
Sosemanuk, a fast software-oriented stream cipher∗

C. Berbain1, O. Billet1, A. Canteaut2, N. Courtois3, H. Gilbert1,
L. Goubin4, A. Gouget5, L. Granboulan6, C. Lauradoux2, M. Minier2,

T. Pornin7 and H. Sibert5

Abstract

Sosemanuk is a new synchronous software-oriented stream cipher, corresponding to
Profile 1 of the ECRYPT call for stream cipher primitives. Its key length is variable
between 128 and 256 bits. It accommodates a 128-bit initial value. Any key length is
claimed to achieve 128-bit security. The Sosemanuk cipher uses both some basic design
principles from the stream cipher SNOW 2.0 and some transformations derived from
the block cipher SERPENT. Sosemanuk aims at improving SNOW 2.0 both from the
security and from the efficiency points of view. Most notably, it uses a faster IV-setup
procedure. It also requires a reduced amount of static data, yielding better performance
on several architectures.

1 Introduction

This paper presents a proposal for a new synchronous software-oriented stream cipher, named
Sosemanuk. The Sosemanuk cipher uses both basic design principles from the stream cipher
SNOW 2.0 [10] and transformations derived from the block cipher SERPENT [2]. For this
reason, its name should refer both to SERPENT and SNOW. However, it is well-known that
snow snakes do not exist since snakes either hibernate or move to warmer climes during the
winter. Instead Sosemanuk is a popular sport played by the Eastern Canadian tribes. It
consists in throwing a wooden stick along a snow bank as far as possible. Its name means
snowsnake in the Cree language, since the stick looks like a snake in the snow. Kwakweco-cime
win is a variant of the same game but does not sound like an appropriate cipher name. More
details on the Sosemanuk game and a demonstration can be found in [16] and [21].

1France Télécom R & D, 38/40 rue du Général Leclerc, F-92794 Issy les Moulineaux cedex 9,
{come.berbain,olivier.billet,henri.gilbert}@francetelecom.com

2INRIA-Rocquencourt, projet CODES, domaine de Voluceau, B.P. 105, F-78153 Le Chesnay cedex,
{anne.canteaut,marine.minier,cedric.lauradoux}@inria.fr

3Axalto Smart Card Serenity,36-38, rue de la Princesse - B. P. 45, F-78431 Louveciennes cedex,
ncourtois@axalto.com

4Laboratoire PRiSM, Université de Versailles, 45 avenue des Etats-Unis, F-78035 Versailles cedex,
louis.goubin@prism.uvsq.fr

5France Télécom R & D, 42 rue des Coutures, BP 6243, F-14066 Caen cedex,
{aline.gouget,herve.sibert}@francetelecom.com

6Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris cedex 05,
louis.granboulan@ens.fr

7Cryptolog International, 16-18 rue Vulpian, F-75013 Paris, thomas.pornin@cryptolog.com
∗Work partially supported by the French Ministry of Research RNRT Project “X-CRYPT” and by the

European Commission via ECRYPT network of excellence IST-2002-507932.

1



The Sosemanuk stream cipher is a new synchronous stream cipher dedicated to software
applications. Its key length is variable between 128 and 256 bits. Any key length is claimed
to achieve 128-bit security. It is inspired by the design of SNOW 2.0 which is very elegant and
achieves a very high throughput on a Pentium 4. Sosemanuk aims at improving SNOW 2.0
from two respects. First, it avoids some structural properties which may appear as potential
weaknesses, even if the SNOW 2.0 cipher with a 128-bit key resists all known attacks. Second,
efficiency is improved on several architectures by reducing the internal state size, thus allowing
for a more direct mapping of data on the processor registers. Sosemanuk also requires a
reduced amount of static data; this lower data cache pressure yields better performance on
several architectures. Another strength of Sosemanuk is that its key setup procedure is
based on a reduced version of the well-known block cipher SERPENT, improving classical
initialization procedures both from an efficiency and a security point of view.

2 Specification

2.1 SERPENT and derivatives

SERPENT [2] is a block cipher proposed as an AES candidate. SERPENT operates over
blocks of 128 bits which are split into four 32-bit words, which are then combined in so-called
“bitslice” mode. SERPENT can thus be defined as working over quartets of 32-bit words.
We number SERPENT input and output quartets from 0 to 3, and write them in the order:
(Y3, Y2, Y1, Y0). Y0 is the least significant word, and contains the least significant bits of the
32 4-bit inputs to the SERPENT S-boxes. When SERPENT output is written into 16 bytes,
the Yi values are written following the little-endian convention (least significant byte first),
and Y0 is output first, then Y1, and so on.

From SERPENT, we define two primitives called Serpent1 and Serpent24.

2.1.1 Serpent1

A SERPENT rounds consist of, in that order:

• a subkey addition, by bitwise exclusive or;

• S-box application (which is expressed as a set of bitwise combinations between the four
running 32-bit words, in bitslice mode);

• a linear bijective transformation (which amounts to a few XORs, shifts and rotations
in bitslice mode), see Appendix A.2.

Serpent1 is one round of SERPENT, without the key addition and the linear transformation.
SERPENT uses eight distinct S-boxes (see A.1 for details), numbered from S0 to S7 on 4-bit
words. We define Serpent1 as the application of S2, in bitslice mode. This is the third S-box
layer of SERPENT. Serpent1 takes four 32-bit words as input, and provides four 32-bit words
as output.

