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Presentation outline

1 Part I - Introduction

Diversity to combat erasures and fadings.

The multiple antenna channel model.

Coding gain and diversity in MIMO channels.

2 Part II - Information Theory

Capacity when channel is unknown at transmitter.

Outage probability for non-ergodic channels.

3 Part III - Coding

Quick introduction to STBC.

Code design criteria for block fading channels.

Example of an LDPC code for MIMO channels.
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Coding for erasure channels (1)

The erasure channel is an extremal case of the Rayleigh fading channel (see
Proakis 2000, Tse & Viswanath 2005). The erasure channel can also model an
application layer where packets are lost due to a failure at the physical layer.

Let us consider the binary erasure channel (BEC). A codeword c = (c1, c2, . . . , cN )
belonging to C[N, K, dmin]2 is transmitted on the BEC, where C is a linear binary
code of length N , dimension K, and minimum Hamming distance dmin.
The iid BEC

The channel is memoryless. If y denotes the channel output then

p(y|c) =
N
∏

i=1

p(yi|ci), p(yi|ci) =







1 − ǫ, yi = ci,
ǫ, yi = X,
0, yi = ci,

where ci ∈ F2, X represents an erasure, and ǫ ∈ [0, 1].

Binary elements are erased independently from each other. The output yi is
equal to the input ci with probability 1 − ǫ. No errors are encountered.
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Coding for erasure channels (2)

The non-ergodic BEC

The channel has memory. Let us divide the codeword c into L blocks Cℓ,
ℓ = 1 . . . L, each block has length N/L bits.

Blocks are erased independently from each other, an erasure occurs with
probability ǫ. After writing y = (Y1, . . . , YL) and c = (C1, . . . , CL), we get

p(y|c) =

L
∏

ℓ=1

p(Yℓ|Cℓ), p(Yℓ|Cℓ) =







1 − ǫ, Yℓ = Cℓ,
ǫ, Yℓ = XL

1 ,
0, otherwise,

where Yℓ ∈ F
N/L
2

⋃

{XL
1 }, and XL

1 represents L erased bits.

Degrees of Freedom
The iid BEC has N degrees of freedom whereas the non-ergodic BEC has only L
degrees of freedom. Exempli gratia, N = 1000 and L = 3.
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Coding for erasure channels (3)

Consider an iid BEC and a repetition code C(N, 1, N)2. The word error
probability after decoding is Pe = ǫN .

Consider an iid BEC and a non-trivial code C(N, K, dmin)2. A maximum
likelihood decoder fails to decode an erasure pattern iff this pattern contains
the support of a nonzero codeword (e.g. see Schwartz & Vardy 2005). Let
ΨML(ω) denote the number of such erasure patterns with weight ω. Then,

Pe(ML) =

N
∑

ω=dmin

ΨML(ω)ǫω(1 − ǫ)N−ω.

A similar expression is obtained under iterative decoding using the notion of
stopping sets (e.g. see Di, Proietti, Teletar, Richardson, & Urbanke 2002).

For small ǫ, the asymptotic behavior is

Pe(ML) ∝ ǫdmin .
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Coding for erasure channels (4)

Consider a non-ergodic BEC with parameter L and a repetition code
C(L, 1, L)2 or a direct sum of N/L versions of this code, i.e.,
C = (L, 1, L)⊕ (L, 1, L) . . .⊕ (L, 1, L). The error probability after decoding
the repetition code is Pe = ǫL.

Consider a non-ergodic BEC and a non-trivial code C(N, K, dmin)2. Then,
the word error probability after decoding satisfies Pe ≥ ǫL.

Definition 1: Diversity on erasure channels

The diversity order d attained by a code C is defined as

d = lim
ǫ→0

log Pe

log ǫ
.

Notice that diversity on iid BEC is upper bounded by dmin (dmin ≤ N) whereas
diversity on non-ergodic BEC is upperbounded by L (L ≤ N). Non-ergodic
channels are also referred to as limited diversity channels.
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Coding for erasure channels (5)

Let ωℓ be the Hamming weigh of the block Cℓ. The codeword weight ω(c) is the

sum of partial weights, i.e., ω(c) =
∑L

ℓ=1
ωℓ.

