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Chapter 1

Introduction

The recent development of algebraic attacks can be considered an important breakthrough in
the analysis of symmetric primitives; these are powerful techniques that apply to both block
and stream ciphers (and potentially hash functions). The basic principle of these techniques
goes back to Shannon’s [74] work: they consist in expressing the whole cryptographic algo-
rithm as a large system of multivariate algebraic equations (typically over F2), which can be
solved to recover the secret key. Efficient algorithms for solving such algebraic systems are
therefore the essential ingredients of algebraic attacks.

Algebraic cryptanalysis against symmetric primitives has recently received much attention
from the cryptographic community, particularly after it was proposed against some LFSR-
based stream ciphers [40] and against the AES and Serpent block ciphers [43]. This is currently
a very active area of research. In this report we discuss the basic principles of algebraic
cryptanalysis of stream ciphers and block ciphers, and review the latest developments in
the field. We give an overview of the construction of such attacks against both types of
primitives, and recall the main algorithms for solving algebraic systems. Finally we discuss
future research directions.
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Chapter 2

Algebraic Cryptanalysis of
Symmetric Primitives

Algebraic attacks represent a new approach to cryptanalysis. In contrast to conventional
methods of cryptanalysis, these new techniques are primarily algebraic rather than statistical;
they exploit the intrinsic algebraic structure of the cipher. Algebraic attacks are in principle
applicable to both block ciphers and stream ciphers.

Block Ciphers. In the most common form of algebraic attack, the attacker expresses the
encryption transformation as a large set of multivariate polynomial equations, and subse-
quently attempts to solve the system to recover information about the encryption key. Alge-
braic attacks represent an exciting new development in cryptology, as it opens new perspec-
tives in block cipher cryptanalysis. For example, only a handful of plaintext–ciphertext pairs
is usually required in algebraic cryptanalysis. Furthermore, it is expected that if an algebraic
attack proves to be successful against a particular cipher, it might not be easily avoided by
simply increasing the number of rounds. We note however that thus far algebraic attacks
have had limited success against block ciphers. We discuss algebraic cryptanalysis of block
ciphers in more detail in Chapter 3 (the article [31] gives an accessible overview of algebraic
cryptanalysis on block ciphers and related algebraic methods).

Stream Ciphers. In contrast, algebraic attacks have been much more effective in the anal-
ysis of several LFSR-based stream ciphers [35]. The attack exploits the fact that each new bit
of the key stream gives a new equation on the secret state bits. By collecting a large number
of bits from the key stream, one can construct a system of equations that can be solved using
one of the methods discussed in this report. We discuss algebraic cryptanalysis of stream
ciphers in more detail in Chapter 4.

In algebraic attacks, a cryptanalyst describes the encryption operation as a large set of
multivariate polynomial equations, which once solved can be used to recover the secret key.
Thus the difficulty of solving systems of equations arising from a cipher is directly related
to its security, and as a result computational algebra is becoming an important tool for the
cryptanalysis of symmetric-key cryptographic algorithms. In the following sections, we give
a brief overview of the main techniques used for solving systems of multivariate polynomial
equations, with special focus to methods used in cryptology.

3
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2.1 General Techniques for Solving Polynomial Systems

Solving multivariate polynomial systems is a typical problem studied in Algebraic Geometry
and Commutative Algebra. In this section, we focus on the main algorithms for solving
algebraic systems, in the context of cryptology. Our discussion will go from the simplest to
the most efficient algorithms, that is from the linearisation principle to F4 and F5, through
XL and Buchberger algorithms, although this does not respect the chronological order of
discovery of these algorithms. We will also discuss some more recently proposed algorithms
and strategies, some of which have been specifically proposed in the context of cryptology.
We also include some discussion on the complexity estimates of some of these algorithms.

The problem. Let k be a field and f1, . . . , fm be polynomials in n variables with coefficients
in k, i.e. fi ∈ k[X1, . . . , Xn], for i = 1, . . . , m. Let K be an algebraic extension of k. The
problem is to find (x1, . . . , xn) ∈ Kn such that fi(x1, . . . , xn) = 0, for i = 1, . . . , m. Note
that the problem may have no solution (inconsistency of the equations), a finite number of
solutions, or an infinite number of solutions (when the system is underdefined and K is the
algebraic closure of k).

This problem is most often studied in the context of abstract algebra. More precisely, let
I ⊆ k[X1, . . . , Xn] be the ideal generated by f1, . . . , fm and

VK(I) = {(x1, . . . , xn) ∈ Kn; fi(x1, . . . , xn) = 0, for i = 1 . . . m}

be the variety over K associated to I. The problem is then to find VK(I).
When k is a finite field of order q, one can always add to the existing set of equations the

so-called field equations Xq
i = Xi, for i = 1, . . . , n, and obtain m + n equations. For most

cryptographic applications, the case of interest is when k = K = F2. In this case, the field
equations are X2

i = Xi. This preprocessing step has the following consequences: the space of
solutions is 0-dimensional (or empty), including at “infinity”, and the ideal becomes radical
(i.e. the solutions are of multiplicity one).

2.1.1 Linearisation

The method of linearisation is a well-known technique for solving large systems of multivariate
polynomial equations. In this method, one considers all monomials in the system as indepen-
dent variables and tries to solve the system using linear algebra techniques. More precisely,
let A be the set of multi-indices α = (α1, . . . , αn) ∈ Nn, which represent the exponents of
the monomials of k[X1, . . . , Xn]. Then any polynomial f can be written as f =

∑
α∈A cαXα,

where the sum involves only a finite number of monomials Xα = Xα1
1 · · ·Xαn

n . Using this
notation, we can write the following matrix ML:




. . . Xα . . .

f1 . . . c1
α . . .

...
fm . . . cj

α . . .


 = ML,

where fi =
∑

α ci
αXα. Note that the columns of the matrix can be arranged in different ways,

depending on the order chosen to sort the multi-indices α.
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To apply linearisation, one now considers each (non-constant) monomial Xα as an inde-
terminate and attempts to solve the corresponding system of linear equations using linear
algebra techniques.

The effectiveness of the method clearly depends of the number of linearly independent
polynomials in the system. For example, in the case of polynomials belong to the Boolean
ring, the total number of monomials of degree less than or equal to 2 (excluding the constant)
is

(
n
2

)
+ n. Thus if the system consists of m polynomials of degree 2, it can be solved if the

matrix ML has this rank. Note that the method also tolerates a smaller rank: it is possible
to perform an exhaustive search on the affine space of solutions when the dimension of the
kernel of the matrix is not too large.

Concerning the complexity, we observe that the cost of the linear algebra operations is
O(N3), N being the size of the matrix ML. We may theoretically write O(Nω), ω being the
exponent of linear algebra, and sometimes even optimistically use ω ≈ 2 + ε in the case of
sparse matrices.

Linearisation has been considered mostly in the cryptanalysis of LFSR-based, filtered,
stream ciphers. As stated earlier, each new bit of the key stream gives rise to a new equation
on the key bits, and by using a large number of bits from the key stream, one should have
in theory enough equations to directly apply linearisation. We note that only a few (if any)
practical attacks have been reported to have been implemented using linearisation.

2.1.2 The XL algorithm and variants

In order to apply the linearisation method, the number of linearly independent equations
in the system needs to be approximately the same as the number of terms in the system.
When this is not the case, a number of techniques have been proposed that attempt to
generate enough linearly independent equations. The most prominent is the XL algorithm
(standing for eXtended Linearisation), which was introduced in [39]. The XL algorithm aims
at introducing new rows to the matrix ML, by multiplication of the original equations by
monomials of prescribed degree. More specifically, the following matrix MXL is constructed:




. . . Xα . . .
...