2.1.2 Serpent24

Serpent24 is SERPENT reduced to 24 rounds, instead of the 32 rounds of the full version of
SERPENT. Serpent24 is equal to the first 24 rounds of SERPENT, where the last round (the

2



24th) is a complete one and includes a complete round with the linear transformation and an
XOR with the 25th subkey. In other words, the 24th round of Serpent24 is thus equivalent
to the thirty-second round of SERPENT, except that it contains the linear transformation
and that the 24th and 25th subkeys are used (32nd and 33rd subkeys in SERPENT). Thus,
the last round equation on Page 224 in [2] is

R23(X) = L
(
Ŝ23(X ⊕ K̂23)

)
⊕ K̂24 .

Serpent24 uses only 25 128-bit subkeys, which are the first 25 subkeys produced by the
SERPENT key schedule. In Sosemanuk, Serpent24 is used for the initialization step, only
in encryption mode. Decryption is not used.

2.2 The LFSR

2.2.1 Underlying finite field

Most of the stream cipher internal state is held in a LFSR containing 10 elements of F232 , the
field with 232 elements. The elements of F232 are represented exactly as in SNOW 2.0. We
recall this representation here. Let F2 denote the finite field with 2 elements. Let β be a root
of the primitive polynomial:

Q(X) = X8 +X7 +X5 +X3 + 1

on F2[X]. We define the field F28 as the quotient F2[X]/Q(X). Each element in F28 is
represented using the basis (β7, β6, ...β, 1). Since the chosen polynomial is primitive, then β
is a multiplicative generator of all invertible elements of F28 : every non-zero element in F28 is
equal to βk for some integer k (0 ≤ k ≤ 254). Any element in F28 is identified with an 8-bit
integer by the following bijection:

φ : F28 → {0, 1, . . . , 255}
x =

∑7
i=0 xiβ

i 7→ ∑7
i=0 xi2i

where each xi is either 0 or 1. For instance, β23 is represented by the integer φ(β23) = 0xE1
(in hexadecimal).Therefore, the addition of two elements in F28 corresponds to a bitwise XOR
between the corresponding integer representations. The multiplication by β is a left shift by
one bit of the integer representation, followed by an XOR with a fixed mask if the most
significant bit dropped by the shift equals 1.

Let α be a root of the primitive polynomial

P (X) = X4 + β23X3 + β245X2 + β48X + β239

on F28 [X]. The field F232 is then defined as the quotient F28 [X]/P (X), i.e., its elements are
represented with the basis (α3, α2, α, 1). Any element in F232 is identified with a 32-bit integer
by the following bijection:

ψ : F232 → {0, 1, . . . , 232 − 1}
y =

∑3
i=0 yiα

i 7→ ∑3
i=0 φ(yi)28i

Thus, the addition of two elements in F232 corresponds to a bitwise XOR between their
integer representations. This operation will hereafter be denoted by ⊕. Sosemanuk also

3



α−1 α

stst+5st+9 st+3

Figure 1: The LFSR

uses multiplications and divisions of elements in F232 by α. Multiplication of z ∈ F232 by α
corresponds to a left shift by 8 bits of ψ(z), followed by an XOR with a 32-bit mask which
depends only on the most significant byte of ψ(z). Division of z ∈ F232 by α is a right shift
by 8 bits of ψ(z), followed by an XOR with a 32-bit mask which depends only on the least
significant byte of ψ(z).

2.2.2 Definition of the LFSR

The LFSR operates over elements of F232 . The initial state, at t = 0, entails the ten 32-bit
values s1 to s10. At each step, a new value is computed, with the following recurrence:

st+10 = st+9 ⊕ α−1st+3 ⊕ αst, ∀t ≥ 1

and the register is shifted (see Figure 1 for an illustration of the LFSR).
The LFSR is associated with the following feedback polynomial:

π(X) = αX10 + α−1X7 +X + 1 ∈ F232 [X]

Since the LFSR is non-singular and since π is a primitive polynomial, the sequence of 32-bit
words (st)t≥1 is periodic and has maximal period (2320 − 1).

2.3 The Finite State Machine

The Finite State Machine (FSM) is a component with 64 bits of memory, corresponding to
two 32-bit registers R1 and R2. At each step, the FSM takes as inputs some words from the
LFSR state; it updates the memory bits and produces a 32-bit output. The FSM operates
on the LFSR state at time t ≥ 1 as follows:

FSMt : (R1t−1, R2t−1, st+1, st+8, st+9) 7→ (R1t, R2t, ft)

where

R1t = (R2t−1 + mux(lsb(R1t−1), st+1, st+1 ⊕ st+8)) mod 232 (1)
R2t = Trans(R1t−1) (2)
ft = (st+9 +R1t mod 232)⊕R2t (3)

where lsb(x) is the least significant bit of x, mux(c, x, y) is equal to x if c = 0, or to y if c = 1.
The internal transition function Trans on F232 is defined by

Trans(z) = (M × z mod 232)<<<7

4



where M is the constant value 0x54655307 (the hexadecimal expression of the first ten deci-
mals of π) and <<<denotes bitwise rotation of a 32-bit value (by 7 bits here).

2.4 Output transformation

The outputs of the FSM are grouped by four, and Serpent1 is applied to each group; the
result is then combined by XOR with the corresponding dropped values from the LFSR, to
produce the output values zt:

(zt+3, zt+2, zt+1, zt) = Serpent1 (ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st)

Four consecutive rounds of Sosemanuk are depicted in Figure 2.

2.5 Sosemanuk workflow

The Sosemanuk cipher combines the FSM and the LFSR to produce the output values zt.
Time t = 0 designates the internal state after initialization; the first output value is z1.
Figure 3 gives a graphical overview of Sosemanuk.

At time t ≥ 1, we perform the following operations:

• The FSM is updated: R1t, R2t and the intermediate value ft are computed from R1t−1,
R2t−1, st+1, st+8 and st+9.

