On the Security of MinRank

Ludovic Perret

(Jean-Charles Faugère and Françoise Levy-dit-Vehel)

SALSA

LIP6, Université Paris 6 & INRIA Paris-Rocquencourt Jean-Charles.Faugere@grobner.org, ludovic.perret@lip6.fr

ENSTA/UMA/ALI levy@ensta.fr

Journées C2 - 2008

Outline

- 1 MinRank and Related Problems
 - Complexity issues
 - Solving MinRank
- 2 A Fresh look at Kipnis-Shamir's attack
- 3 Conclusion and open problems

The MinRank problem

MR

Input: $N, n, k \in \mathbb{N}^*$, $M_0, \ldots, M_k \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$, $r \in \mathbb{N}^*$. Question: decide if there exists $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$ such that:

$$\operatorname{Rk}\left(M_0 - \sum_{i=1}^k \lambda_i M_i\right) \le r.$$

Theorem (Courtois 01)

MR is NP-Complete.

Related Problems

Rank decoding over \mathbb{F}_{q^N} :

RD: Input : $N, n, k \in \mathbb{N}^*$, $G \in \mathcal{M}_{k \times n}(\mathbb{F}_{q^N})$, $y \in \mathbb{F}_{q^N}^n$, $r \in \mathbb{N}^*$.

Question : is there a vector $\mathbf{m} \in \mathbb{F}_{q^N}^k$, such that $e = y - \mathbf{m}G$ has rank $\mathrm{Rk}(e \mid \mathbb{F}_q) \leq r$?

Here $\mathrm{Rk}(e \,|\, \mathbb{F}_q) = \mathrm{Rk}(\mathrm{mat}_{\mathcal{B}}(e)), \; \mathcal{B}$ a basis of \mathbb{F}_{q^N} over \mathbb{F}_q .

Maximum likelihood decoding over \mathbb{F}_q :

MLD: Input : $n, k \in \mathbb{N}^*$, $G \in \mathcal{M}_{k \times n}(\mathbb{F}_q)$, $y \in \mathbb{F}_q^n$, and $w \in \mathbb{N}^*$.

Question: is there $\mathbf{m} \in \mathbb{F}_q^k$ s. t. weight of $y - \mathbf{m}G$ is $\leq w$?

Complexity issues

Open Question

RD is NP-Complete?

A natural reduction

By reduction from MR, i.e. f:

$$MR(N, n, k, M_0, M_1, \dots, M_k, w) \mapsto RD(N, n, k, G, y, w),$$

with:

- $L_i = \text{vect}_{\mathcal{B}}(M_i) \in (\mathbb{F}_{q^N})^n$, for all $i, 1 \leq i \leq k$
- $G = {}^{t}(L_1, \ldots, L_k)$
- $y = \mathrm{vect}_{\mathcal{B}}(M_0) \in (\mathbb{F}_{q^N})^n.$

The Kernel Attack (Courtois, Goubin)

We consider $MR(n, k, M_0, ..., M_k, r)$, i.e. find $(\lambda_1, ..., \lambda_k) \in \mathbb{F}_q^k$ such that :

$$\operatorname{Rk}\left(M_0 - \sum_{i=1}^k \lambda_i M_i\right) = r.$$

- Set $E_{\lambda} = M_0 \sum_{j=1}^k \lambda_j M_j$, we have : $\dim(\operatorname{Ker} E_{\lambda}) = n r \Rightarrow \Pr\{X \in_R \mathbb{F}_q^n \text{ belongs to } \operatorname{Ker} E_{\lambda}\} = q^{-r}$.
- Choose m vectors $X^{(i)} \in_R \mathbb{F}_q^n$, $i, 1 \leq i \leq m$.
- Solve the system of $m \cdot n$ equations for $(\mu_1, \dots, \mu_k) \in \mathbb{F}_{q^k}^k$

$$\left(M_0 - \sum_{i=1}^k \mu_j M_j\right) X^{(i)} = \mathbf{0}_n, \ \forall i, 1 \le i \le m.$$

- if $m = \lceil \frac{k}{n} \rceil$, essentially "only one solution" $\lambda = (\lambda_1, \dots, \lambda_k)$.
- Complexity : $\mathcal{O}(q^{\lceil \frac{k}{n} \rceil r} k^3)$

Kipnis-Shamir's attack

Idea

Model MR as an MQ problem.

- Set $E_{\lambda} = M_0 \sum_{j=1}^k \lambda_j M_j$, where $(\lambda_1, \dots, \lambda_k)$ is a solution of MR.
- $\operatorname{Rk} E_{\lambda} = r \iff \exists (n-r) \text{ independent vectors in } \operatorname{Ker} E_{\lambda}.$
- Look for such vectors of the form : $x^{(i)} = (e_i, x_1^{(i)}, \dots, x_r^{(i)})$, where $e_i \in \mathbb{F}_q^{n-r}$ and $x_i^{(i)}$ s are variables. Then :

$$\left(M_0 - \sum_{j=1}^k y_j M_j\right) x^{(i)} = \mathbf{0}_n, \ \forall 1 \le i \le n-r,$$

is a quadratic system of (n-r)n equations in r(n-r)+k unknowns.

lacktriangle We shall call $\mathcal{I}_{\mathrm{KS}}$ the ideal generated by these equations.