...
Xβf1 . . . c1,β

α . . .
...

...
Xβ′fm . . . cj,β′

α . . .
...

...




= MXL,

where the set of the rows is constructed from all products Xβfj =
∑

α cj,β
α Xα, where β and

fj are such that deg(Xβfj) ≤ D, D being a parameter of the algorithm. The hope is that at
least one univariate equation (say in X1) will appear after the Gaussian elimination on MXL.
This equation should be easily solved over the finite field, the found values substituted in the
equations, and the process repeated for the other indeterminates Xi, i ≥ 2. One expects that
after a few iterations, the algorithm will yield a solution for the system. We note that, since
the matrix MXL is quite likely very sparse, another approach is to compute a random vector
in the nullspace of this matrix via sparse matrix techniques. This vector can then be tested
to check if it indeed yields the solution.
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To estimate the complexity of the XL algorithm, the problem is to find D such that
XL succeeds with parameter D. Since the number of monomials of total degree ≤ D in
k[X1, . . . , Xn] is equal to

(
n+D

D

)
, there is an exponential dependence on D.

Since the introduction of the XL method, a number of variants have been proposed at-
tempting to exploit some specific properties of the polynomial system [42]. Very prominent
is the method proposed in [44, 43]. The XSL method is based on the XL algorithm, but
attempts to use the sparsity and specific structure of the equations; instead of multiplying
the equations by all monomials of degree ≤ D − 2 (supposing that the original equations
were quadratic), in the XSL algorithm the equations are multiplied only by “carefully se-
lected monomials” [43]. This has the intention to create less new terms when generating the
new equations. Different versions of the XSL algorithm are found in literature, where the
description of the method often leaves some room for interpretation and the analysis of the
algorithm is not straightforward. However, it is now known [28] that, as presented in [43],
the algorithm cannot solve the system arising from the AES, and some doubts are cast on
whether the algorithm in its current form can provide an efficient method for solving the
AES-like systems of equations. Furthermore, it has been recently shown in [60] that the XSL
version proposed in [44] has a much higher complexity than expected and raised questions on
whether the algorithm can work at all.

The XL algorithm has been generalised to an algorithm named GeometricXL in [66]. The
key idea is the fact that when solving polynomial systems, both the problem formulation
and the solution to the problem are geometric invariant, i.e. they are invariant under a linear
coordinate transformation. This implies that there must be a geometric invariant algorithm to
solve this problem. It was shown in [66] that the XL algorithm is a special case of an algorithm
finding intersections of hyperplanes which the authors call GeometricXL. This generalisation
allows a better understanding of XL and may offer some advantage in certain situations when
compared to XL. Essentially the maximal degree D reached during a GeometricXL execution
is the least possible degree reachable by XL under any linear coordinate transformation. As
an illustration, if we consider the equation system

f1 = 15x2
0 + x2

1 + 5x1x2,

f2 = 23x2
0 + x2

2 + 9x1x2

over GF(37), an XL style algorithm will not need to increase the degree during the computa-
tion. However, if we apply a linear coordinate transform




x0

x1

x2


 7→




2 26 10
26 4 13
33 21 2


 ·




x0

x1

x2


 ,

to obtain

f1 = 6x2
0 + 2x0x1 + 3x0x2 + x2

1 + 16x1x2 + 3x2
2,

f2 = 18x2
0 + 35x0x1 + 15x0x2 + 26x2

1 + 12x1x2 + x2
2,

the system is only solveable by an XL style algorithm for D = 4.
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For the example given above, GeometricXL solves the system with D = 2. Instead of
searching for an univariate or bivariate polynomial in the linear span of the generated polyno-
mials, it searches for any polynomial with an appropriate factorisation. However, a technical
requirement of this algorithm is that the characteristic of the finite field k is larger than the
maximal degree D. Thus, in particular for the case of GF(2), the algorithm is not applicable
as described in [66].

Another proposed algorithm which can be considered as a variant of XL is the so-called
ElimLin algorithm. The algorithm was first referred to in [37] and later described in [38].
The algorithm uses linear equations in the system to derive substitution rules. The algorithm
essentially consists of two steps.

1. Substitute the leading term LT(li) of each linear polynomial li (1 ≤ i ≤ o) by li−LT(li)
in all polynomials pj containing LM(li). This is equivalent to computing the remainder
rj by the routine division(pj , l1, . . . , lo) discussed later in this section.

2. Perform Gaussian reduction on the polynomials pj . If new linear polynomials arise,
repeat step 1.

The performance of the ElimLin algorithm is related to the sparse selection strategy employed
to choose the replacement variables; this strategy remains however unpublished.

2.1.3 Gröbner Basis Algorithms

Gröbner bases algorithms are perhaps the best known technique for solving polynomial sys-
tems. These algorithms return a basis for the ideal derived from the set of equations, which
can then be used to obtain the solutions of the system. The most accessible historical refer-
ence is [21], while the book [45] presents a gentle introduction to the topic together with the
basics of algebraic geometry (it does not however cover more recent algorithms, such as F4

and F5).
We now give a definition of a Gröbner basis of an ideal. Let ¹ be a monomial order, i.e.

a total order on the set of monomials Xα, α ∈ Nn, which is compatible with multiplication.
Then the set of terms cαXα of a polynomial f =

∑
α cαXα ∈ k[X1, . . . , Xn] can be ordered

with respect to ¹, and the notion of leading term LT(f), leading monomial LM(f) and leading
coefficient LC(f) of the polynomial f are all well defined.

Let I ⊆ k[X1, . . . , Xn] be an ideal and LM(I) = {LM(f) : f ∈ I} the set of leading
monomials of polynomials in I. A Gröbner basis of the ideal I is a set G = {g1, . . . , gl} ⊂ I
such that

〈LM(I)〉 = 〈LM(gi), . . . ,LM(gl)〉.
In other words, G is a Gröbner basis of I if the leading monomial of any polynomial in I
is divisible by the leading monomial of some polynomial of G. One can show that every
non-empty ideal I ⊆ k[X1, . . . , Xn] has a Gröbner basis (which however is not unique). It is
to be stressed that the notion of Gröbner basis is a mathematical one, independently of any
algorithm computing Gröbner bases.

There is also the notion of a Gröbner basis of degree D of an ideal I (denoted by GD),
which has the property that the leading monomial of every polynomial in I of degree ≤ D is
divisible by the leading monomial of a polynomial of GD. It can be shown that there exists
D large enough such that GD is a Gröbner basis of I.
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Gröbner bases algorithms are powerful tools for solving systems of polynomial equations.
In most cases, when the Gröbner basis is found, the solution is also found. For most crypto-
graphic applications, we will have a system with unique solution, say (a1, . . . , an) ∈ Fn

2 , and
the ideal is radical. Then the reduced Gröbner basis of I is {X1 − a1, . . . , Xn − an}.

The Buchberger algorithm

The Buchberger algorithm is the classical algorithm for computing the Gröbner basis of
an ideal I. It works based on a generalisation of the Euclidean division of polynomials
in one variable to the multivariate case. More precisely, given a monomial order, there
exists an algorithm division(f, f1, . . . , fl) = (g1, . . . , gl, r) with the following properties:
f = f1g1 + . . . flgl + r, and no leading monomial of the gi divides r. Then a Gröbner basis
of an ideal generated by f1, . . . , fl can be computed by the following algorithm (Buchberger
algorithm):

Initialise: G = {f1, . . . , fl}
Loop

1. Combine every pair fi, fj by cancelling leading terms, to get S(fi, fj)
(the S-polynomials);

2. Compute the remainders of the polynomials S(fi, fj) by G;

3. Augment G with the non-zero remainders.

Until all remainders are zero.