Theorem 2: Design criterion for non-ergodic BEC

C is full diversity (d = L) under ML decoding on a non-ergodic BEC if and only if,
∀c ∈ C \ {0}, all partial Hamming weights are non zero, i.e., ωℓ 6= 0, ∀ℓ.

Example: (Boutros, Guillén i Fàbregas, & Calvanese Strinati 2005)
The code is C = [8, 4, 4]2 and L = 2. There exist 8!/(4!)2 = 70 possibilities to
define blocks C1 and C2. The 70 multiplexers are grouped into 2 different classes:

14 multiplexers with diversity 1 (no diversity) and weight enumerator

A(x, y) =
∑

c∈C

xω1yω2 = 1 + x4 + y4 + 12x2y2 + x4y4.

56 multiplexers with full diversity (d = L = 2) and weight enumerator

A(x, y) = 1 + 6x2y2 + 4x3y + 4xy3 + x4y4.

Exercice: Define C1 = (c1, . . . , c12) and C2 = (c13, . . . , c24). Find a full-diversity
version of the [24, 12, 8] Golay code on L = 2 non-ergodic erasure channel.
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Coding for fading channels (1)

The fading channel is defined by the input-output relation

yi = hixi + ηi,

where the fading coefficient hi is CN (0, 1) (known at the receiver side) and the
additive white noise ηi is CN (0, 2σ2). The channel likelihood is

p(yi|xi, hi) =
1

2πσ2
exp(−

|yi − hixi|2

2σ2
).

Erasure and Fading

By restricting αi = |hi| to {0, +∞}, the fading channel becomes an erasure channel.
P (αi = 0) = ǫ and P (αi = +∞) = 1 − ǫ.

Usually xi = f(ci), where f : Fq → Z2 is a mapping that converts the finite field
elements into complex symbols. This mapping is known as a QAM modulation.
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Coding for fading channels (2)

Erasure Channel

Fading Channel

yi ∈ C

noise ηfading α

xi ∈ q − QAM

ǫ

yi ∈ Fq
ci ∈ Fq
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Coding for fading channels (3)

The notions of iid and non-ergodic fading channels are directly derived from
those defining the BEC given on slides 1 and 2.

Definition 1 of diversity on BEC and Theorem 2 on the code design criterion
for BEC are still valid on a Rayleigh fading channel. The erasure probability ǫ
is replaced by the signal-to-noise ratio

γ =
E[|xi|2]

E[|ηi|2]
.

The word error probability at the decoder output is denoted by Pe. The
full-diversity behavior Pe ∝ ǫL becomes Pe ∝ 1/γL.

Definition 3: Diversity on fading channels

The diversity order d attained by a code C is defined as

d = − lim
γ→+∞

log Pe

log γ
.
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Coding for fading channels (4)

Let x = f(c) and x̂ = f(ĉ) be two codewords. The partial Hamming weights
ωℓ defined for the non-ergodic BEC can now be extended to the non-ergodic
fading channel as follows:

Divide a codeword into L blocks, each block containing N/L components.

The quantity ωℓ is the weight of the ℓth block in x − x̂, i.e., the number of

non-zero components in the difference.

Example: N = 4, q = 4, and L = 2. Take x = (+1, +1,−3,−3), if
x̂ = (−1,−1,−3,−3) then ω1 = 2 and ω2 = 0. If x̂ = (−1, +1, +3, +3) then
ω1 = 1 and ω2 = 2.

Theorem 4: ML design criterion for non-ergodic fading channels

C is full diversity (d = L) on a non-ergodic fading channel iff, ∀x, x̂ ∈ f(C), x 6= x̂,
all partial Hamming weights are non zero, i.e., ωℓ 6= 0, ∀ℓ.
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The MIMO channel (1)

Two parallel single antenna fading channels 

A multiple antenna (MIMO) fading channel

h2

x2 y2

h11

x1

x2

y1

y2

y = Hx + η

h1

x1 y1

H =

(

h11 h12

h21 h22

)

h22

h21

h12

y = Hx + η

H =

(

h1 0

0 h2

)

Joseph J. Boutros Journées Codage et Cryptographie, Carcans, Gironde March 2008 10 / 30



Diversity MIMO channel MIMO Capacity Space-Time Coding

The MIMO channel (3)

Mathematical (analytical) models

Physical modeling of a MIMO channel cannot lead to space-time coding design
criteria. Mathematical modeling is necessary.

