On the Security of MinRank

Ludovic Perret

(Jean-Charles Faugère and Françoise Levy-dit-Vehel)

SALSA
LIP6, Université Paris 6 \& INRIA Paris-Rocquencourt Jean-Charles.Faugere@grobner.org, ludovic.perret@lip6.fr ENSTA/UMA/ALI
levy@ensta.fr

Journées C2 - 2008

Outline

1 MinRank and Related Problems

- Complexity issues
- Solving MinRank

2 A Fresh look at Kipnis-Shamir's attack

3 Conclusion and open problems

The MinRank problem

MR

Input : $N, n, k \in \mathbb{N}^{*}, M_{0}, \ldots, M_{k} \in \mathcal{M}_{N \times n}\left(\mathbb{F}_{q}\right), r \in \mathbb{N}^{*}$.
Question: decide if there exists $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{F}_{q}^{k}$ such that :

$$
\operatorname{Rk}\left(M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}\right) \leq r
$$

Theorem (Courtois 01)
MR is NP-Complete.

Related Problems

Rank decoding over $\mathbb{F}_{q^{N}}$:
RD: Input : $N, n, k \in \mathbb{N}^{*}, G \in \mathcal{M}_{k \times n}\left(\mathbb{F}_{q^{N}}\right), y \in \mathbb{F}_{q^{N}}^{n}, r \in \mathbb{N}^{*}$. Question : is there a vector $\mathbf{m} \in \mathbb{F}_{q^{N}}^{k}$, such that $e=y-\mathbf{m} G$ has rank $\operatorname{Rk}\left(e \mid \mathbb{F}_{q}\right) \leq r$?

Here $\operatorname{Rk}\left(e \mid \mathbb{F}_{q}\right)=\operatorname{Rk}\left(\operatorname{mat}_{\mathcal{B}}(e)\right), \mathcal{B}$ a basis of $\mathbb{F}_{q^{N}}$ over \mathbb{F}_{q}.
Maximum likelihood decoding over \mathbb{F}_{q} :
MLD: Input : $n, k \in \mathbb{N}^{*}, G \in \mathcal{M}_{k \times n}\left(\mathbb{F}_{q}\right), y \in \mathbb{F}_{q}^{n}$, and $w \in \mathbb{N}^{*}$.
Question : is there $\mathbf{m} \in \mathbb{F}_{q}^{k}$ s. t . weight of $y-\mathbf{m} G$ is $\leq w$?

Complexity issues

Open Question

RD is NP-Complete?

A natural reduction

By reduction from MR, i.e. f :
$\operatorname{MR}\left(N, n, k, M_{0}, M_{1}, \ldots, M_{k}, w\right) \mapsto \operatorname{RD}(N, n, k, G, y, w)$,
with :

- $L_{i}=\operatorname{vect}_{\mathcal{B}}\left(M_{i}\right) \in\left(\mathbb{F}_{q^{N}}\right)^{n}$, for all $i, 1 \leq i \leq k$
- $G={ }^{t}\left(L_{1}, \ldots, L_{k}\right)$
- $y=\operatorname{vect}_{\mathcal{B}}\left(M_{0}\right) \in\left(\mathbb{F}_{q^{N}}\right)^{n}$.

The Kernel Attack (Courtois, Goubin)

We consider $\operatorname{MR}\left(n, k, M_{0}, \ldots, M_{k}, r\right)$, i.e. find $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{F}_{q}^{k}$ such that:

$$
\operatorname{Rk}\left(M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}\right)=r
$$

■ Set $E_{\lambda}=M_{0}-\sum_{j=1}^{k} \lambda_{j} M_{j}$, we have : $\operatorname{dim}\left(\operatorname{Ker} E_{\lambda}\right)=n-r \Rightarrow \operatorname{Pr}\left\{X \in_{R} \mathbb{F}_{q}^{n}\right.$ belongs to $\left.\operatorname{Ker} E_{\lambda}\right\}=q^{-r}$.

- Choose m vectors $X^{(i)} \in_{R} \mathbb{F}_{q}^{n}, i, 1 \leq i \leq m$.

■ Solve the system of $m \cdot n$ equations for $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \mathbb{F}_{q}^{k}$,

$$
\left(M_{0}-\sum_{j=1}^{k} \mu_{j} M_{j}\right) X^{(i)}=\mathbf{0}_{n}, \forall i, 1 \leq i \leq m
$$

if $m=\left\lceil\frac{k}{n}\right\rceil$, essentially "only one solution" $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$.

- Complexity : $\mathcal{O}\left(q^{\left\lceil\frac{k}{n}\right\rceil r} k^{3}\right)$.

Kipnis-Shamir's attack

Idea

Model MR as an MQ problem.

- Set $E_{\lambda}=M_{0}-\sum_{j=1}^{k} \lambda_{j} M_{j}$, where $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a solution of MR.
- $\operatorname{Rk} E_{\lambda}=r \Leftrightarrow \exists(n-r)$ independent vectors in $\operatorname{Ker} E_{\lambda}$.

■ Look for such vectors of the form : $x^{(i)}=\left(e_{i}, x_{1}^{(i)}, \ldots, x_{r}^{(i)}\right)$, where $e_{i} \in \mathbb{F}_{q}^{n-r}$ and $x_{j}^{(i)} s$ are variables. Then :

$$
\left(M_{0}-\sum_{j=1}^{k} y_{j} M_{j}\right) x^{(i)}=\mathbf{0}_{n}, \forall 1 \leq i \leq n-r
$$

is a quadratic system of $(n-r) n$ equations in $r(n-r)+k$ unknowns.