Return G.

One can show that this algorithm terminates and computes a Gröbner basis of the ideal
generated by f1, . . . , fl. It is a fact that most S-polynomials generated in step 1 will reduce to
zero, and therefore many useless computations leading to zero remainder are performed. The
algorithm can be modified to include Buchberger’s criteria [20], which are a priori conditions
on the pairs (fi, fj) to detect the ones whose S-polynomial will have a remainder equal to
zero, and therefore discard them from steps 1, 2 of the algorithm. While a great proportion
of pairs will be discarded by the criteria, still many S-polynomials constructed will reduce to
zero, as experienced in reported implementations.

The complexity of the Buchberger algorithm is closely related to the total degree of the
intermediate polynomials that are generated during the running of algorithm. In the worst
case, it is known to run in double exponential time. Regarding implementation, there are
number of optimisations that can be made to improve the performance of the algorithm. For
example, the main loop of the algorithm can be sliced into loops of finer grain, and instead of
combining every possible pair, pairs can be successively selected with respect to some strategy;
steps 2 and 3 can then be performed with this selection. For instance, the most recent pairs
from G can be chosen; alternatively, the pairs of smallest total degree may also be chosen.

The F4 algorithm

The F4 algorithm [52] can be roughly sketched as a matricial version of the Buchberger algo-
rithm. To introduce the idea, we first depict the Euclidean division for univariate polynomials
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f = fdX
d + · · ·+f1X +f0 and g = gd′X

d′ + · · ·+g1X +g0, with d′ ≤ d, as a matrix reduction
algorithm. Consider the following:




Xd Xd−1 X0

f fd fd−1 . . . f0

Xd−d′g gd′ gd′−1 . . . g0

Xd−d′−1g 0 gd′ gd′−1 . . . g0

Xd−d′−2g 0 0 gd′ gd′−1 . . . g0
...

...
. . . . . .

g 0 0 0 0 gd′ gd′−1 . . . g0




(2.1)

Then successive reductions of the first row by the remaining rows (row echelon reduction
by elementary row operations) give the remainder of f by g. Similarly the multivariate
division algorithm can be written in a matrix fashion.

At each iteration of the F4 algorithm, corresponding to each iteration in the Buchberger
algorithm, and subject to the selection strategy, the two parts fi and fj of the selected pairs
(f1, fj) are written in a global matrix MF4 . Now the crucial point of the algorithm F4 it to
write, at a given step of the algorithm, all the considered fi and fj into this global matrix,
together with all already known polynomials of the current basis G, multiplied by fitting
monomials (in the same way as the polynomial g is shifted in the matrix in (2.1)).

Then, in a single step corresponding to one iteration in the Buchberger algorithm, a huge
matrix reduction operation (computation of the row echelon form) is done on the matrix MF4 .
In contrast to the Buchberger algorithm, where each remainder is computed separately and
sequentially, this global reduction operates all reductions of all polynomials by all multiples
of polynomials in the current basis G. It turns out that, properly implemented, this is a big
win [52, 75]. Additionally, the algorithm can also benefit from any optimisation technique
from linear algebra algorithms that can be applied.

The F5 algorithm

The F5 algorithm [53] is essentially an improved criterion if the S-polynomial for two polyno-
mials fi and fj reduces to zero. The main idea is to only consider trivial combinations that
reduce to zero, i.e. to consider fifj − fjfi. F5 proceeds by tracking the construction of new
polynomials to detect these sort of trivial anhiliators by iteratively computing the Gröbner
bases for the systems {fm}, {fm−1, fm}, . . . , {f1, . . . , fm}. In some well-defined cases this cri-
terion detects all reductions to zero since they are all based on these trivial combinations.
Several variants of F5 exist among them is F5/Matrix which combines the advantages of F4

with the F5 criterion, In this case all matrices constructed during the course of the algorithm
have full rank, if the input system is a regular sequence. A gentle introduction to F5 can be
found in [76].
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Relationship between these algorithms

Recent research has shown that some of the algorithms introduced above are related. In fact,
let M∞ denote the Macaulay matrix with an infinite number of rows and columns, defined as




. . . Xα . . .
...

...
Xβfi . . . c1,β

α . . .
...

...
Xβ′fj . . . cj,β′

α . . .
...

...




= M∞,

for all monomials Xβ, Xβ′ of unbound degree. The MXL matrix of the XL algorithm in degree
D is therefore just a finite submatrix of the Macaulay matrix, corresponding to all monomials
of degree less than or equal to D. Performing a Gaussian elimination on the Macaulay matrix
is equivalent to running the Buchberger algorithm [58]. This fact is closely related to the
behaviour of the XL algorithm, and it is shown in [8] that the XL algorithm terminates for a
degree D if and only if it terminates in degree D for the lexicographical ordering.

Concerning F4, we can see that the matrix




. . . Xα . . .
...

...
Xβfi . . . c1,β

α . . .
...

...
Xβ′fj . . . cj,β′

α . . .
...

...




= MF4

is constructed only from pairs (fi, fj) originating from the previous iterations of the algorithm,
and which are not discarded by the Buchberger criteria. This shows that MF4 is a very small
submatrix of the matrix MXL constructed by XL. Using an XL description as an F4 algorithm,
it is shown in [8] that a slightly modified XL computes a Gröbner basis.

We note that things are pushed further in the same vein, when one considers the F5

algorithm, which constructs a matrix MF5 with even less rows than MF4 . In [8], an example
is given for the case of 130 equations in 128 variables, where the number of rows in the matrix
MXL will be more than 10 thousands times the number of rows in the matrix MF5 .

2.1.4 Recent Proposals and Strategies

We discuss below some recently proposed algorithms and strategies for solving system of
equations, some of which have been specifically proposed in the context of cryptology.

SlimGB algorithm

SlimGB [18] is also an algorithm for computing Gröbner basis which is inspired by F4. Similar
to F4, SlimGB also reduces several polynomials at once; however it does not rely on linear
algebra techniques for the reduction step. The key concept of SlimGB is that a strategy
can be employed during the reduction step to keep the polynomials “slim” by some metric.
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Possible metrics are used to avoid coefficient growth or to keep the degree of the polynomials
low. This algorithm is implemented in the computer algebra system Singular [56] and the
library PolyBoRi [19].

PolyBoRi Library

System of equations arising from block ciphers and stream ciphers are usually described in
the ring of Boolean functions, and are in general of significant relevance for algebraic crypt-
analysis. It therefore makes sense to optimize algorithms to perform computations over such
rings. For these systems, alternative representations are possible, for instance by representing
Boolean functions as binary decision diagrams (BDD). A binary decision diagram is a rooted,
directed, acyclic graph representing a Boolean function [59, 1]. The PolyBoRi library [19]
has been recently proposed, and uses BDDs for representing Boolean functions in Gröbner
basis computations. More specifically, by using a more compact specialized version of BDDs
called zero-suppressed binary decision diagram (ZDD) [64], the fact that the Boolean func-
tions dealt with have a sparse polynomial representation is used. One of the main ideas behind
PolyBoRi is to preserve the sparsity of the representation throughout the computation; this
allows to keep the memory consumption low. This is achieved by using an adapted version
of the SlimGB algorithm [18].

