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What is an elliptic curve?

Elliptic curves appear in various areas in mathematics: number theory,
complex analysis, cryptography, mathematical physics. Their name
comes from the studies of elliptic integrals (Euler, Gauss).

An elliptic curve is

I a geometrical object: a nonsingular curve given by an equation

y2 = f (x), with deg f = 3, 4

I an algebraic object: one can “add” two points on a curve to obtain
a third point that is also on the curve.
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The equation of an elliptic curve

I An elliptic curve over a field K of characteristic 6= 2, 3 is given by an
equation of the form

E : Y 2 = X 3 + aX + b, with a, b ∈ K (1)

and ∆ = −16(4a3 + 27b2) 6= 0

I j-invariant: 1728a3/4∆

I The set of K -rational points points of an elliptic curve is

E (K ) = {(x , y) ∈ K × K ; Y 2 = X 3 + aX + b} ∪ {O}

I In the general case, we consider the long Weierstrass form of an
elliptic curve

Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6,

where a1, a2, a3, a4, a6 ∈ K .
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Adding points on an elliptic curve

P

Q

P + Q

[2](P + Q)
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Algebraic description of the addition operation

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on

E : Y 2 = X 3 + aX + b.

The slope of the line (P1,P2) is

λ =


y2 − y1

x2 − x1
if P1 6= ±P2

3x2
1 + a

2y1
if P1 = P2

The sum of P and Q is the point

P + Q = (λ2 − x1 − x2, λ(x1 − x3)− y1).
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Properties of the addition on an elliptic curve

For all P,Q,R ∈ E , the addition law has the following properties:

I P + O = O + P = P

I P + (−P) = O

I (P + Q) + R = P + (Q + R)

I P + Q = Q + P

Thus, (E ,+) forms an Abelian group.

Abelian groups are widely used in public-key cryptography!
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Group based cryptography

Many cryptographic protocols require the use of a finite Abelian group.
For practical use one wants a group G such that

I the group operation is easy to implement (finite algebraic groups are
good candidates),

I the computation of discrete logarithms in G is hard.

DLP: Find the least positive integer x (if it exists) such that h = g x for
two elements g , h ∈ (G ,×). If #G is prime such a discrete logarithm
always exists.

Examples:

I the (multiplicative) subgroup F∗
q of a finite field

I the group of points of an elliptic curve defined over a finite field
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Elliptic curve over a finite field
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E : y2 = x3 − 5x + 8
defined over F37

P = (6, 3)

Q = (9, 10)

λ = 7/3 = 27

x3 = 272 − 6− 9 = 11

y3 = 27(6− 11)− 3 = 10

R = (11, 10)
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What field can we use?

Software implementations: prime fields Fp, p large prime

I Mersenne primes: Mn = 2n − 1 (M521 = 2521 − 1)

I Pseudo-Mersenne primes: 2n − c , c small (2255 − 19)

Hardware implementations: binary fields F2m , m large (prime)

I Reduction polynomial: trinomial, pentanomial, all-one
polynomial

I Bases: polynomial bases, normal bases

Why not? General extension fields Fpm , p,m prime, pm large

I Optimal Extension Fields (OEF)
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What about sizes?

Security RSA DH, DSA ECC
level Z/nZ, n = pq F∗

q Fp

(in bits) p, q primes q prime power p prime
(|n| in bits) (|q| in bits) (|p| in bits)

80 1024 1024 160
112 2048 2048 224
128 3072 3072 256
192 4096 4096 384
256 15360 15360 512

Laurent Imbert ARITH – LIRMM, CNRS, Univ. Montpellier 2 10/40



What curves can we use?

For a given set of parameters (E ,K ,P, h, n), let q := #K = pm

A valid curve must satisfy:

I #E (K ) = h × n

I n is prime

I n > 2160 to avoid BSGS/Pollard rho attacks

I n 6= p to avoid anomalous attack

I qt 6≡ 1 (mod n) for all t ≤ 20 to avoid the MOV attack

I m is prime to avoid Weil descent attacks

I P is on the curve and has order n

These checks are usually done only once by the organisation deploying
elliptic curve based solutions.
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Cost estimation

I How do we estimate the cost of an algorithm?

I A not-too-bad estimation can be obtained by counting the number
of field operations of each type:

I # field addition/subtraction (A)

I # field multiplications (M)

I # field squarings (S)

I # field inversions (I )

I # “small” field multiplications, e.g. ×d is denoted by (D)

I Estimates: I ≈ 30M, S ≈ 0.8M over Fp, S “negligible” over F2m
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We don’t like inversions!