The simplest mathematical model for a nt × nr MIMO channel is

y = Hx + η,

where

H = [hij ] is a nr × nt matrix with complex circularly symmetric iid gaussian
entries of zero mean and unit variance, hij ∼ CN (0, 1).

x is a column vector including the nt transmitted symbols,
xi ∈ q − QAM ⊂ Z2.

η is a noise vector whose components are complex gaussian and iid,
ηi ∼ CN (0, 2σ2).

Joseph J. Boutros Journées Codage et Cryptographie, Carcans, Gironde March 2008 11 / 30



Diversity MIMO channel MIMO Capacity Space-Time Coding

The MIMO channel (5)

The diversity on a MIMO channel is also given by Definition 3, i.e.,

Pe ≈
1

(gγ)d
γ ≫ 1,

where g is referred to as the coding gain.

The MIMO channel as defined in its simplest model on the previous slide has
nt × nr degrees of freedom. For a static channel H , i.e., H is constant within
a codeword, we have

nr ≤ d ≤ nt × nr.

The lower bound is attained in absence of coding. The ratio d/nr is known as
the transmit diversity.

The (receive) space dimension for one channel use is nr. Hence, achieving the
maximal diversity nt × nr must require nt channel transmissions at least. The
expression “space-time coding” describes the spreading in both space and
time of codes designed for MIMO channels.
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The MIMO channel (6)

The main objective of space-time coding is to build easily encodable and
decodable codes that maximize both coding gain g and diversity d for a given
information rate R.

Let Rc = K/N denotes the coding rate of C. Then, the information rate
expressed in bits per channel use (bpcu) is given by

R = nt × Rc × log2(q) bpcu

Distributing the components of a space-time code over the nt transmit
antennas is referred to as spatial multiplexing.

When compared to an uncoded single antenna system, the MIMO information
rate is multiplied by a factor µ = ntRc. This increase in information rate is
called multiplexing gain.

Another (asymptotic) information theoretical definition of µ is given by

µ = lim
γ→+∞

R(γ)

log2 γ
,

which is equivalent to the assumption R = µ log2 γ + O(1).
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Capacity of MIMO channels (1)

A single antenna (also single user) ideal channel without fading, known as AWGN
channel, is described by

y = x + η x, y, η ∈ C

Capacity is given by the famous formula (Shannon 1948)

CAWGN = log2(1 + γ).

Recall that it is possible to find a code C such that Pe → 0 when N → +∞
iff R < C (e.g., see Cover & Thomas 1993, Gallager 1968).

At high SNR, on a single antenna AWGN channel, doubling the transmitted energy
increases the capacity by one bit only

CAWGN (2γ) ≈ log2(2γ) ≈ 1 + CAWGN (γ) bpcu.
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Capacity of MIMO channels (2)

On a fading channel with L parallel branches (diagonal MIMO), where the L
fading coefficients H = Diag(h1, . . . , hL) are only known at the receiver side and
the SNR per branch is γi = γ/L, we have

C(H) =

L
∑

i=1

log2(1+|hi|
2γi) = log2

(

L
∏

i=1

(1 + |hi|
2 γ

L
)

)

= log2 det
(

IL +
γ

L
HH†

)

.

The above result is still valid for any nt × nr MIMO channel (Telatar 1995) where
the exact proof is based on the fact that a circularly symmetric complex gaussian
vector with covariance matrix Γ yields a maximal differential entropy equal to
log2 det(πeΓ).
For the MIMO channel y = Hx + η, x ∈ Cnt , y ∈ Cnr , the conditional capacity
C(H) is defined as the average mutual information I(x; y) between x and y for a
given channel matrix H . The capacity C(H) is obtained by assuming that the
input is gaussian with covariance matrix Q = γ

nt

Int
(uniform gaussian input).
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Capacity of MIMO channels (3)

Assume a uniform gaussian input and H only known at the receiver side.

Definition 5: Capacity of an ergodic iid Rayleigh MIMO channel

The ergodic capacity of the nt × nr MIMO channel is

C(γ, nt, nr) = EH

[

log2 det

(

Inr
+

γ

nt
HH†

)]

.