• The LFSR is updated: st+10 is computed, from st, st+3 and st+9. The value st is sent
to an internal buffer, and the LFSR is shifted.

Once every four steps, four output values zt, zt+1, zt+2 and zt+3 are produced from the
accumulated values ft, ft+1, ft+2, ft+3 and st, st+1, st+2, st+3. Thus, Sosemanuk produces
32-bit values. We recommend encoding them into groups of four bytes using the little-endian
convention, because it is faster on the most widely used high-end software platform (x86-
compatible PC), and because SERPENT uses that convention.

Therefore, the first four iterations of Sosemanuk are as follows.

• The LFSR initial state contains values s1 to s10; no value s0 is defined. The FSM initial
state contains R10 and R20.

• During the first step, R11, R21 and f1 are computed from R10, R20, s2, s9 and s10.

• The first step produces the buffered intermediate values s1 and f1.

• During the first step, the feedback word s11 is computed from s10, s4 and s1, and the
internal state of the LFSR is updated, leading to a new state composed of s2 to s11.

• The first four output values are z1, z2, z3 and z4, and are computed using one application
of Serpent1 over (f4, f3, f2, f1), whose output is combined by XORs with (s4, s3, s2, s1).

2.6 Key initialization and IV injection

The Sosemanuk initialization process is split into two steps:

• the key schedule, which processes the secret key but does not depend on the IV; and

• the IV injection, which uses the output of the key schedule and the IV. This initializes
the stream cipher internal state.

5



Trans

Trans

Trans

Trans

st

st+1

st+2

st+3

zt

zt+1

zt+2

zt+3

R1t−1 R2t−1

S
er

pe
n
t1

st+9

st+10

st+11

st+12

ft+1

ft+2

ft+3

ft

st+1 ⊕ st+8

st+4

st+4 ⊕ st+11

st+3

st+3 ⊕ st+10

st+2

st+2 ⊕ st+9

orst+1

or

or

or

Figure 2: The output transformation on four consecutive rounds of Sosemanuk.

6



st+7

α

stst+1

Serpent1

R2

ft(×4)

mux

output

R1 Trans

st+9

α−1

st+3

Figure 3: An overview of Sosemanuk

2.6.1 Key schedule

The key setup corresponds to the Serpent24 key schedule, which produces 25 128-bit subkeys,
as 100 32-bit words. These 25 128-bit subkeys are identical to the first 25 128-bit subkeys
produced by the plain SERPENT key schedule.

SERPENT accepts any key length from 1 to 256 bits; hence, Sosemanuk may work with
exactly the same keys. However, since Sosemanuk aims at 128-bit security; its key length
must then be at least 128 bits. Therefore, 128 bits is the standard key length. Any key length
from 128 bits to 256 bits is supported. But, the security level still corresponds to 128-bit
security. In other words, using a longer secret key does not guarantee to provide the security
level usually expected from such a key.

2.6.2 IV injection

The IV is a 128-bit value. It is used as input to the Serpent24 block cipher, as initialized by
the key schedule. Serpent24 consists of 24 rounds and the outputs of the 12th, 18th and 24th
rounds are used. We denote those outputs as follows:

• (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0 ): output of the 12th round;

• (Y 18
3 , Y 18

2 , Y 18
1 , Y 18

0 ): output of the 18th round;

• (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0 ): output of the 24th round.

The output of each round consists of the four 32-bit words just after the linear transfor-
mation, except for the 24th round, for which the output is taken just after the addition of
the 25th subkey.

7



These values are used to initialize the Sosemanuk internal state, with the following
values:

(s7, s8, s9, s10) = (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0 )
(s5, s6) = (Y 18

1 , Y 18
3 )

(s1, s2, s3, s4) = (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0 )
R10 = Y 18

0

R20 = Y 18
2

3 Design rationale

3.1 Key initialization and IV injection

Underlying principle. A first property of the initialization process is that it is split into
two distinct steps: the key schedule which does not depend on the IV, and the IV injection
which generates the initial state of the generator from the IV and from the output of the
key schedule. Then, the IV setup for a fixed key is less expensive than a complete key setup,
improving the common design since changing the IV is more frequent than changing the secret
key.

A second characteristic of Sosemanuk is that the IV setup is derived from the application
of a block cipher over the IV. If we consider the function FK which maps a n-bit IV to the first
n bits of output stream generated from the key K and the IV, then FK must be computation-
ally indistinguishable from a random function over Fn

2 . Hence, the computation of FK cannot
“morally” be faster than the best known PRF over n-bit blocks. It so happens that the fastest
known PRF use the same implementation techniques that the fastest known Pseudo-Random
Permutations (which are block ciphers), and amount to the equivalent performance.

Since Sosemanuk stream generation is very fast, the generation of n stream bits takes
little time compared to a computation of a robust PRP over a block of n bits. Following
this path of reasoning, we decided to use a block cipher as the foundation of the IV setup
for Sosemanuk: the IV setup itself cannot be much faster than the application of a block
cipher, and the security requirements for that step are much similar to what is expected from
a block cipher.

Choice of the block cipher. The block cipher used in the IV setup is derived from
SERPENT for the following reasons:

• SERPENT has been thoroughly analyzed during the AES selection process and its
security is well-understood.

• SERPENT needs no static data tables, and hence adds little or no data cache pressure.

• The SERPENT round function is optimized for operation over data represented as 32-
bit words, which is exactly how data is managed within Sosemanuk. Using SERPENT
implies no tedious byte extraction from 32-bit words, or recombinations into such words.

• We needed a block cipher for the key schedule and IV injection; using something other
else than AES seems good for “biodiversity”.

