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Motivation and Contributions
Motivation

Generalize the notion of zero-error capacity (previously
only defined for classical channels) to quantum channels.

Find whether this “more general” problem, can help to
shed new light on the theory of zero-error capacity, and on
connex topics (combinatorics, graph theory).

Contributions

A formal definition of a zero-error capacity and zero-error
codes for quantum channels has been proposed.

We have exhibited examples indicating that QZEC is not a
trivial generalization of the classical problem.

We have partially characterized the quantum states and
the measurements attaining the QZEC
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“Ordinary” Capacity of a classical channel

Shannon ordinary capacity of Discrete Memoryless Channel

DMC capacity: C = maxp(x) I(X ; Y )
For all rates R < C, by Shannon noisy coding theorem, one
can find a code of length n presenting an asymptotically small
but non − vanishing probability of error after decoding
Pe → 0 when n → ∞

Example (A DMC)
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Example (Ordinary capaciy)

Assuming Prob [i |i] = Prob [i + 1 mod 5|i] = 1
2

C = max
p(x)

I(X ; Y )

= max
p(x)

H(X ) − H(X |Y )

= log 5 − log 2

≈ 1.32
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Classical zero-error capacity

Definition:
The zero-error capacity of a discrete memoryless channel
(X ,p(y |x),Y) is given by

C0 = lim sup
n→∞

1
n

log N(n), (1)

Where N(n) is the maximum number of n− length messages
that the system can transmit without error .
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Zero-error capacity of quantum channels

Relation with graph theory

Adjacency Graph of a channel
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Notion of adjacency

Two input symbols and said to be adjacent with respect to the
channel, iff they cannot be distinguished with certainty at the channel
output, i.e. if there is a non-zero probability that the output of the
channel is the same, for those two input state.
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Zero-error capacity of quantum channels

Zero-error’Capacity of a Discrete Memoryless
Channels- Example

Definition of the ZEC, based on the characteristic graph

C0 = sup
n

1
n

logω(Gn),

where Gn is the n−product of G and ω(Gn) stands for the clique
number of Gn (clique number of a graph = cardinal of the largest
completely connected subgraph of this graph).

Example

A DMC

a5

a1

a2

a3

a4

Example

Zero-error code

a1a1 → {a1a1, a1a2, a2a1, a2a2}
a2a3 → {a2a3, a3a3, a2a4, a3a4}
a3a5 → {a3a5, a4a5, a3a1, a4a1}
a4a2 → {a4a2, a5a2, a4a3, a5a3}
a5a4 → {a5a4, a1a4, a5a5, a1a5}

Rze = 1
2 log 5 ≈ 1.161 C = log 5/2 ≈ 1.322
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Zero-error capacity of quantum channels

Classical Zero-error capacity

Some aspects of the zero-error capacity

Finding the ZEC is a combinatorial problem
Indeed, it is a NP-Complete problem.

The ZE-IT found application in areas like
Combinatorics

Functional and methods
Impact on graph theory
According to Claude Berge, Shannon’s paper led him
to introduce the class of perfect graphs

ω(G) = χ(G)

Computer science
Communication complexity
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Zero-error capacity of quantum channels

Classical and Quantum Information Theory

Classical versus quantum information theory

Classical Information Th. Quantum Information Th.
Symbols ai Quantum states ρi

Input alphabet {a1, . . . ,al} Input quantum states {ρ1, . . . , ρl}
Codeword ∈ {a1, . . . ,al}n Quantum codeword ∈ {ρ1, . . . , ρl}⊗n

DMC channel [p(y |x)] Quantum channel E(ρ)
Stochastic matrix Positive trace-preserving map

Shannon entropy H(X) von Neumann S(ρ) = −tr [ρ log ρ]
Shannon capacity Holevo capacity, Adaptive capacity

Entanglement-assisted capacity
Decoding POVM Measurements + decoding
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Zero-error capacity of quantum channels

Quantum states and measurements

Pure states

(normalized vector) |ψ〉 ∈ Hd

{|0〉, |1〉, . . . , |d − 1〉} ⇒ basis Hd

|0〉 ≡
ˆ

1 0 . . . 0
˜T

|d − 1〉 ≡
ˆ

0 0 . . . 1
˜T

|+〉 ≡ |0〉 + |1〉√
2

=
1√
2

»

1
1

–

Mixed states

The system may be in |vi〉 with probability pi

Density matrix

ρ =
k

X

i=1

pi |vi 〉〈vi | |v1〉 |v2〉

|v3〉

|v4〉

|vk〉
|v5〉
|v6〉

ρ

POVM Measurements

1 2 3 i m

ρ (?) ρ′

POVM Apparatus

POVM P = {M1, . . . ,Mm};
X

i

Mi = 1l

Prob[get output i ] = tr [ρMi ]

von Neumann: Mi ⇒ projectors
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Zero-error capacity of quantum channels

Quantum channels

Quantum channel model
Mathematically represented by a positive trace-preserving map:

E(ρ) =
∑

a

EaρE†
a,

where
∑

a E†
aEa = 1l.