At high SNR (γ ≫ 1), It can be shown that (Foschini 1996)

C(γ, nt, nr) = min(nt, nr) log2(γ) + O(1).

Then, for a symmetric channel nt = nr = n, we have

C(2γ, n) ≈ n log2(2γ) ≈ n + C(γ, n)

Doubling the transmitted energy increases the capacity by n bits. In the next slide,
the ergodic capacity is plotted versus Eb/N0 = nrγ/C(γ, nt, nr), recall that
Q = E[xx†] = γ

nt

Int
.
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Capacity of MIMO channels (4)
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Outage probability (2)

• For general non-ergodic fading channels, a key idea is to consider the mutual
information I(x; y|H) betweeen the channel input and output as a random
variable. Each time we pick up a random instance of the channel H , it renders a
new instantaneous value of I(x; y|H). For a given information rate R to be
transmitted, an information theoretical limit on the word error probability is given
by (Ozarow, Shamai, Wyner 1994, see also Biglieri, Proakis, Shamai 1998)

Pout = P ( I(x; y|H) < R )

• A similar approach is used for non-ergodic MIMO channels (Telatar 1999,
Foschini & Gans 1998). There is an outage each time C(H, Q) is less than the
targeted information rate. Here, the average mutual information between x and
y = Hx + η is indexed by the MIMO channel matrix H and the covariance
Q = E[xx†]. The outage probability is

Pout = P
(

log det
(

Inr
+ HQH†

)

< R
)

It is conjectured that Pout is minimized by using a uniform power allocation over a
subset of the transmit antennas.
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Outage probability (3)
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Coding for MIMO channels (1)

Coding for ergodic channels

• The problem of designing error-correcting codes for ergodic MIMO channels (fast
fading) is not an issue.
• Any capacity-achieving code designed for the AWGN channel will do the job when
transmitted on a channel with an infinite number of degrees of freedom.

Coding for non-ergodic channels

• The problem of designing error-correcting codes for non-ergodic MIMO channels
(slow fading) is a difficult issue.
• For example, an outage-approaching code should mix both randomness and de-
terminism in its structure.
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Coding for MIMO channels (2)

Unless otherwise stated, we restrict the rest of this lecture to static channels
(non-ergodic) where a codeword undergoes a unique channel instance (nc = 1).
When nc > 1, the diversity is multiplied accordingly and the code design is similar.

As shown in the first part of this lecture, a rate 1/2 repetition code C[2, 1]q
can achieve diversity 2 on a block erasure channel with two independent
blocks per codeword, Pe = ǫ2.

Let us start with a simple example on a 2 × 1 MIMO channel. What is the
equivalent of C[2, 1]q on a MIMO channel?
One simple solution: the Alamouti code.
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Coding for MIMO channels (3)

Consider the following codeword (Alamouti 1998) written in matrix format

x =

[

x1 −x∗
2

x2 x∗
1

]

where xi ∈ q − QAM ⊂ Z2.

Row 1 is transmitted on antenna 1. Row 2 is transmitted on antenna 2.

Two time periods are needed to transmit x on a 2 × 1 MIMO channel. The
rate is R = nt × Rc × log2(q) = log2(q) bpcu, where nt = 2 and Rc = 1/2.

The channel output is
y = Hx + η

where H = [h1 h2] and y, η ∈ C1×2.
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Coding for MIMO channels (4)

Develop the expression of the channel output when Alamouti code is
transmitted.

y1 = h1x1 + h2x2 + η1

y2 = −h1x
∗
2 + h2x

∗
1 + η2

To decode, let us compute

h∗
1y1 + h2y

∗
2 =

(

|h1|2 + |h2|2
)

x1 + η
′

1

h∗
2y1 − h1y

∗
2 =

(

|h1|2 + |h2|2
)

x2 + η
′

2

Transmit diversity 2 is achieved since (see Tse & Viswanath 2005)

P
(

(|h1|
2 + |h2|

2)γ < 1
)

∝
1

γ2
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Coding for MIMO channels (5)

Alamouti code belongs to the family of Orthogonal Space-Time Block codes
(OSTBC). The codewords satisfy

xx† ∝ Int

Two examples of OSTBC for nt = 3 and nt = 4 antennas both with rate
R = 3

4
log2(q). Four time periods are needed to transmit a codeword.





x1 −x∗
2 x∗

3 0
x2 x∗

1 0 −x∗
3

x3 0 −x∗
1 x∗

2













x1 0 x2 −x3

0 x1 x∗
3 x∗

2

−x∗
2 −x3 x∗

1 0
x∗

3 −x2 0 x∗
1









OSTBC is an important subclass of linear STBC. For more information See
the book by Larsson & Stoica 2003, or the book by Oestges & Clercks 2007.