8



Design of Serpent24. The IV injection uses a reduced version of SERPENT because
SERPENT aimed at 256-bit security, whereas Sosemanuk is meant for 128-bit security. The
best linear bias and differential bias for a 6-round version of SERPENT are 2−28 and 2−58

respectively [2]. Thus, 12 rounds should provide appropriate security. Twelve more rounds
are added in order to generate enough data (three 128-bit words are needed for initializing
Sosemanuk), hence 24 rounds for Serpent24. We rely on the Sosemanuk core itself to pro-
vide some security margins (the output of Serpent24 is not available directly to the attacker).
Two consecutive outputs of data are spaced with six inner rounds in order to prevent the
existence of relations between the bits of the initial state and the secret key bits which could
be used in an attack.

3.2 LFSR

The SNOW 2.0 LFSR contains 16 elements, which means 512 bits of internal state. Since we
aim only at 128-bit security, we can accommodate a shorter LFSR. To defeat time-memory-
data trade-off attacks, 256 bits of internal state at least should be used; we wanted some
security margin, hence an LFSR length a bit more than six words.

LFSR length. The LFSR length n must be as small as possible: the bigger the state, the
more difficult it is to map the state values on the processor registers. Ideally, the total state
should fit in the 16 general-purpose registers that the new AMD64 architecture offers.

For efficient LFSR implementation, the LFSR must not be physically shifted; moving
data around contributes nothing to actual security, and takes time. If n is the LFSR length,
then kn steps (for some integer k) must be “unrolled”, so that at each step only one LFSR
cell is modified. Moreover, since Serpent1 operates over four successive output values, kn
corresponds to lcm(4, n) and it should be kept as small as possible, since a higher code size
increases code cache pressure.

These considerations led us to n = 8 or 10. But, an LFSR of length eight presents po-
tential weaknesses which may be exploited in a guess-and-determine attack (see Section 4.3).
Therefore, a LFSR of length 10 is a suitable choice: the 384-bit internal state length should be
enough; only 20 steps need to be unrolled for an efficient implementation. The total internal
state fits in 12 registers, which should map fine on the new AMD64 architecture.

Feedback polynomial. The design criteria for the feedback polynomial are similar to those
used in SNOW 2.0. Since the feedback polynomial must be as sparse as possible, we chose as
in SNOW 2.0 a primitive polynomial of the form

π(X) = c0X
10 + caX

n−a + cbX
n−b + 1 ,

where 0 < a < b < 10. The coefficients c0, ca and cb preferably lie in {1, α, α−1} which
are the elements corresponding to an efficient multiplication in F232 . Moreover, {c0, ca, cb}
must contain at least two distinct non-binary elements; otherwise, a multiple of π with binary
coefficients can be easily constructed [9, 13], providing an equation which holds for each single
bit position.

We also want a and b to be coprime with the LFSR length. Otherwise, for instance if
d = gcd(a, 10) > 1, the corresponding recurrence relation

st+10 = cbst+b + cast+a + c0st

9



involves three terms of a decimated sequence (sdt+i)t>0 (for some integer i), which can be
generated by an LFSR of length n/d [20]. These conditions led us to a = 3 and b = 9. Since
a and b are not coprime, ca and cb must be different; otherwise, some simplified relations may
be exhibited by manipulating the feedback polynomial as shown in [13, 6]. The values c0 = α,
c3 = α−1 and c9 = 1 correspond to a suitable primitive polynomial that fulfills all previously
mentioned conditions.

3.3 FSM

The Trans function. The Trans function is chosen according to the following implemen-
tation criteria: no static data tables in order to reduce the cache pressure and the function
must be fast on modern processors. For these reasons, the Trans function is composed of a
32-bit multiplication and a bitwise rotation which are both very fast. The 32-bit multiplica-
tion provides excellent “data mixing” compared to the number of clock cycles it consumes.
The bitwise rotation avoids the existence of a linear relation between the least-significant bits
of the inputs and the output of the FSM.

The operations involved in the Trans functions are incompatible with the other operations
used in the FSM (addition over Z232 , XOR operation). Actually, mixing operations on the
ring and on the vector space disables associativity and commutativity laws. For instance,

(M × (R2t−1 + st+1 mod 232) mod 232)<<<7

6=
(M × (R2t−1) mod 232)<<<7 + (M × (st+1) mod 232)<<<7 mod 232.

The mux operation. The mux operation aims at increasing the complexity of fast correla-
tion and algebraic attacks, since it decimates the FSM input sequence in an irregular fashion.
Moreover, this operation can be implemented efficiently with either control bit extension and
bitwise operations, or an architecture specific “conditional move” opcode. Modern C com-
pilers know how to perform those optimizations when compiling the C conditional ternary
operator “?:”. This multiplexer is quite fast and requires no jump.

It is fitting that both LFSR elements st+c and st+d (with c ≤ d) in the mux operation
are not involved in the recurrence relation. Otherwise the complexity of guess-and-determine
attacks might be reduced. The distance (d− c) between those elements must be coprime with
the LFSR length since they must not be expressed as a decimated sequence with a lower linear
complexity. Here, we choose d − c = 7. Finally, it must be impossible for the inputs of the
mux operation at two different steps correspond to the same element in the LFSR sequence.
For this reason, the mux operation outputs either st+c or st+c ⊕ st+d. If st+c ⊕ st+d is the
input of the FSM at time t, the possible inputs at time (t+d− c) are st+d and st+d⊕ st+2d−c,
which do not match any previous input. It is worth noticing that this property does not hold
anymore if the mux outputs either st+c or st+d.