The size of binary decision diagrams is very sensitive to the variable ordering. A change
of the variable ordering can make the size of a ZDD grow exponentially in the worst case. Un-
fortunately, determining the optimal variable ordering – meaning one that minimizes the size
of the representation – is an NP-complete problem [16]. At the same time, the natural order
on ZDDs is lexicographical. This means that extracting the leading monomial with regards to
the lexicographical term ordering is computationally cheap. Usually, a total degree ordering
of the terms is employed during the Gröbner basis computation, making the näıve extraction
of the leading term computationally costly. To work around this problem, the library authors
devised caching tricks in the implementation that seem to work very well in practice. Both
addition and multiplication of the Boolean functions are defined as recursive operations on the
diagrams. This allows caching of expressions already computed, and common subexpressions
to be reused.

Effectively, in the case of PolyBoRi, the actual Gröbner basis computation is carried
out in a polynomial ring over GF(2), the representation of the elements however is done in
the ring of Boolean functions. This means that during the computation, the field equations
have still to be taken into account. To this end, a new criterion for reducing the number of
critical pairs during the computation was proposed.

Theorem 1 ([19]). Let f, g, l ∈ GF(2)[X1, . . . , Xn] such that f = l · g and furthermore let
l have a linear leading term Xi. Then spoly(f, X2

i + Xi) has a nontrivial t-representation
against the system consisting of f and the field equations.

From this follows that all pairs of a Boolean polynomial f and a field polynomial X2
i +Xi,

in which Xi occurs in the irreducible nonlinear factor of f need not be considered during the
computation.

The Raddum-Semaev Algorithms

In [68] a different approach to equation system solving over finite fields is presented; the
approach entirely focuses on the solution set – the variety – rather than the polynomial
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system. The key idea is to consider the varieties for each equation fi restricted to the variables
in the equation independently. The algorithm Agreeing considers pairs of restricted varieties
for equations fi and fj and removes all those solutions – called configurations – from each
restricted variety which are conflicting. These conflicting configurations cannot lead to a
common solution. For reduced round block ciphers with very few rounds this algorithm is
sufficient to produce the unique common solution. However, for a larger number of rounds
the system can be brought into a conflict-free state without being reduced to a very small set
of common solutions.

For this situation the Glueing and the Splitting algorithms were also presented. The
former “glues” two varieties together, i.e. it considers all possible combinations of solutions
for fi with solutions for fj . The later basically guesses one bit of information by considering
only half of the possible solutions to a given equation fi. If this guess leads to an empty
solution set – i.e. two configurations contradict completely – the algorithm backtracks. Later
the same authors introduced a generalised technique which does not consider multivariate
polynomials over finite fields and their solution sets, but multiple right hand side linear
(MRHS) equations [69].

SAT-Solvers

A new development in algebraic cryptanalysis of symmetric primitives is the use of SAT-
solvers [11, 9] to solve systems of equations over GF(2). Here the cryptanalyst converts the
equation system (which can be viewed as an expression of the system in Algebraic Normal
Form) to the Conjunctive Normal Form (CNF) of Boolean expressions. An off-the-shelf SAT-
solver software can then be used to solve the resulting SAT problem.

In Conjunctive Normal Form, literals (variables) and their negates are combined in clauses
via logical OR (∨). These clauses can be combined using logical AND (∧). To convert from
ANF to CNF, every monomial (including the constant 1) is first renamed as a new variable.
This results in a linear system in these new variables. Now, since logical XOR results in very
long conjugations, all sums are split into subsums of a parameterised length by introducing
new intermediate variables (for example, a + b + c + e + d + f splits into a + b + c + x and
x + d + e + f). These equations are then converted to CNF.

The dominant family of SAT solvers in use today is the Chaff family [9]. The main idea
is to use simplification rules, guessing and backtracking until a contradiction or a solution is
found. Specifically, variables can have three possible values: true, false and not-yet-known.
Any clause containing a true variable can be discarded, since it does not encode any further
information. Any clause that has all variables set to false will trigger a backtrack. Now if we
assume a clause has n variables and n − 1 are set to false while one is still not-yet-known,
then this variable must be set to true. This assignment will affect other clauses and might
trigger an avalanche effect. This rule is called “unit propagation” rule. If no further such
simplifications can be made, then an assignment is guessed. If a contradiction is found, i.e.
all variables in a clause are set to false, then the algorithm either backtracks and adds the
negative of the last guess to the list of clauses or – if the algorithm cannot backtrack – then
it will just return “unsatisfiable”.

The 3-SAT problem is a well known NP-hard problem, so the average runtime of a SAT
solving algorithm is expected to be exponential. However, due to the great demand for SAT
solvers many good implementations exist with good heuristics. Yet, no tight complexity
bounds exist and since the algorithms are randomised, assessing the runtime for a particular
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Figure 2.1: An illustration of the meet–in–the–middle technique for the AES-128 [30].

problem instance is hard. An introduction to SAT solvers from a cryptographic perspective
can be found in [9].

Meet–in–the–middle Techniques

The iterative nature of modern block ciphers means that the associated systems of equations
are typically structured in blocks, with each block containing the equations for one round.
Variables in one block only occur in neighbouring blocks or within the relevant part of the
key schedule.

A promising technique to find the solution for systems with such structure is to employ
a meet-in-the-middle approach [29, 30]. The system consisting of r blocks (i.e. rounds) is
divided into two subsystems for r

2 rounds1. We regard the output variables of the first equation
subsystem as the input variables of the second equation subsystem. We can then compute
the Gröbner bases of the two corresponding subsystems, using an appropriate elimination
ordering. We then eliminate variables that do not appear in rounds r

2 and r
2 + 1. This gives

two small systems of equations in variables from the two systems that are simply related by
the round keys. These two equation systems can then be combined with some additional
equations from the key schedule and solved to obtain the key. (Figure 2.1)

Experimental results using this approach on AES variants were presented in [29] and seem
to confirm that a meet–in–the–middle technique may be more efficient than directly solving
the full system of equations arising from a block cipher.

One possible drawback to this approach is that computations using elimination orderings
(such as lexicographical) are known to be less efficient than those with degree orderings,
and we might expect that using the lexicographical ordering in both subsystems would give

1We assume without loss of generality that r is even.
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only limited advantages over using the degree reverse lexicographical ordering for the full
system. An alternative approach would be to simply compute the Gröbner bases for the two
subsystems using the most efficient ordering and then to combine both results to compute the
solution of the full set equations. Some experimental results on this approach presented in [29]
indicate that this approach can in fact be more efficient for larger examples of the small scale
variants of the AES. This suggests the applicability of a more general divide–and–conquer
approach to the problem of solving the equation system deriving from iterated block ciphers.
This was pursued in [2], where a technique known as Gröbner Surfing was introduced.

Gröbner Surfing

Gröbner Surfing is the name of a technique proposed in [2] for incrementally computing a
Gröbner basis of a key-recovery ideal. This technique works round by round: let Pr be
the equations for the r-th round of the cipher and GB the Gröbner basis algorithm with the
plaintext variables fixed in the first round and the ciphertext variables fixed in the last, the
Nr-th round. The idea then is to decompose the Gröbner basis computation as follows:

GB

(
Nr⋃

r=1

Pr

)
= GB(PNr ∪ GB(PNr−1 ∪ (. . . ∪ GB(P1))).

Alternatively this method may be expressed as a selection strategy for the critical pairs
in the Gröbner basis algorithm. For this method to succeed more efficiently than a direct
computation of a Gröbner basis, a suitable term ordering is crucial. Besides lexicographical
orderings, block orderings with graded term orderings inside the blocks and block splits at
the round or layer boundaries are a suitable choice. Especially in combination with the meet-
in-the-middle strategy, Gröbner surfing seems to be an interesting approach that leads to
asymptotically improved performance at least in some cases.