- We shall call $\mathcal{I}_{\mathrm{KS}}$ the ideal generated by these equations.

The minors method

- Set $E_{\lambda}=M_{0}-\sum_{j=1}^{k} \lambda_{j} M_{j}$ and $E_{\lambda}^{\left(r^{\prime}\right)}$ an $r^{\prime} \times r^{\prime}$ submatrix of E_{λ}.
- Write that all $\operatorname{det}\left(E_{\lambda}^{\left(r^{\prime}\right)}\right)=0, r^{\prime}=r+1$.
- We get a system of $\binom{n}{r^{\prime}}$ eqs. of degree r^{\prime}.

Outline

1 MinRank and Related Problems

- Complexity issues
- Solving MinRank

2 A Fresh look at Kipnis-Shamir's attack

3 Conclusion and open problems

Properties of KS equations

Theorem

Let $\left(n, k, M_{0}, M_{1}, \ldots, M_{k}, r\right)$ be an instance of MinRank. There is a one-to-one correspondence between $\mathcal{S o l}\left(n, k, M_{0}, M_{1}, \ldots, M_{k}, r\right)$ - the set of solutions of MinRank - and :

$$
V_{\mathbb{F}_{q}}\left(\mathcal{I}_{\mathrm{KS}}\right)=\left\{\mathbf{z} \in \mathbb{F}_{q}^{r \cdot(n-r)+k}: f(\mathbf{z})=0, \text { for all } f \in \mathcal{I}_{\mathrm{KS}}\right\}
$$

Properties of KS equations

Proposition

We will suppose that $\mathcal{I}_{\mathrm{KS}}$ is radical, i.e. :

$$
\sqrt{\mathcal{I}_{\mathrm{KS}}}=\left\{f \in \mathbb{F}_{q}\left[y_{1}, \ldots, y_{m}\right]: \exists r>0 \text { s. t. } f^{r} \in \mathcal{I}_{\mathrm{KS}}\right\}=\mathcal{I}_{\mathrm{KS}} .
$$

Set $E\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{k} y_{i} M_{i}-M_{0}$. Then all the minors of $E\left(y_{1}, \ldots, y_{m}\right)$ of degree $r^{\prime}>r$ lie in $\mathcal{I}_{\mathrm{KS}}$.

Proof.

It is clear that all the minors vanish on $V_{\mathbb{F}_{q}}\left(\mathcal{I}_{\mathrm{KS}}\right)$. By Hilbert's
Strong Nullstellensatz, we get that all the minors of rank $r^{\prime}>r$ lie in the radical of $\mathcal{I}_{\mathrm{KS}}$. This ideal being radical, it turns out that all those minors lie in $\mathcal{I}_{\mathrm{KS}}$.

Courtois' authentication scheme

■ 3-pass zero-knowledge authentication protocol

- Based on MR

■ Provably secure: breaking the scheme is equivalent to either finding a collision for the hash function or solving the underlying instance of MR.

- Communication complexity: 1075 bits/round for $n=6$, $q=65521$. (then, PK: 735 bits, SK: 160 bits).
■ Security: best attack on MR : 2^{106}.

Zero-dim solving

- Compute a DRL Gröbner basis
- Buchberger's algorithm (1965)
- F_{4} (J.-C. Faugère, 1999)
- F_{5} (J.-C. Faugère, 2002)
\Rightarrow For a zero-dim system :

$$
\mathcal{O}\left(m^{3 \cdot d_{\text {reg }}}\right),
$$

$d_{\text {reg }}$ being the max. degree reached during the computation.
■ Compute a LEX Gröbner basis by a FGLM change of ordering

Courtois' Authentication Scheme - Challenges

■ $A: \mathbb{F}_{65521}, k=10, n=6, r=3$ (18 eq., and 18 variables)
■ $\mathrm{F}_{5}+$ FGLM : 1 minute ($30 \mathrm{~s} .+30 \mathrm{~s}$.), nb_sol $=982, \mathrm{~d}_{\text {reg }}=5$
■ $B: \mathbb{F}_{65521}, k=10, n=7, r=4$ (21 eq., and 21 variables)
■ $\mathrm{F}_{5}+$ FGLM : 3764s.+2580s., nb_sol=4116, $\mathrm{d}_{\text {reg }}=6$

- C $: \mathbb{F}_{65521}, k=10, n=11, r=8$ (33 eq., and 33 variables)

■ $D: \mathbb{F}_{2}, k=81, n=11, r=10$

Theoretical Complexity

Remark

The ideal $\mathcal{I}_{\mathrm{KS}}$ is bi-homogeneous.

Theorem

Let $r^{\prime}=n-r$ is constant, we can solve in polynomial time the minRank $\left(k=r^{\prime 2}, n, r=n-r^{\prime}\right)$ problem using Gröbner bases computation; a bound for the number of solutions in the algebraic closure of \mathbb{K} is given by $\# \mathcal{S}$ ol $\leq\binom{ n}{r^{\prime}}^{r^{\prime}}$; a complexity bound of the attack is given by

$$
\mathcal{O}\left(n^{3 r^{\prime 2}}\right)
$$

(k, n, r)	$(9,6,3)$	$(9,7,4)$	$(9,11,8)$
\#Sol (MH Bezout bound)	8000	42875	$2^{22.1}$
Complexity bound $(\# S o l)^{3}$	$2^{38.9}$	$2^{46.2}$	$2^{66.3}$

Conclusion and open problems

■ Find alternative/better modellings for MinRank by means of eq. systems.
■ How to exploit MR for coding theory pbs.?

