that generates the same sequence as those generated by the filtered LFSR of
Decim is 18528.

8



7 Conclusion

We have proposed a new stream cipher Decim
v2. The design is based on the eStream pro-

posal Decim
v1 and addresses all weaknesses found in the original construction. A complete

description of Decim
v2 was given and the differences from Decim

v1 were discussed.
The stream cipher Decim

v2 is especially suitable for hardware applications with restricted
resources such as limited storage or gate count. For applications requiring higher throughputs,
speed-up mechanisms can be used to accelerate Decim

v2 at the expense of a higher hardware
complexity.

Acknowledgements. The authors wish to thank Frédéric Muller and Matt Robshaw for
helpful comments.

References

[1] eStream, Stream cipher project of the European Network of Excellence in Cryptology
ECRYPT. http://www.ecrypt.eu.org/stream/.

[2] L. Batina, J. Lano, S.B. Örs, B. Preneel, and I. Verbauwhede. Energy, perfomance, area
versus security trade-offs for stream ciphers. In The State of the Art of Stream Ciphers:
Workshop Record, pages 302–310, Brugge, Belgium, October 2004.

[3] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. Decim
– A new Stream Cipher for Hardware applications. In ECRYPT Stream Cipher Project
Report 2005/004. Available at http://www.ecrypt.eu.org/stream/.

[4] J. Golić. Towards fast correlation attacks on irregularly clocked shift registers. In Pro-
ceedings of Eurocrypt’95, Lecture Notes in Computer Science, 1995.

[5] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream ciphers.
J. Cryptol., 1(3):159–176, 1989.

[6] Hongjun Wu and Bart Preneel. Cryptanalysis of Stream Cipher Decim. Available at
http://www.ecrypt.eu.org/stream/.

9