Main drawback: they suffer from a weak information rate R (the equivalent
embedded Rc is too small).
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Coding for MIMO channels (6)

Consider a linear code C[Nnt, K]q of rate Rc = Nnt/K. Write a codeword as

c =







c1
1 c1

2 . . . c1
N

...
...

...
cnt

1
cnt

2
. . . cnt

N







Using the mapping f : Fq → Z2, transmit x = f(c) on nt × nr channel.

It can be shown (e.g., see El Gamal & Hammons 2003) that the pairwise error
probability is upper bounded as (ML decoder assumed)

P (c → c′) ≤

(

1
∏t

i=1
(1 + λiγ/4nt)

)nr

≤

(

gγ

4nt

)−tnr

where t = rank(f(c) − f(c′)), the coding gain is g = (λ1λ2 · · ·λt)
1/t, and

{λi} are the eigen values of [f(c) − f(c′)][f(c) − f(c′)]†.
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Coding for MIMO channels (7)

From the expression of the pairwise error probability, we can state
(Guey, Fitz, Bell, & Kuo 1996, and Tarokh, Seshadri, & Calderbank 1998)

Design criterion for static MIMO

Under ML decoding, a space-time code should satisfy (over all pairs of distinct
codewords c and c′)
• Rank: Maximize the transmit diversity t = rank(f(c) − f(c′)).
• Product distance: Maximize the coding gain g = (λ1λ2 · · ·λt)

1/t.

The above design criterion cannot guarantee the construction of
outage-achieving codes.

The above design criterion cannot be used to build iteratively decodable graph
codes (e.g., LDPC codes) for MIMO channels.

Nevertheless, it has been used to successfully build space-time block codes
(not including an error-correcting code C) that guarantee excellent
performance for uncoded q-QAM modulations.
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Coding for MIMO channels (8)

Let us study an example of full-diversity LDPC coding for a 2 × 2 MIMO channel.

Each transmit antenna behaves like a channel state. The state generates an
erasure with a probability ǫ′

ǫ′ = P
(

(|h11|
2 + |h21|

2)γ < 1
)

∝
1

γ2

Our aim is to achieve (ǫ′)2, i.e., Pe ∝ 1

γ4

x1

ǫ′

ǫ′

y1

y2x2

h22

h11

h12

h21
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Coding for MIMO channels (9)

Rate-1/2 Full-diversity root-LDPC code for a 2-state block fading channel
(Boutros, Guillén i Fàbregas, Biglieri, & Zémor 2007)
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�
�
�
�
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1

1

3

2

2

3

1

1

2

3

3

N/4 nodes

N/4 nodes

N/4 nodes

N/4 nodes

N/4 nodes

N/4 nodes

White-colored bits: antenna 1 Red-colored bits: antenna 2
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Coding for MIMO channels (10)

The parity-check matrix of the root-LDPC code has the following structure
(mixture of randomness and determinism).

1
1

1

1

0

1
1

1

1

0

H =

1p 2p

1c

2cH1i H1p

H2i H2p

1i 2i

Theorem 6: threshold in absence of fading

On a gaussian channel, under iterative decoding, a (λ(x), ρ(x)) root-LDPC code
has the same decoding threshold as a random (λ(x), ρ(x)) LDPC code.

Theorem 7: full-diversity for a rate-1/2 root-LDPC

Consider a static 2 × nr MIMO channel. Under iterative decoding, a (λ(x), ρ(x))
root-LDPC code achieves full state diversity (ǫ′)2, i.e., Pe ∝ 1/(γ)2nr .
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Summary

The erasure channel can be a starting point for the study of more complex
channels such as the MIMO channel.

The MIMO channel offers a higher capacity (higher data rates) than a single
antenna medium.

Several coding techniques are well established for space-time coding, practical
applications are slowed down by the decoding complexity.
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