Experimental results on the Gröbner Surfing technique applied to small instances of CTC
are presented in [2]. It was found that a Gröbner Surfing strategy on CTC performed better
than a straightforward degrevlex Gröbner basis computation.

2.1.5 Complexity Bounds

We state some results on the complexity of some the algorithms introduced in this chapter;
these are taken from [50, 78], which focus on the XL algorithm, and from [13], which focus on
F5. In both cases, the concepts of Hilbert Theory are behind the scenes, and it is important
to understand it to properly analyse these algorithms. In the case of XL, the point is to find
the degree D such that an univariate equation in the last variable X1 can be found after the
Gaussian elimination process.

For quadratic polynomials, we have the following complexity result: when the number of
polynomials is m = n + c, then the minimum degree for XL to succeed is

D ≥ n√
c− 1 + 1

.

Since the number of monomials is
(

n
D

)
in the binary case, and

(
n+D

D

)
in the general case, this

theorem implies that XL has an exponential complexity.

In [13], we are presented with the following result for F5 for quadratic polynomials over
GF(2): for n equations in n variables (without counting the field equations), the degree for



D.STVL.7 — Algebraic Cryptanalysis of Symmetric Primitives 15

Cipher Variables Linear equations Quadratic equations D Matrix size
Khazad 6464 1664 6000 379 22076

Misty1 3856 2008 1848 179 21040

Kasumi 4264 2264 2000 193 21129

Camelia-128 3584 1920 4304 78 2538

Rijndael-128 3296 1696 4600 69 2479

Serpent-128 16640 8320 9360 703 24196

Table 2.1: The degree D for the systems of equations constructed in [14]

which F5 stops is approximately D ≈ 0.09n, the approximation being valid even for small n.
This also implies exponential complexity for F5.

For general systems (over GF(2)) the results are the following [13]: when m grows linearly
with n, the size of the matrix is exponential in n, and the complexity of F5 is exponential;
when n/m tends to zero, F5 is subexponential; and when m grows as Nn2, F5 has polynomial
complexity, with exponent depending on N .

Application to Cryptology

The results above indicate that, being of exponential nature, the algorithms introduced earlier
should be of very limited use in cryptology, given the large sizes involved. It is known however
that F5 was used successfully for solving the HFE challenge I [55]. In fact, this experiment
has also been reproduced with an independent implementation of F4 [75], and it now takes a
few hours to break HFE challenge I with the Magma software [17] on a workstation.

The reason is that the theorems above hold for generic systems or regular sequences, which
are basically systems with no particular properties. In the case on finite fields, random systems
take the role of generic systems. In mathematical terms, they are semi-regular sequences,
which are conjectured to be the general case. It turns out however that the HFE systems
of equations are not random-like [34, 55], and it appears that F5 (and also F4 as reported
in [75]) is sensitive to this fact, i.e. it is a distinguisher for HFE systems. More precisely,
the degree for which the matrix MF5 has large enough rank is much lower than the generic
bound. From the implementation of XL made in [8], it seems that the XL algorithm is not
sensitive to this fact.

The question of the random behaviour of the underlying algebraic system also arises for
LFSR-based stream ciphers. A first answer has been given by Rønjom and Helleseth [73, 72],
who proved that the coefficients of the monomials involved in the equations representing
a filter generator satisfy a particular recurring relation. This property leads to an attack
whose complexity roughly corresponds to the linear complexity of the generator. Determining
whether a similar property can be exhibited for the system derived from some annihilators of
the filtering function remains open.

For the case of block ciphers, although no practical attack has ever been reported, it
appears they also give rise to very structured systems. Table 2.1 is an extension (from [12])
of the table given in [14], where systems of quadratic equations have been constructed for
various ciphers; in this case the expected degree reached by the F5 algorithm and the size of
the matrices have been added. We can note however that the expected degrees are quite large
and that the matrices should be in principle too large to be tractable.
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One should bear in mind however that the sizes given in Table 2.1 are the ones that would
be reached if these systems were generic. It may well be that the systems are non generic, in
which case F5 may succeed with a lower D and smaller matrices. With the current state of
knowledge, only practical experiments could tell how these systems behave.



Chapter 3

Algebraic Attacks against Block
Ciphers

Algebraic cryptanalysis exploits the intrinsic algebraic structure of a block cipher. In its
most common form, the attacker expresses the encryption transformation as a large set of
multivariate polynomial equations, and subsequently attempts to solve the system to recover
information about the encryption key.

Algebraic cryptanalysis of block ciphers has been the source of much speculation, par-
ticularly after being proposed against high profile ciphers such as AES and Serpent [44, 43].
Although the proposed method of attack (XSL) itself is now widely recognized to be incorrect,
its publication can be considered as a key event that fueled the interest of the cryptographic
community in algebraic methods in block cipher cryptanalysis.

3.1 Polynomial Descriptions of Block Ciphers

In theory, most block ciphers afford a polynomial representation of the encryption process;
representing the encryption function as a vector of high-degree polynomials is clearly usually
possible. The evaluation of such a vector with a fixed plaintext and key then yields the
ciphertext.

In such a case, the structure (i.e. the terms occurring) of the polynomials is known; merely
the coefficients are unknown. This leads to interpolation attacks [57], where the Lagrange
Interpolation Formula is used to express the encryption transformation as a polynomial func-
tion. This function can then be used to encrypt any plaintext without knowledge of the
secret key (while the inverse function, similarly constructed, can be used to decrypt cipher-
texts without key). However, we see this attack as effective only if the number of coefficients
to be interpolated is substantially smaller than the number of entries in the code book (that
is, the degree of the polynomial is reasonably small).

Instead of attempting to describe the cipher as a single, high degree polynomial, perhaps
a more promising approach is to express the encryption operation as a system of polynomial
equations. Modelling the encryption process of a block cipher as a polynomial system presents
several obvious questions; for instance, should the encryption transformation be represented
by a system in few variables but with polynomials of high degree or rather have more variables
but equations of lower degree? Since block ciphers can always be seen as vectorial Boolean
functions, they can be described as a polynomial system over GF(2). We note however that

17
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certain components are hard or almost impossible to express as “compact” polynomials.
In practice, systems of equations for block ciphers are either written over GF(2) or over

GF(2s) , where s is usually the bit width of the S-Box or a common divisor of the bit widths
of all S-Boxes used in the cipher. To keep the degree of the polynomials low, the encryption
process is modelled by considering each layer (i.e. the linear and non-linear steps of each
encryption round) at a time.

We note that while there are cases where key-schedule equations can be omitted, e.g. if
round keys are generated by a selection of bits of the cipher, more commonly the key schedule
has a similar structure to the encryption and therefore this set can also be divided into linear
and non-linear equations.

We distinguish between two different cases of equations that can be written for the sub-
stitution layers: explicit equations are equations that express the output variables of a layer
explicitly as function of the input and key variables, as

X`+1,i = f`,i(X`,1, . . . , X`,n,K`,1, . . . ,K`,j).

Implicit equations on the other hand relate the input, output and key variables such that the
equations contain non-linear terms involving the output variables, as for example

g`,i(X`+1,1, . . . , X`+1,n, X`,1, . . . , X`,n, K`,1, . . . ,K`,j) = 0.

We note that linear layers can often be merged with neighbouring substitution layers without
changing the degree of the system. In this case however, the sparsity of the resulting equations
will be reduced.