In projective coordinates, the equation of E becomes

E : Y 2Z = X 3 + aXZ 2 + bZ 3

(X : Y : Z ) denotes an element of P2/K ; i.e. a class of K
3 \ {0, 0, 0}

modulo the equivalence relation

(X : Y : Z ) ∼ (X ′ : Y ′ : Z ′)⇔ ∃λ ∈ K
∗
;X ′ = λX ,Y ′ = λY ,Z ′ = λZ

Only one point of E satisfies Z = 0, the point at infinity O = (0 : 1 : 0)

I Projective: (X : Y : Z ) ; (x , y) = (X/Z ,Y /Z )

I Jacobian: (X : Y : Z ) ; (x , y) = (X/Z 2,Y /Z 3)

I Chudnovsky Jacobian: (X : Y : Z : Z 2 : Z 3)

I Modified Jacobian: (X : Y : Z : aZ 4)

I . . .
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Elliptic curve operations

Curve shape ADD reADD mADD DBL mDBL
DIK2 12M + 5S 12M + 5S 8M + 4S 2M + 5S 1M + 5S
DIK3 11M + 6S 10M + 6S 7M + 4S 2M + 7S 1M + 5S
Edwards 10M + 1S 10M + 1S 9M + 1S 3M + 4S 3M + 3S
ExtJQuartic 8M + 3S 8M + 3S 7M + 3S 3M + 4S 1M + 6S
Hessian 12M + 0S 12M + 0S 10M + 0S 7M + 1S 3M + 3S
InvEdwards 9M + 1S 9M + 1S 8M + 1S 3M + 4S 3M + 3S
JacIntersect 13M + 2S 10M + 2S 11M + 2S 3M + 4S 2M + 4S
Jacobian 11M + 5S 10M + 4S 7M + 4S 1M + 8S 1M + 5S
Jacobian-3 11M + 5S 10M + 4S 7M + 4S 3M + 5S 1M + 5S
JQuartic 10M + 3S 9M + 3S 8M + 3S 2M + 6S 1M + 4S
Projective 12M + 2S 12M + 2S 9M + 2S 5M + 6S 3M + 5S
Projective-3 12M + 2S 12M + 2S 9M + 2S 7M + 3S 3M + 5S
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Elliptic curve based protocols

Signatures, key agreement and encryption protocols have been adapted
to elliptic curves.

ECDSA: Elliptic Curve Digital Signature Algorithm

ECDH: Elliptic Curve Diffie-Hellman (key-agreement)

ECMQV: Authenticated DH key-agreement
(Menezes, Qu, Solinas, Vanstone)

ECIES: Elliptic Curve Integrated Encryption System
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Computations and arithmetic needs

Scalar multiplication:

k,P −→ [k]P = P + P + · · ·+ P, (k times )

is the main operation.

But various situations can occur...

which have a great influence on the implementation choices.
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Computations and arithmetic needs

• generated online at random
• unknown in advance; result of online computations
• known in advance; domain parameter; private key

ECDSA: Elliptic Curve Digital Signature Algorithm

Parameters: (E ,K ,P, h, n)

Signature: k P [k]P x-coord only

Verification: k, l P,Q [k]P + [l ]Q
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Computations and arithmetic needs

• generated online at random
• unknown in advance; result of online computations
• known in advance; domain parameter; private key

ECDH: Elliptic Curve Diffie-Hellman key-agreement

Parameters: (E ,K ,P, h, n)

Alice Bob
a [a]P −→ PA

PB ←− b [b]P
[a]PB = [b]PA
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Computations and arithmetic needs

• generated online at random
• unknown in advance; result of online computations
• known in advance; domain parameter; private key

ECIES: Elliptic Curve Integrated Encryption System

Parameters: (E ,K ,P, h, n)

Encryption: k [k]P only the x-coord is used for decryption
[k]Q
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Addition chains

When the scalar k is known in advance, one computes [k]P using “short”
addition chains.

An addition chain for k is a sequence 1 = u0 < u1 < · · · < un = k such
that, for all m ≥ 1, um = ui + uj with 0 ≤ i ≤ j < m.

I 289 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . . , 289

I 289 : 1, 2, 4, 8, 9, 18, 36, 72, 144, 288, 289

Finding optimal addition chain is very difficult, but good heuristics exists
to get raisonably short addition chains.
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Scalar multiplication algorithms

Double-and-add: k =
∑n−1

i=0 ki2
i , with ki ∈ {0, 1}

n − 1 doublings, n/2 additions on average
314159 = 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1.

NAF, CSD: ki ∈ {1̄, 0, 1}
n doublings, n/3 additions on average
NAF2(314159) = 1 0 1 0 1̄ 0 1 0 1̄ 0 1̄ 0 1 0 1̄ 0 0 0 1̄

NAFw , Window methods: |ki | < 2w−1 (proces w bits at a time)
n doublings, n/(w + 1) additions on average
NAF3(314159) = 1 0 0 0 3 0 0 1 0 0 3 0 0 0 3 0 0 0 1̄

Double-base chains: k =
∑

i 2
ai 3bi , with ai , bi ≥ 0, (ai , bi )↘

a0 doublings, b0 triplings, O(log k/ log log k) additions (?)
314159 = 2439 − 2036 − 33 − 32 − 3− 1
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Montgomery curves

An elliptic curve in the Montgomery form is a curve given by

EM : By2 = x3 + Ax2 + x , A,B ∈ Fpk , p > 3

Arithmetic on such curves can be carried out with the x-coordinate only.