3.4 The output transformation

The output transformation derived from Serpent1 aims at mixing four successive outputs
of the FSM in a nonlinear way. As a consequence, any 32-bit keystream word produced by
Sosemanuk depends on four consecutive intermediate values ft. As a result, recovering any
single output of the FSM, ft, in a guess-and-determine attack requires the knowledge of at

10



least four consecutive words from the LFSR sequence, st, st+1, st+2, st+3 (see Section 4.3 for
details).

The following properties have also been taken into account in the choice of output trans-
formation.

• Both nonlinear mixing operations involved in Sosemanuk (the Trans operation and
the Serpent1 used in bitslice mode) do not provide any correlation probability or lin-
ear property on the least significant bits that could be used to mount an attack (see
Section 4.4 for further details).

• From an algebraic point of view, those operations are combined to produce nonlinear
equations (see Section 4.6).

• No linear relation can be directly exploited on the least significant bit of the values
(ft, ft+1, ft+2, ft+3), only quadratic equations with more variables than the number of
possible equations (see Section 4.4).

• The linear relation between st and Serpent1 (ft, ft+1, ft+2, ft+3) prevents Sosemanuk
from SQUARE-like attacks.

Finally, the fastest SERPENT S-box (S2) has been chosen in Serpent1 from an efficiency
point of view [19]. But, S2 also guarantees that there is no differential-linear relation on the
least significant bit (the “most linear” one in the output of the FSM).

4 Resistance against known attacks

Our stream cipher Sosemanuk offers a 128-bit security, based on the following security model.

4.1 Security model

The attacker is a probabilistic Turing Machine with access to a black box (oracle) that accepts
the following three instructions: Reset, Init with a 128-bit input, GetStream with a 1-bit
output. The attacker’s goal is to distinguish with probability 2/3 between a black box that
generates random output, and a black box that implements the stream cipher, where Reset
generates a random key, Init initializes the internal state of the stream cipher with a new
chosen IV, and GetStream generates the next bit of keystream. The attacker is allowed to
do 2128 elementary operations, an instruction to the black box being an elementary operation.

This security model falls under remarks made by Hong and Sarkar [15], because the
precomputation time is not bounded by our model. Therefore our claim is that the 256-bit
key variant of Sosemanuk provide a 128-bit security. We do not know of a formal security
model that restricts the precomputation time, i.e. that only allows the attacker one of the
probabilistic Turing machines that can be built in a reasonable time from the current content
of today’s computers. Therefore, our claim is that the 128-bit key variant of Sosemanuk,
and all variants with larger keys, provide a 128-bit security against an attacker that is not
allowed to benefit from large precomputation.

The following sections focus on the security of Sosemanuk against known attacks. It
is important to note that the secret key of the cipher cannot be easily recovered from the
initial state of the generator. Once the initial state is recovered, the attacker is only able

11



to generate the output sequence for a particular key and a given IV. Recovering the secret
key or generating the output for a different IV additionally requires the cost of an attack on
Serpent24 with a certain number of plaintext/ciphertext pairs.

4.2 Time-memory-data tradeoff attacks

Due to the choice of the length of the LFSR (more than twice the key length), the time-
memory-data tradeoff attacks described in [1, 12, 4] are impracticable. Moreover, since these
TMDTO attacks aim at recovering the internal state of the cipher, recovering the secret key
requires the additional cost of an attack against Serpent24. The best time-memory data
tradeoff attack is the Hellman’s one [14] which aims at recovering a pair (K, IV ). For a
128-bit secret key and a 128-bit IV, its time complexity is equal to 2128 cipher operations (see
[15] for further details).

4.3 Guess and determine attacks

The main weaknesses of SNOW 1.0 are related to this type of attacks (two at least have been
exhibited [13], [6]). They essentially exploit a particular weakness in the linear recurrence
equation. This does not hold anymore for the new polynomial choice in SNOW 2.0 and for
the polynomial used in Sosemanuk which involve non-binary multiplications by two different
constants. The first attack [13] also exploited a “trick” coming from the dependence between
the values R1t−1 and R1t. This trick is avoided in SNOW 2.0 (because there is no direct link
between those two register values anymore) and in Sosemanuk.

The best guess and determine attack we have found on Sosemanuk is the following.

• Guess at time t, st, st+1, st+2, st+3, R1t−1 and R2t−1 (6 words).

• Compute the corresponding outputs of the FSM (ft, ft+1, ft+2, ft+3).

• Compute R2t = Trans(R1t−1) and R1t from Equation (1) if lsb(R1t−1) = 1 (this can
be done only with probability 1/2).

• From ft = (st+9 +R1t mod 232)⊕R2t, compute st+9.

• Compute R1t+1 from the knowledge of both st+2 and st+9; compute R2t+1. Compute
st+10 from ft+1, R1t+1 and R2t+1.

• Compute R1t+2 from st+3 and st+10; compute R2t+2. Compute st+11 from ft+2, R1t+2

and R2t+2. Now, st+4 can be recovered due to the feedback relation at time t+ 1:

α−1st+4 = st+11 ⊕ st+10 ⊕ αst+1 .

• Compute R1t+3 from st+4 and st+11; compute R2t+2. Compute st+12 from ft+3, R1t+3

and R2t+3. Compute st+5 by the feedback relation at time t+ 2:

α−1st+5 = st+12 ⊕ st+11 ⊕ αst+2 .

12



At this point, the LFSR words st, st+1, st+2, st+3, st+4, st+5, st+9 are known. Three ele-
ments (st+6, st+7, st+8) remain unknown. To complete the full 10 words state of the LFSR,
we need to guess 2 more words, st+6 and st+7 since each ft+i, 4 ≤ i ≤ 7, depends on all
4 words st+4, st+5, st+6 and st+7. Therefore, this attack requires the guess of 8 32-bit words,
leading to a complexity of 2256.