Example

Amplitude damping channel (energy dissipation)

E(ρ) = E0ρE†
0 + E1ρE†

1,

where E0 =

(
1 0
0

√
1 − γ

)

and E1 =

(
0

√
γ

0 0

)

.
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Zero-error capacity of quantum channels

Zero-error quantum communication system

D
ecoder

E
ncoder

Q
uantum

i ∈ {1, . . . ,Kn}

S = {ρ1, . . . , ρl}

ρi = ρi1 ⊗ · · · ⊗ ρin

E(·)

POVM
{Mi}m

i=1

y ∈ {1, . . . ,m}

ı̃ ∈ {1, . . . ,Kn}

Definition
The zero-error capacity of a noisy quantum channel is

C(0)(E) = sup
n

1
n

log Kn, (with Pe = 0)

where Kn stands for the maximum number of classical messages that the
system can transmit without error, when a quantum block code of length n is
used.
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Zero-error capacity of quantum channels

Adjacency of input symbols in the quantum
context

ρ1 ρ2

E(ρ1) E(ρ2)

E(·) E(·)

distinguishable

Non-adjacent

Non-adjacent input states

Two quantum states ρ1 and ρ2 are
non-adjacent

E(ρ1)⊥E(ρ2) ρ1⊥Eρ2

if they are completely distinguishable
at the channel output.



Introduction ZE-IT Elements of Quantum Information QZEC: Definitions QZEC: First results Perspectives

Zero-error capacity of quantum channels

Relation with graph theory

Set-up

Given a quantum channel E and a subset S , we can construct
a characteristic graph G as follows:

Take as many vertices as |S|
Connect two vertices if the corresponding quantum states are
non-adjacent with respect to E

QZEC: freedom in the choice of the set S
Let S = {ρ1, . . . , ρl} be a set of input states,

V (G) = {1, . . . , l},
E(G) = {(i, j); ρi⊥Eρj ; ρi , ρj ∈ S; i 6= j}.

For a given quantum channel, there is an infinity of possible
sets S, the sets S for which the QZEC is reached are said to be
optimum.
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Zero-error capacity of quantum channels

Graph-based definition of the QZEC

Equivalent definition

The zero-error capacity of a quantum channel is given by

C(0)(E) = sup
S

sup
n

1
n

logω
(
Gn)

,

The supremum is attained for the optimum S.

Note that:
For an optimum S and n attaining the capacity:

1 Kn = ω(Gn)

2 Codebook: sequences indexed by the vertex of the largest
clique in Gn
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Zero-error capacity of quantum channels

Pure states reach the capacity

Input quantum states
In principle, the set S of the optimum (S,P) may contain both
pure and mixed states

We demonstrated that C0(E) can be reached using only pure
states

Proof Sketch:
Suppose an optimum S = {ρ1, . . . , ρl} containing mixed states giving
rise to G
We show that S ′ = {|vi〉, . . . , |vl〉}, where |vi〉 ∈ supp ρi , is also
optimum:

G′ is obtained from G by
probably adding edges

Adding edges never
decreases the clique number

Example of G Example of G′
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Zero-error capacity of quantum channels

Non-adjacent states are necessarily orthogonal

Distinguishable states at channel output have orthogonal
supports

Beigi, Shor quant-ph 07092090
ρi is non-adjacent to ρj , iff Tr(E(ρi ) E(ρj)) = 0

AND : Quantum Channels are contractive

ρ1

ρ2

E(ρ1)

E(ρ2)

⇒ Non-adjacent states, ρi⊥Eρj have orthogonal support at
channel input, Tr(ρi ρj) = 0
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Zero-error capacity of quantum channels

Individual or collective measurements needed ?

Individual measurements

ρ = ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn

P PP
{1, . . . ,m} {1, . . . ,m}{1, . . . ,m}

ρi ∈ Hd

P = {M1, . . . ,Mm}
Mi are d × dmatrices

y ∈ {1, . . . ,m}n

Collective measurements

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn
︸ ︷︷ ︸

P
{1, . . . ,m′}

ρi ∈ Hd

P = {M1, . . . ,Mm′}
Mi are dn×dn matrices

y ∈ {1, . . . ,m′}
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Zero-error capacity of quantum channels

Measurements reaching the capacity

Projective measurements
Because non-adjacent states have orthogonal supports at the
channel output, collective projective measurements are sufficient

E(ρ1) = E(ρ11) ⊗ E(ρ12) ⊗ · · · ⊗ E(ρ1n)
| {z }

P1

E(ρ2) = E(ρ21) ⊗ E(ρ22) ⊗ · · · ⊗ E(ρ2n)
| {z }

P2

...
...

E(ρKn
) = E(ρKn1

) ⊗ E(ρKn2
) ⊗ · · · ⊗ E(ρKnn

)
| {z }

PKn

P = {P1,P2, . . . ,PKn ,PKn+1}, where PKn+1 = 1l − ∑Kn
i=1 Pi .