Let then I E Fq[X ] be the ideal associated with the encryption process of a block cipher.
The hope is thus that one can compute the Gröbner basis G of I to recover the encryption
secret key .

3.1.1 Polynomial Systems over GF(2)

Modern block ciphers are designed to be either implemented in hardware or to be executed on
computers. Henceforth choosing GF(2) as ground field comes as a natural choice. Essentially
the polynomial system is a decomposition of a Boolean circuit implementing the block cipher.
For ciphers using S-Boxes over different fields of characteristic two, such as the MISTY family
of ciphers, or ciphers with contracting or expanding S-Boxes, e.g. DES, writing equations over
GF(2) is the only obvious choice to obtain a polynomial system describing the complete cipher.

Polynomial systems over GF(2) for a number of widely-used block ciphers have appeared
in the literature. Systems of quadratic equations for Rijndael and Serpent were initially
presented in [43] (for a more thorough analysis of the systems arising from the AES, see [30]).
Systems of quadratic equations over GF(2) for other block ciphers, such as Khazad, MISTY1,
Kasumi and Camellia-128 together with explicit counts of the number of variables, equations
and terms, were given in [14]. These are usually very large, often sparse systems, with over a
thousand of variables and equations (for example, the AES with 128-bit keys can be expressed
as a system with 9600 equations, of which 1600 are field equations [30]).

3.1.2 Equations for non-linear Components

The most involved part of generating a polynomial system for a block cipher is finding a
suitable polynomial representation of the S-Boxes. If the S-Boxes are given in the form of
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look-up tables, we can simply interpolate to obtain the corresponding polynomials. Explicit
equations over GF(2) can be calculated directly if polynomial representations of the S-Boxes
are known over one or more extensions fields of GF(2), such as for the AES. More generally,
a generating set of implicit equations of maximum degree d for an s-bit S-Box can be found
by triangulating a td × 2s matrix where td =

∑d
i=0

(
2s
i

)
is the total number of terms.

3.2 Developments and Experimental Results

In recent years there has been much research activity in the field algebraic cryptanalysis of
block ciphers. Research has mostly concentrated in two aspects: proposing “good” polyno-
mial representations of block ciphers, and proposing dedicated methods of solution for such
systems1. However there has not been much progress in assessing whether proposed methods
can be effective against block ciphers in general. The main reason seems to be that the size of
systems arising from block ciphers are completely out of reach for the current computational
power. For most methods of cryptanalysis it is quite straightforward to perform experiments
on reduced versions of the cipher to understand how the attack might perform. However this
has not been the case for algebraic attacks on block ciphers.

One possible approach is to work on small scale variants of block ciphers, in order to test
the effectiveness of the main algorithms in solving the systems of algebraic equations. While it
is clearly not an easy task to design small versions that can replicate the main cryptographic
and algebraic properties of a particular cipher, the hope is however that experiments on small
versions can provide a preliminary insight into the behaviour of algebraic cryptanalysis on
block ciphers.

3.2.1 Small Scale Polynomial Systems

Since it is often an open research problem by itself to estimate the complexity of many algo-
rithms for solving polynomial systems, experimental evidence has to be considered to evaluate
the performance of a given algorithm. However, as noted above, the equation systems for full
scale encryption algorithms are usually too complicated or too large for current algorithms.
Therefore, usually small scale variants are considered.

One strategy is to consider round reduced variants. Since most modern block ciphers –
including the AES and the DES – iterate the same operations Nr times, it is straightforward to
consider a related cipher with fewer rounds. Although the reduced cipher has weaker security,
experiments with such reduced-round version might still provide an insight into the behaviour
of the full-round version of the algorithm. Some researchers have adopted this approach with
DES [38, 68], performing experiments with reduced round versions of the algorithm (up to
six rounds).

There are however algorithms that such a strategy may not be the most efficient form of
experiment. For instance, systems of equations for one (out of ten) round of AES already can
be quite large. An alternative strategy followed in [29] was to propose small scale variants of
the AES. These systems aim to remodel the algebraic structure of the AES and are denoted
as SR(n, r, c, e), where n is the number of rounds, r (c) the number of rows (columns) in
the AES state space and e the size of the words in the state space. Thus, SR(10, 4, 4, 8) is
a 4 · 4 · 8 = 128 bit block cipher with 10 rounds, which is essentially equivalent to the full

1For AES-specific analysis, refer to the ECRYPT Report [67].
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AES-128. Table 3.1 compiles reported timings against several small scale variants of AES
and DES.

Cipher Method of Solution System Time
SR(4,1,1,4) MRHS [69] PC (1 GB) 0.032 s
SR(10,1,1,4) MRHS [69] PC (1 GB) 0.32 s
SR(10,1,1,4) PolyBoRi [19] Opteron 2.2 GHZ (16 GB) 0.14 s
SR(10,1,2,4) PolyBoRi [19] Opteron 2.2 GHZ (16 GB) 6.7 s

4r DES ElimLin [38] Centrino 1.6 GHZ 219 · 8 s
5r DES ElimLin [38] Centrino 1.6 GHZ 223 · 173 s
6r DES MiniSat [38] Centrino 1.6 GHZ 223 · 173 s

Table 3.1: Reported runtimes of various algorithms against reduced-round ciphers.

3.2.2 Direct Construction of Gröbner Bases for Block Ciphers

For some block ciphers, a zero-dimensional Gröbner basis for the key-recovery ideal can sur-
prisingly be constructed with minimal computational effort, namely without performing any
polynomial reductions. This seems to be the case for most block ciphers; it was shown for
the AES in [22] as well as for ciphers of the Flurry and Curry families in [23].

The key idea behind this method is to construct a polynomial system in which all leading
terms are pairwise prime. If this condition is fulfilled, it follows from the first Buchberger
criterion [20] that the resulting set of polynomials forms a Gröbner basis. The Gröbner basis
is constructed from a direct description of the block cipher and its key schedule over GF(2n)
merely by linearly combining polynomials and choosing an appropriate graded term ordering.

Yet despite the fact that the basis given in [22] spans a zero-dimensional ideal (i.e. it
has a finite solution set), the set is much larger than the one cryptanalyst is interested at.
Indeed, since the system does not include the field equations, it also contains solutions in the
algebraic closure K of k, and as a consequence is too large to allow exhaustive search for the
solution. Furthermore, even though there exist algorithms to convert a Gröbner basis with
respect to one monomial ordering to another Gröbner basis with respect to another monomial
ordering (which could yield the solution sought), these algorithms have a complexity worse
than exhaustive key search for the basis considered in [22]. Overall, no technique is thus
far known for exploiting the construction of this Gröbner basis for the AES-128 for the
cryptanalysis of the cipher.

3.3 Future Research Directions

Despite much research in algebraic cryptanalysis of block ciphers, proposed methods have
had so far limited success in targeting modern block ciphers. In fact, there is no modern
block cipher, with practical relevance, that has been successfully attacked using algebraic
cryptanalysis faster than with other techniques.