We think that there is no better guess-and-determine attack against Sosemanuk. The
main reason is that Serpent1 used in bitslice mode requires the knowledge of at least four
consecutive words from the LFSR sequence when recovering any single output of the FSM.
Note that the previous attack on an LFSR of length eight enables the recovery of the entire
internal state of the cipher from the guess of six words only.

4.4 Correlation attacks

In order to find a relevant correlation in Sosemanuk, the following questions can be ad-
dressed:

• does there exist a linear relation at bit level between some input and output bits?

• does there exist a particular relation between some input bit vector and some output
bit vector?

In the first case, two linear relations could be exhibited at the bit level. In the first,
the least significant bit of st+9 was “conserved”, since the modular addition over Z232 is a
linear operation on the least significant bit. The second linear relation induced by the FSM
concerns the least significant bit of st+1 or of st+1 ⊕ st+8 (used to compute R1t) or the
seventh bit of R2t computed from st or of st ⊕ st+7. We here use that R2t = Trans(R1t−1)
and R1t−1 = R2t−2 + (st or (st ⊕ st+7)) mod 232.

No linear relation holds after applying Serpent1 and there are too many unknown bits
to exploit a relation on the outputs words due to the bitslice design. Moreover, a fast corre-
lation attack seems to be impracticable because the mux operation prevents certainty in the
dependence between the LFSR states and the observed keystream.

4.5 Distinguishing attacks

A distinguishing attack by D. Coppersmith, S. Halevi and C. Jutla (see [7]) against the first
version of SNOW used a particular weakness of the feedback polynomial built on a single
multiplication by α. This property does not hold for the choice of the new polynomial in
SNOW 2.0 and for the polynomial used in Sosemanuk where multiplication by α−1 is also
included.

In [22], D. Watanabe, A. Biryukov and C. De Cannière have mounted a new distinguishing
attack on SNOW 2.0 with a complexity about 2225 operations using multiple linear masking
method. They construct 3 different masks Γ1 = Γ, Γ2 = Γ · α and Γ3 = Γ · α−1 based on the
same linear relation Γ.

The linear property deduced from the masks Γi (i = 1, 2 or 3) must hold with a high
probability on the both following quantities: Γi · S′(x) = Γi · x and Γi · z ⊕ Γi · t = Γi · (z ¢ t)
for i=1,2 and 3, where S′ is the transition function of the FSM in SNOW 2.0. In the case of
SNOW 2.0, the hardest hypothesis to satisfy is the first one defined on y = S′(x). In the case

13



of Sosemanuk, we need Pr(Γi · Trans(x) = Γi · x)i=1,2,3 to be high. But, we also need that
∀i = 1, 2, 3, the relation

(Γ′i,Γ
′
i,Γ

′
i,Γ

′
i) · (x1, x2, x3, x4) = Serpent1 ((Γi,Γi,Γi,Γi) · (x1, x2, x3, x4)) .

for some Γ′i ∈ F32
2 , holds with a high probability.

Due to the bitslice design chosen for Serpent1, it seems very difficult to find such a mask.
Therefore, the attack described in [22] could not be applied directly on Sosemanuk.

4.6 Algebraic attacks

Let us consider, as in [3], the initial state of the LFSR at bit level:

(s10, · · · , s1) = (s31
10, · · · , s010, · · · , s31

1 , · · · , s01)

Then, the outputs of Sosemanuk at time t ≥ 1 could be written:

F t((s10
31, · · · , s10)) = (zt, zt+1, zt+2, zt+3)

where F is a vectorial Boolean function from F320
2 into F128

2 that could be seen as 128 Boolean
functions Fj , ∀j ∈ [0..127] from F320

2 into F2.
Let us study the degree of an Fj function depending on a particular bit of the output or on

a linear combination of output bits because it is not possible to directly compute the algebraic
immunity of each function Fj due to the very large number of variables (320 input bits). We
think that the following remarks prevent the existence of low degree relations between the
inputs and the outputs of Fj .

• The output bit i after the modular addition on Z232 is of degree i+ 1 (as described in
[5]).

• The output bit i after the Trans mapping is of degree i + 1 − 7 mod 32, ∀i 6= 6 and
equal to 32 for i = 6 (as described in [5]).

• The mux operation does not enable to determine with probability one the exact number
of bits of the initial state involved in the algebraic relation.

• The algebraic immunity of the SERPENT S-box S2 at 4-bit word level is equal to 2 (see
[18] for a definition of the algebraic immunity and more details).

Under those remarks, we think that an algebraic attack against Sosemanuk is intractable.

5 Implementation

The reference C implementation is also an optimized implementation. When compiled with
the SOSEMANUK_VECTOR macro defined, it is a full program (with its own main() function)
which outputs two detailed test vectors. Since the LFSR length is ten, we unroll the C code
on 20 rounds (see 3.2 for details); each test vector contains:

• A copy of the secret key (a sequence of bytes, expressed in hexadecimal).

14



• The expanded secret key, as described by the SERPENT specification: the key is ex-
panded to 256 bits, then read as a 256-bit number with the little endian convention. The
test vector outputs that key as a big hexadecimal number, with some digit grouping.

• The 25 Serpent24 subkeys, each of them consisting of four 32-bit words (in the (K3,K2,K1,K0)
order).

• The 128-bit IV, as a sequence of 16 bytes.

• The IV, once transformed into four 32-bit words, in the (I3, I2, I1, I0) order.

• The initial LFSR state (s1 to s10, in that order).