Are collective measurements necessary?
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Zero-error capacity of quantum channels

Collective measurement are necessary

Distinguishing quantum states

{σ1, σ2, . . . , σ9}; σi⊥σj ; σi = |ψi1〉 ⊗ |ψi2〉
Given σ? = |ψ?1〉 ⊗ |ψ?2〉

Alice |ψ?1〉 Bob |ψ?2〉

Classical communication

What was the given quantum state?

In the general case, collective measurements are necessary to
distinguish orthogonal tensor product states (Bennett et. al.)
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Zero-error capacity of quantum channels

Is the QZEC a trivial generalization of the Shannon ZEC?

What could be definitions of “trivial” ?
(1) The characteristic graph of E , induced by S is either
completely connected or completely disconnected.

(2) The QZEC is achieved using “trivial” codes of length
one.

(3) QZEC problem reduces to the ZEC problem (in
particular, QZEC reached for orthogonal input states).

Example (Trivial examples)

Qubit channels have C(0)(E) = 0 or C(0)(E) = 1
bit flip channel, phase flip, ...

The depolarizing channel in a d−dimensional Hilbert
space,

E(ρ) = pρ+ (1 − p)1l,

has C(0)(E) = 0
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Zero-error capacity of quantum channels

There are quantum channels with non-trivial
graphs

Example (Finding a quantum channel giving rise to the
pentagon as characteristic graph)
Consider the quantum channel E ≡ {E1, E2, E3} in H5 where

E1 =

2

4

0.5 0 0 0 0.04
0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 −0.12 0.12
0 0 0 0.7 0.5

3

5 E2 =

2

4

0.5 0 0 0 −0.04
0.5 −0.5 0 0 0
0 0.5 −0.5 0 0
0 0 0.5 0.12 −0.12
0 0 0 0.7 −0.4

3

5

E3 = 0.72|4〉〈4|
One can verify that

3X

i=1

Ei E
†

i = 1l

Let {|0〉, . . . , |4〉} be the computational basis of H5. Consider the subset

S = {|0〉, |1〉, |2〉, |3〉, |v34〉} , |v34〉 =
|3〉 + |4〉√

2
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Zero-error capacity of quantum channels

Optimum S may not be an orthogonal set

As illustrated by our pentagon example
Adjacency relation are:

|0〉⊥E |2〉, |0〉⊥E |3〉, |1〉⊥E |3〉, |1〉⊥E |v34〉, |2〉⊥E |v34〉,

giving rise to the pentagon as characteristic graph:

|0〉

|2〉

|v34〉|1〉

|3〉

G′

|0〉

|2〉

|4〉|1〉

|3〉

G

Suppose we take

S ′ = {|0〉, . . . , |4〉}.

The characteristic graph G′

has Shannon capacity C0 = 1
bits/use.

We conjecture that the zero-error capacity is reached by S

C(0)(E) =
1
2

log 5 bits per use.
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Zero-error capacity of quantum channels

What can we say about sets S of orthogonal states ?

What happens under unitary transformations ?

For E fixed, is the QZEC conserved when one applies a unitary
transform U to S ? (*)

Surprise ?

The answer to (*) is NO !
Counter Example :
E : ρ→ pρ+ (1 − p)ρXρX
S = {|0〉, |1〉} ⇒ QZEC(S, E) = 0 unless p=0 or p=1.
S

′
= HS = {|0〉 + |1〉/

√
2, {|0〉 − |1〉/

√
2} ⇒ QZEC(S, E) = 1
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Zero-error capacity of quantum channels

Summary

Summary of our contributions

We have proposed a new kind of capacity to quantum
channels:

We generalized the classical zero-error capacity to include
quantum channels

We formally defined an error-free quantum code

Necessary and sufficient condition to C(0) > 0

We developed an graph theoretic approach to the problem
of finding the quantum ZEC.
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Zero-error capacity of quantum channels

Summary

Summary of our contributions
We studied quantum states and measurements reaching the
QZEC:

The capacity can always be reached using an ensemble of pure
states
Collective von Neumann measurements are required to attain the
QZEC

The QZEC with individual measurements is less than or
equal to C(0).

We have exhibited some examples of channels whose QZEC is
claimed to be non-trivial:

It is reached using non-orthogonal quantum states
Quantum codes of length n > 1

The QZEC is upper bounded by the HSW capacity
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Zero-error capacity of quantum channels
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Zero-error capacity of quantum channels

Perspectives

Perspectives - non-exhaustive list

Find an upper bound of the QZEC, based on properties of
the quantum channel itself.

Investigate whether new or alternative derivations of ZEC
computation, for some graphs (in particular for the
pentagon) are possible.

Link with the theory of decoherence free subspaces and
noiseless subsystems.
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Zero-error capacity of quantum channels

Thank you!
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