The minors method

- Set $E_{\lambda} = M_0 \sum_{j=1}^k \lambda_j M_j$ and $E_{\lambda}^{(r')}$ an $r' \times r'$ submatrix of E_{λ} .
- Write that all $\det(E_{\lambda}^{(r')}) = 0$, r' = r + 1.
- We get a system of $\binom{n}{r'}$ eqs. of degree r'.

Outline

- 1 MinRank and Related Problems
 - Complexity issues
 - Solving MinRank
- 2 A Fresh look at Kipnis-Shamir's attack
- 3 Conclusion and open problems

Properties of KS equations

Theorem

Let $(n, k, M_0, M_1, ..., M_k, r)$ be an instance of MinRank. There is a one-to-one correspondence between $Sol(n, k, M_0, M_1, ..., M_k, r)$

– the set of solutions of MinRank – and :

$$V_{\mathbb{F}_q}(\mathcal{I}_{\mathrm{KS}}) = \{ \mathbf{z} \in \mathbb{F}_q^{r \cdot (n-r) + k} : f(\mathbf{z}) = 0, \text{ for all } f \in \mathcal{I}_{\mathrm{KS}} \}.$$

Properties of KS equations

Proposition

We will suppose that \mathcal{I}_{KS} is radical, i.e. :

$$\sqrt{\mathcal{I}_{\mathrm{KS}}} = \{ f \in \mathbb{F}_q[y_1, \dots, y_m] : \exists r > 0 \text{ s. t. } f^r \in \mathcal{I}_{\mathrm{KS}} \} = \mathcal{I}_{\mathrm{KS}}.$$

Set $E(y_1, ..., y_m) = \sum_{i=1}^k y_i M_i - M_0$. Then all the minors of $E(y_1, ..., y_m)$ of degree r' > r lie in \mathcal{I}_{KS} .

Proof.

It is clear that all the minors vanish on $V_{\mathbb{F}_q}(\mathcal{I}_{KS})$. By Hilbert's Strong Nullstellensatz, we get that all the minors of rank r'>r lie in the radical of \mathcal{I}_{KS} . This ideal being radical, it turns out that all those minors lie in \mathcal{I}_{KS} .

Courtois' authentication scheme

- 3-pass zero-knowledge authentication protocol
- Based on MR
- Provably secure: breaking the scheme is equivalent to either finding a collision for the hash function or solving the underlying instance of MR.
- Communication complexity: 1075 bits/round for n = 6, q = 65521. (then, PK: 735 bits, SK: 160 bits).
- Security: best attack on MR: 2¹⁰⁶.

Zero-dim solving

- Compute a DRL Gröbner basis
 - Buchberger's algorithm (1965)
 - F₄ (J.-C. Faugère, 1999)
 - F₅ (J.-C. Faugère, 2002)
 - \Rightarrow For a zero-dim system :

$$\mathcal{O}\left(m^{3\cdot d_{reg}}\right)$$
,

 d_{reg} being the max. degree reached during the computation.

Compute a LEX Gröbner basis by a FGLM change of ordering

Courtois' Authentication Scheme – Challenges

- $A : \mathbb{F}_{65521}, k = 10, n = 6, r = 3 \text{ (18 eq., and 18 variables)}$
 - F_5 + FGLM : 1 minute (30 s.+30 s.), nb_sol= 982, $d_{reg} = 5$
- $B : \mathbb{F}_{65521}, k = 10, n = 7, r = 4$ (21 eq., and 21 variables)
 - \blacksquare F_5+ FGLM : 3764s.+2580s. , $nb_sol=$ 4116, $d_{\textit{reg}}=6$
- C: \mathbb{F}_{65521} , k = 10, n = 11, r = 8 (33 eq., and 33 variables)
- $D: \mathbb{F}_2, k = 81, n = 11, r = 10$

Theoretical Complexity

Remark

The ideal \mathcal{I}_{KS} is bi-homogeneous.

Theorem

Let r' = n - r is constant, we can solve in polynomial time the minRank $(k = r'^2, n, r = n - r')$ problem using Gröbner bases computation; a bound for the number of solutions in the algebraic closure of \mathbb{K} is given by $\#\mathcal{S}ol \leq \binom{n}{r'}^{r'}$; a complexity bound of the attack is given by

$$\mathcal{O}\left(n^{3\,r'^2}\right)$$
.

$$(k, n, r)$$
 $(9, 6, 3)$ $(9, 7, 4)$ $(9, 11, 8)$ $\#Sol$ (MH Bezout bound) 8000 42875 $2^{22.1}$ Complexity bound $(\#Sol)^3$ $2^{38.9}$ $2^{46.2}$ $2^{66.3}$

Conclusion and open problems

- Find alternative/better modellings for MinRank by means of eq. systems.
- How to exploit MR for coding theory pbs.?