A recent and promising trend in block cipher cryptanalysis is to combine algebraic ap-
proaches with traditional methods of cryptanalysis. In [3] an attack is proposed that combines
algebraic techniques with differential cryptanalysis. In differential cryptanalysis, given a dif-
ferential characteristic covering r out of Nr rounds of a given block cipher, the cryptanalyst
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usually guesses subkey bits to overcome the last rd = Nr − r rounds. This quickly becomes
impractical as the number of rounds rd grows. In [3] the authors investigate the block cipher
Present [15], and are able to increase rd from 2 to 4 rounds by using algebraic techniques.
Specifically, the authors construct a system of polynomial equations for rd rounds for pairs of
plaintexts, and use Gröbner basis algorithms to perform a consistency check, and as a result
determine whether a given pair satisfies the considered differential characteristic. Based on
this observation, information about the encryption key could be recovered. The technique is
in theory generally applicable to improve differential cryptanalysis although no experimen-
tal evidence of the feasibility of the attack against reduced versions of ciphers other than
Present are provided.
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Chapter 4

Algebraic Attacks against Stream
Ciphers

In contrast to block ciphers, algebraic attacks have been successfully used in the analysis
of several LFSR-based stream ciphers. As previously discussed, algebraic attacks on stream
ciphers exploit the fact that each new bit of the cipher output (keystream) gives rise to a new
equation on the initial state. The cryptanalyst can collect a large number of bits from the
keystream to construct a system of equations, which can then be solved. Algebraic attacks as
a method for stream cipher cryptanalysis were originally introduced by Courtois and Meier
in [40], and generally apply to LFSR-based stream ciphers using non-linear Boolean functions
as combiner or filter.

4.1 Attack Principles

Let (k0, k1, . . . , k`−1) be the cipher initial state and xt = (xt
0, x

t
1, . . . , x

t
`−1) the state at time

t > 0. If f is the combining function of degree d (potentially defined on a subset of xt) and
bt is the cipher output at time t, then we have bt = f(xt

0, x
t
1, . . . , x

t
`−1). If we assume that L

is the cipher linear recursion function, then the cryptanalyst can collect the following system
of equations

b0 = f(k0, k1, . . . , k`−1),
b1 = f(L(k0, k1, . . . , k`−1)),
b2 = f(L2(k0, k1, . . . , k`−1)),

. . .
bN = f(LN (k0, k1, . . . , k`−1)).

The problem for the cryptanalyst is, given a number of output bits b0, b1, . . . , bN , to recover
the initial state (k0, k1, . . . , k`−1).

Assuming that the cryptanalyst can obtain enough output bits to construct a large enough
system (such that it has unique solution), the above system can be solved with one of the
general techniques discussed in Chapter 2. The simplest one, called linearization, consists in
identifying the original system with a new linear system of

∑d
i=0

(
`
i

)
variables, where each

monomial is considered as a new variable. The entire initial state is then recovered by a
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Gaussian reduction (or by more sophisticated techniques) whose time complexity is roughly
(

d∑

i=0

(
`

i

))ω

' `ωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω ' 2.37 [32]. Thus the
complexity of the attack is polynomial in the state (and key) size, but exponential in the
degree of the Boolean function f .

There are however two noteworthy remarks regarding the estimate of the attack complex-
ity. First, algebraic attacks have usually been applied against filter generators, and it is not
clear whether the complexity may be lower for combining generators due to the potential spe-
cial structure of the algebraic system (the internal state of LFSR i at time t only depends on
the initial state of this LFSR and not on all bits of the initial states). Second, the estimate for
solving the algebraic system also assumes that the system has a random behaviour. However
it was recently shown that this is not true in some particular cases [73, 72, 71, 70].

Overall, assuming that d (and `) were large enough such that complexity estimate of
O(`ωd) was above the complexity of exhaustive search, it could be claimed that the cipher
was immune to this first, naive attempt of mounting an algebraic attack (although other
methods discussed in Chapter 2 could potentially be successfully used to solve the system).
However Courtois and Meier showed in [40] that one could reduce the complexity of the attack
by exploiting some properties of the function f .

4.2 Algebraic Immunity of Boolean Functions

It was shown in [40] that several classes of LFSR-based stream ciphers are vulnerable to
algebraic attacks if there exist relations of low degree between the output and the inputs of
the associated Boolean function f . Such relations correspond to low degree multiples of f ,
i.e., to relations g(x)f(x) = h(x) for some function g, where h has a low degree. It was
further proved in [54, 62] that, in the case of algebraic attacks over F2, the existence of any
such relation is equivalent to the existence of a low degree function in the annihilator ideal
of either f or (1 + f). Indeed, if g(x)f(x) = h(x) with deg(h) ≤ d, we obtain, by multiplying
this equation by f(x), that

g(x) [f(x)]2 = h(x)f(x) = g(x)f(x) = h(x) ,

leading to h(x) [1 + f(x)] = 0.
Suppose then that the keystream bit bt is obtained by applying f to the current internal

state of the generator, bt = f(xt). Algebraic attacks exploit the following relations:

• if bt = 1, any function g of degree at most d in the annihilator ideal of f , AN(f) =
{g | g(x)f(x) = 0, ∀x} leads to g(xt) = 0;

• if bt = 0, any function g′ of degree at most d in AN(1 + f) leads to g′(xt) = 0.

The cryptographic relevance of the algebraic immunity. The relevant parameter in
the context of algebraic attacks, called the algebraic immunity of the Boolean function, AI(f),
is the lowest degree achieved by a function in AN(f) ∪ AN(1 + f). A simple combinatorial
argument implies that, for any Boolean function f of n variables, AI(f) ≤ dn/2e. We deduce
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from this bound that if an n-variable function is used in the generator, the complexity of the
algebraic attack will be at most `

ωn
2 , where ` is the size of the internal state. If we suppose

that the size of the internal state is minimal with respect to key-size k, i.e. that ` = 2k (it is
known that the size of the internal state must be at least twice the key size in order to resist
time-memory trade-off attacks), then, for the cipher to be resistant to algebraic attacks, we
must have (2k)

ωn
2 ≥ 2k, i.e.,

n ≥ 0.84
[

k

1 + log2(k)

]
.

For instance, a filter generator with a 128-bit key and a 256-bit LFSR must use a filtering
function of at least 16 variables. Note that the recommended number of variables is probably
higher than the previous bound because more efficient techniques may be used for solving the
algebraic system (see Chapter 2).

Properties of the annihilator ideal of a Boolean function. The set AN(f) of all
annihilating functions of f is obviously an ideal in the ring of all Boolean functions, and it is
generated by (1 + f). It consists of the 22n−wt(f) functions of n variables which vanish on the
support of f , i.e., on all x such that f(x) = 1, where wt(f) denotes the size of the support of f .
It is important to note that the number of functions with a given degree in AN(f)∪AN(1+f)
is less important from a cryptanalytic point of view than the algebraic immunity: the number
of such annihilating functions only influences the number of keystream bits required for the
attack, and not the time-complexity (except maybe for some refinements).

The number of functions of degree at most d in AN(f) is equal to 2κ where κ is the
dimension of the kernel of the matrix obtained by restricting the Reed-Muller code of length 2n

and order d to the support of f . In other words, the rows of this matrix correspond to the
evaluations of the monomials of degree at most d on {x, |f(x) = 1}. Since this matrix has∑d

i=0

(
n
i

)
rows and wt(f) columns, its kernel is non-trivial when

d∑

i=0

(
n

i

)
> wt(f) .

Similarly, AN(1 + f) contains some functions of degree d or less if

d∑

i=0

(
n

i

)
> 2n − wt(f) .

This shows, as pointed out in [46], that the algebraic immunity of an n-variable function is
related to its Hamming weight. Most notably, for odd n, only balanced functions can have
optimal algebraic immunity. For even n, the Hamming weight of a function with optimal
algebraic immunity must satisfy

n
2
−1∑

i=0

(
n

i

)
≤ wt(f) ≤

n
2∑

i=0

(
n

i

)
.