• The initial FSM state (R10 and R20).

• Ten times the following data:

– Four times the following:

∗ the new FSM state (R1t and R2t);
∗ the new LFSR state, after the update (the dropped value st is also output);
∗ the intermediate output ft.

– The Serpent1 input.

– The Serpent1 output.

– 16 bytes of Sosemanuk output.

• The total stream output (160 bytes).

6 Performance

This section is devoted to the software performance of Sosemanuk. It compares the per-
formance of Sosemanuk and of SNOW 2.0 on several architectures (see Table 1) for the
keystream generation and the key setup.

All the results presented for Sosemanuk have been computed using the supplied reference
C implementation.

Code size. The main unrolled loop implies a code size between 2 and 5 KB depending on
the platform and the compiler. Therefore, the entire code fits in the L1 cache.

Static data. The reference C implementation uses static data tables with a total size equal
to 4 KB. This amount is 3 times smaller than the size of static data required in SNOW 2.0,
leading to a lower date cache pressure.

Key setup. We recall that the key setup (the subkey generation given by Serpent24 ) is
made once and that each new IV injection for a given key corresponds to a small version of
the block cipher SERPENT.

The performance of the key setup and of the IV setup in Sosemanuk are directly derived
from the performance of SERPENT [11]. Due to intellectual property aspects, our reference

15



implementation does not re-use the best implementation of SERPENT. However, the perfor-
mance given in [17] (i.e., computed on the Gladman’s code written in assembly language [11])
leads to the following results on a Pentium 4:

• key setup ' 900 cycles;

• IV setup ' 480 cycles.

These estimations for the IV setup (resp. key setup) performance corresponds to about 3/4 of
the best published performance for SERPENT encryption (resp. for SERPENT key schedule).

The key setup in SNOW 2.0 is done for each IV. It is assumed to take around 900 cycles
on a Pentium4 [10] (the SNOW 2.0 reference implementation provides about 900 cycles on a
G4 processor).

Keystream generation. Table 1 presents the performance of the keystream generation
for Sosemanuk. The reference implementation of the SNOW 2.0 cipher has been bench-
marked on the same computers in order to compare both ciphers (note that this reference
implementation is not supposed to be supported by Alpha architectures as mentioned in the
corresponding README file; then it must be slightly modified).

Table 1 mentions the bus frequency and the amount of RAM, but these parameters are not
relevant in our context. During benchmarks, steps were taken to the effect that no memory
access is supposed to be performed outside of the innermost cache level (so-called L1 cache,
which is located directly on the processor). Hence external RAM size and speed do not matter
here.

Even if SNOW 2.0 remains faster on CISC architecture using GCC, Sosemanuk overtakes
SNOW 2.0 on the other platforms (the RISC ones) due to a better design for the mappings
of data on the processor registers and a lower data cache pressure.

7 Strengths and advantages of Sosemanuk

The new synchronous stream cipher Sosemanuk based upon the SNOW 2.0 design improves
it from several points of view. From a security point of view, Sosemanuk avoids some
potential weaknesses as the distinguishing attack proposed in [22] due to the particular use of
Serpent1 in bitslice mode. The chosen LFSR is designed to eliminate all potential weaknesses
(particular decimation properties, linear relations,...). The mappings used in the Finite State
Machine have been carefully designed in the following way:

• The Trans function guarantees good properties of confusion and diffusion for a low cost
in software. Moreover, this mapping prevents Sosemanuk from algebraic attacks.

• The mux operation, that could be efficiently implemented, protects Sosemanuk from
fast correlation attacks and algebraic attacks.

The Serpent1 output transformation, very efficient in bitslice mode, provides nonlinear
equations, a good diffusion and it improves the resistance to guess-and-determine attacks.

The new design chosen for the key setup and the IV injection allows to split the initializa-
tion procedure into two distinct parts, without any loss of security. It leads to a much faster
resynchronization mechanism.

16



CISC target parameters Sosemanuk SNOW 2.0
Frequency Memory Compiler (cycles/W) (cycles/W)

Pentium 3 800 MHz 376 MB GCC 3.2.2 22.3 18.9
Pentium 4 M 2.3 GHz 503 MB GCC 3.2.2 27.1 16.8
Pentium 4 (prescot) 2.6 GHz 1 GB GCC 3.2.2 28.3 17.2
Pentium 4 (nocona) 3.2 GHz 1 GB ICC 8.1 19.7 18.8
Athlon XP 1800+ 1.5 GHz 256 MB GCC 3.4.2 17 20.5

RISC target parameters Sosemanuk SNOW 2.0
Frequency Memory Compiler (cycles/W) (cycles/W)

G4 (PPC7455 v3.3) 1 GHz 500 MB GCC 3.3 12.6 33.7
G5 (PPC 970) 2 GHz 1 GB GCC 3.3 21.6 24.6
Alpha EV67 500 MHz 256 MB GCC 3.4.0 15.7 16.2
Alpha EV6 500 MHz 256 MB GCC 2.95.2 20.5 26.3
Alpha EV6 500 MHz 256 MB DEC CC 5.9 16.2 19.6
Alpha EV5 500 MHz 384 MB GCC 2.95.2 36.9 39.8
Alpha EV5 500 MHz 384 MB DEC CC 5.9 22.2 28.1
Ultrasparc III 1.2 GHz 4 GB GCC 3.4.0 49.9 52.0
Ultrasparc III 1.2 GHz 4 GB CC Forte 5.4 23.9 30.0
MIPS R5900 167 MHz 32 MB GCC 2.95 31.0 70.0

Table 1: Comparison between Sosemanuk and SNOW 2.0: number of cycles per 32-bit word
for keystream generation on several architectures

From an efficiency point of view, due to a reduced amount of static data and a reduced
internal state size, the exploitation of the processor registers is enhanced and the data cache
pressure is improved on several platforms, especially on RISC architectures.