Algebraic immunity and other cryptographic criteria Besides the Hamming weight
of the function, its nonlinearity is also related to its algebraic immunity [46]. It can be shown
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that, for any linear function ϕ, the algebraic immunity of f+ϕ is at most AI(f)+1. Therefore,
any function f of n variables with algebraic immunity at least d satisfies

NL(f) ≥
d−2∑

i=0

(
n

i

)
.

It follows that any function with optimal algebraic immunity has a high nonlinearity, more
precisely

NL(f) ≥
{

2n−1 − (
n

n−1
2

)
if n is odd,

2n−1 − 1
2

(
n
n
2

)− (
n

n
2
−1

)
if n is even.

A high nonlinearity and a high algebraic immunity are thus compatible criteria. Another
important consequence is that the nonlinearity of a function may be sufficient criteria to
decide whether it has low algebraic immunity (although the converse is not true).

Another cryptographic property that implies that a function does not have maximal alge-
braic immunity is the notion of normality. A function is said to be k-normal (resp. k-weakly
normal) if there exists an affine subspace of dimension k on which the function is constant
(resp. affine). Since the minimum weight codewords of RM(r, n) are those whose support is
an affine subspace of dimension n− r, we deduce that any k-normal function f of n variables
has algebraic immunity at most n− k. Similarly, any k-weakly normal function has algebraic
immunity at most n − k + 1. Non-normal (and non-weakly normal) functions such as the
functions exhibited in [25] may be good candidates if we want to construct functions with
optimal nonlinearity.

The algebraic immunity is also related to some other quantities as the nonlinearity profile
of the function, which corresponds to its distance to the all functions of degree at most d (i.e.,
its distance to R(d, n)) when d varies [61, 26, 63]. However, the existence of links between
algebraic immunity and other cryptographic criteria remains unknown. Correlation-immunity
does not seem to be a priori incompatible with optimal algebraic immunity; there exists a
1-resilient function of 5 variables with optimal algebraic immunity. However, the link with
other known criteria must be investigated further.

Computing the algebraic immunity of a Boolean function. The basic algorithm for
computing the algebraic immunity of an n-variable function consists in performing a Gaussian
elimination on the generator matrix of the punctured RM(bn−1

2 c, n) restricted to the support

of f . This matrix has k(bn−1
2 c, n) =

∑bn−1
2
c

i=0

(
n
i

)
rows and wt(f) columns. Therefore, the

algorithm requires k2(bn−1
2 c, n)wt(f) operations, which is close to 23n−3 when f is balanced.

As noted in [62], the complexity can be significantly reduced if we only want to check whether
a function has annihilators of small degree d, since we do not need to consider all positions in
the support of f . Indeed, considering a number of columns which is only slightly higher that
the code dimension k(d, n) is usually sufficient for proving that a function does not admit any
annihilator of degree d. The complexity can then be reduced to O(k3(d, n)).

More advanced techniques for computing the algebraic immunity of Boolean functions
were proposed in [49, 6, 48]. As a comparison, finding an annihilator of degree 8 for functions
of 17 variables requires some hours with the naive algorithm using a Gaussian elimination.
The algorithm in [6] was used for finding annihilators of degree 9 for functions of 19 variables.
On the other hand, the algorithm in [48] is able to find annihilators of degree 11 for 23-variable
functions within 11 hours.
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We note that more efficient techniques apply if we only need to check that a function
does not admit any annihilator of degree less than or equal to d. An recursive algorithm
proposed in [49] in this context has complexity O(d), which is the lowest complexity that can
be achieved. For instance, it requires 30 seconds for checking whether a 128-variable function
has some annihilators of degree less than or equal to 3.

Resistance to fast algebraic attacks and other criteria. At CRYPTO 2003, Courtois
presented some important improvements on algebraic attacks, called fast algebraic attacks [33].
The refinement first relies on the existence of some low degree relations between the bits of
the initial state and not only one but several consecutive keystream bits. In other words,
the attacker wants to find some low degree relations g between the inputs and outputs of the
function

Fm: F`
2 → Fm

2

x 7→ ((f(x), f(L(x)), . . . , f(Lm−1(x)),

where L is the linear transition function for the internal state. This function is very similar
to the so-called augmented function defined in [4], and the fact that it may be much weaker
than the filtering function had been pointed out in [4] in the context of (fast) correlation
attacks. However, the complexity required for computing the low degree relations between
the n inputs and m outputs of Fm increases with m. The direct algorithm (used for multi-
output functions) can only be used for small m. It is an open problem to determine whether
there exist relationships between the algebraic immunity of f and the algebraic immunity of
Fm. The same problem arises for other cryptographic criteria such as correlation immunity.

Since the computation of low degree relations involving several keystream bits is usually
infeasible, Courtois proposed to focus on particular subclasses of relations that can be obtained
much faster. The relations considered in the attack are given by linear combinations of
relations of the form

g(x0, . . . , x`−1, bt, . . . , bt+m−1),

where the terms of highest degree do not involve any keystream bits. Then, an additional
precomputation step consists in determining the linear combinations of the previous relations
which cancel out the highest degree monomials. Some algorithms for this step have been
proposed in [33, 5]. This technique helps to decrease the degree of the relations used in the
attack for different practical examples.

4.3 Algebraic Attacks: Constructions and Examples

As discussed early in this chapter, algebraic attacks appear to be particularly suitable against
LFSR-based ciphers, featuring linear updating of the cipher state and using a filtering Boolean
function to derive the output bits. Indeed, the first instance of the attack was proposed
against the cipher Toyocrypt, which presents this structure [40]. The attack was also used
against LILI-128, which is a cipher featuring an irregular clocking mechanism (although the
effect of the irregular clocking on the attack was eliminated by means of guessing state
bits). The attack technique was then soon generalised for stream ciphers using combiners
with memory, and applied to the Bluetooth generator E0 [7]. Other ciphers affected include
SOBER-t32/SOBER-t16 [27] and Sfinks [36]; algebraic attacks have been more recently ap-
plied against reasonably high-profile ciphers such as the KeeLoq cipher [10] and CRYPTO1
stream cipher [41].



28 ECRYPT — European NoE in Cryptology

Much research in the area of algebraic cryptanalysis of stream ciphers has in fact con-
centrated on the study of properties of Boolean functions, and their resistance to algebraic
attacks (Section 4.2). However some attempts have been made to extend algebraic attacks
to other stream cipher constructions [47, 24, 51]. It is expected that further research effort
will be dedicated to investigate the applicability of algebraic attacks against other classes of
stream ciphers.



Chapter 5

Algebraic Cryptanalysis: Research
Directions

Algebraic cryptanalysis against symmetric primitives has recently received much attention
from the cryptographic community. From a reasonably effective technique against some
stream cipher constructions, to the source of much speculation in the case of block ciphers,
this is currently a very active area of research.

Current focus of attention includes the extension of the attack techniques to other stream
cipher constructions (besides LFSR-based combining generators), and the recent trend of
combining algebraic approaches with traditional methods of cryptanalysis, as illustrated on
the attacks against KeeLoq [10] (where an algebraic attack is combined with a slide attack),
and in [3], where an attack against reduced-versions of the block cipher Present is proposed
that combines algebraic techniques with differential cryptanalysis.

Finally, algebraic techniques have thus far been relatively unexplored for hash function
cryptanalysis. Although Gröbner basis techniques have been proposed to improve existing
attacks against hash functions [77], and SAT-solvers have been shown to be useful for similar
analysis of SHA-1 [65], there has been limited work on algebraic attacks against hash functions.
We expect however that algebraic techniques are likely to equally important in the analysis
of hash functions, particularly during the upcoming SHA-3 competition.

29
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