Acknowledgments The authors would like to thank Matt Robshaw for valuable comments.

References

[1] S. Babbage. A space/time trade-off in exhaustive search attacks on stream ciphers. In
European Convention on Security and Detection, number 408. IEEE Conference Publi-
cation, 1995.

[2] E. Biham, R. Anderson, and L. Knudsen. SERPENT: A new block cipher proposal. In
Fast Software Encryption - FSE’98, volume 1372 of Lecture Notes in Computer Science,
pages 222–238. Springer-Verlag, 1998.

[3] O. Billet and H. Gilbert. Resistance of SNOW 2.0 against algebraic attacks. In Topics in
Cryptology - CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
19–28. Springer-Verlag, 2005.

[4] A. Biryukov and A. Shamir. Cryptanalytic time-memory-data trade-offs for stream ci-
phers. In Advances in Cryptology - ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 1–14. Springer-Verlag, 2000.

17



[5] A. Braeken and I. Semaev. The ANF of the composition of × and + mod 2n with a
Boolean function. In Fast Software Encryption - FSE 2005, Lecture Notes in Computer
Science. Springer-Verlag, 2005. To appear.

[6] C. De Cannière. Guess and determine attack on SNOW - NESSIE public reports. https:
//www.cosic.esat.kuleuven.ac.be/nessie/reports/, 2001.

[7] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with linear
masking. In Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[8] P. Ekdahl and T. Johannson. SNOW homepage. http://www.it.lth.se/cryptology/
snow/.

[9] P. Ekdahl and T. Johannson. Distinguishing attacks on SOBER. In Fast Software
Encryption - FSE 2002, volume 2365 of Lecture Notes in Computer Science, pages 210–
224. Springer-Verlag, 2002.

[10] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In Selected
Areas in Cryptography – SAC 2002, volume 2295 of Lecture Notes in Computer Science,
pages 47–61. Springer-Verlag, 2002.

[11] B. Gladman. SERPENT performance. http://fp.gladman.plus.com/cryptography_
technology/serpent/.

[12] J. Golić. Cryptanalysis of alleged A5 stream cipher. In Advances in Cryptology - EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 239–255. Springer-
Verlag, 1997.

[13] P. Hawkes and G. Rose. Guess-and-determine attacks on SNOW. In Selected Areas in
Cryptography - SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
37–46. Springer-Verlag, 2002.

[14] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory, 26(4):401–406, 1980.

[15] J. Hong and P. Sarkar. Rediscovery of time memory tradeoffs. http://eprint.iacr.
org/2005/090.ps, 2005.

[16] K. Howard. Snow snake demonstration gives history lesson. http://www.turtletrack.
org/Issues01/Co02102001/CO_02102001_Snowsnake.htm.

[17] M. Matsui and S. Fukuda. How to maximize software performance of symmetric primi-
tives on Pentiums. In Fast Software Encryption - FSE 2005, Lecture Notes in Computer
Science. Springer-Verlag, 2005. to appear.

[18] W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean
functions. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 474–491. Springer-Verlag, 2004.

[19] D. Osvik. Speeding up SERPENT. http://www.ii.uib.no/~osvik/, April 2000. Sec-
ond AES Candidate Conference.

18



[20] R.A. Rueppel. Analysis and Design of stream ciphers. Springer-Verlag, 1986.

[21] The story of Snowsnake. http://www.members.shaw.ca/dmacauley/story_of_
snowsnake.htm.

[22] D. Watanabe, A. Biryukov, and C. De Cannière. A distinguishing attack of SNOW 2.0
with linear masking method. In Selected Areas in Cryptography 2003, volume 3006 of
Lecture Notes in Computer Science, pages 222–233. Springer-Verlag, 2003.

A Specifications of SERPENT

In this appendix, a recall on the specifications of SERPENT given in [2] is made. First, the
S-boxes definition is given and the linear part is also defined again.

A.1 S-boxes definitions

The eight SERPENT S-boxes act on 4-bit words and are defined as permutations of Z16:

S0 : 3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12
S1 : 15, 12, 2, 7, 9, 0, 5, 10, 1, 11, 14, 8, 6, 13, 3, 4
S2 : 8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2
S3 : 0, 15, 11, 8, 12, 9, 6, 3, 13, 1, 2, 4, 10, 7, 5, 14
S4 : 1, 15, 8, 3, 12, 0, 11, 6, 2, 5, 4, 10, 9, 14, 7, 13
S5 : 15, 5, 2, 11, 4, 10, 9, 12, 0, 3, 14, 8, 13, 6, 7, 1
S6 : 7, 2, 12, 5, 8, 4, 6, 11, 14, 9, 1, 15, 13, 3, 10, 0
S7 : 1, 13, 15, 0, 14, 8, 2, 11, 7, 4, 12, 10, 9, 3, 5, 6

A.2 Linear part of SERPENT round function

The linear part of a one round version of SERPENT acts on 4 32-bit words (X3, X2, X1, X0)
where X0 is the least significant word and is defined as follows:

X0 = X0 <<<13
X2 = X2 <<<3
X1 = X1 ⊕X0 ⊕X2

X3 = X3 ⊕X2 ⊕ (X0 <<<3)
X1 = X1 <<<1
X3 = X3 <<<7
X0 = X0 ⊕X1 ⊕X3

X2 = X2 ⊕X3 ⊕ (X1 <<<7)
X0 = X0 <<<5
X2 = X2 <<<22

19