[m + n]P = [m]P + [n]P = [Xm+n : − : Zm+n]

Xm+n = Zm−n ((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))
2

Zm+n = Xm−n ((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))
2

For the doubling operation, we have

4XnZn = (Xn + Zn)
2 − (Xn − Zn)

2,

X2n = (Xn + Zn)
2(Xn − Zn)

2,

Z2n = 4XnZn

(
(Xn − Zn)

2 + ((A + 2)/4) (4XnZn)
)
.
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The Montgomery ladder

Input: A point P on EM and a positive integer k = (kn−1 . . . k0)2
Output: The point [k]P on EM

1: P1 ← P, P2 ← [2]P
2: for i = k − 1 downto 0 do
3: if ni = 0 then
4: P1 ← [2]P1, P2 ← P1 + P2

5: else
6: P1 ← P1 + P2, P2 ← [2]P2

7: return P1

Note that P2 − P1 = P.

Cost: (6M + 4S)(|k|2 − 1)
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Conversion to Montgomery curves

EM : By2 = x3 + Ax2 + x EW : y2 = x3 + ax + b

EM −→ EW : always possible

a := 1/B2 − A2/3B2

b := −A3/27B3 − aA/3B

EW −→ EM : conditional

If α ∈ Fp is a root of x3 + ax + b

and 3α2 + a is a quadratic residue modulo p

Then set s :=
√

(3α2 + a)−1, A := 3αs, B := s

The change of variables (x , y)→ (x/s + α, y/s) gives a curve EM

isomorphic to E
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DIK curves

In PKC 2006, C. Doche, T. Icart and D. Kohel suggested a family of
curves with nice arithmetic properties

DIK2: Elliptic curves such that the multiplication-by-2 map can be split
as the product of two isogenies of degree 2

DIK3: Elliptic curves such that the multiplication-by-3 map can be split
as the product of two isogenies of degree 3
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Isogenies

E1/K and E2/K are isogenous over K if there exists a rational map
ϕ : E1 → E2 with coefficients in K such that ϕ(OE1) = OE2 .

An isogeny is a group homomorphism from E1(K ) to E2(K ):

ϕ(P + Q) = ϕ(P) + ϕ(Q)

For every (non constant) isogeny ϕ : E1 → E2, there exists a unique dual
isogeny ϕ̂ : E2 → E1 such that

ϕ̂ ◦ ϕ = [`],

where ` is the degree of the isogeny ϕ.
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`-division polynomials

There exists explicit formulas to compute [`]P relying on `-division
polynomials ψ`.

[`](x , y) =

(
x − ψ`−1ψ`+1

ψ2
`

,
ψ`+2ψ

2
`−1 − ψ`−2ψ

2
`+1

4yψ3
`

)

The ψn’s are defined recursively

The degree of ψ` is (`2 − 1)/2
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Isogenies in practice

Every isogeny of degree ` over K can be described as a rational map

ϕ(x , y) =

(
ϕ1(x , y)

ψ(x , y)2
,
ϕ2(x , y)

ψ(x , y)3

)
where ϕ1, ϕ2, ψ are polynomials of degree ≤ `

Scalar multiplication [`]P as the composition of two degree-` isogenies
should be better than computing [`]P using `-division polynomials of
degree (`2 − 1)/2.

Problem: given ` small, find suitable elliptic curves such that [`] can be
split as the product of two isogenies of degree `.
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Finding isogenies

Let E1 and E2 be two elliptic curves over K with j-invariants j1 and j2
respectively.

There exists a polynomial Φ`(X ,Y ) ∈ Z[X ,Y ], called modular
polynomial such that

Φ`(j1, j2) = 0 iff E1 and E2 are `-isogenous

Given the j-invariant j of an elliptic curve E , the roots of Φ`(X , j) are
the j-invariant of the elliptic curves that are `-isogenous to E .

For ` = 2, 3, 5, 7, 13, the degree of Φ` in Y is equal to 1, such that
deducing a parameterization of j is straightforward.
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Explicit parameterization of curves

Using modular equations, C. Doche, T. Icart and D. Kohel were able to
find explicit parameterization of elliptic curves over Fp with 3-isogenies
with coefficients over Fp.

For j = (u + 3)3(u + 27)/u, we have Φ3(u, j) = 0 for all u.

For p > 3 prime and u ∈ Fp, the families of elliptic curves given by

y2 = x3 + 3u(x + 1)2

has a multiplication-by-3 map that can be split as the product of two
3-isogenies over Fp,
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Elliptic curves with degree 3 isogenies

(x1, y1) −→ (xt , yt)

xt = x1 + 4u + 12u

(
x1 + 1

x2
1

)

yt = y1

(
1− 12u

(
x1 + 2

x3
1

))
(xt , yt) −→ (x3, y3) = [3]P

x3 =
1

32

(
xt − 12u +

12u(4u − 9)

xt
− 4u(4u − 9)2

x2
t

)

y3 =
1

33
yt

(
1− 12u(4u − 9)

x2
t

+
8u(4u − 9)2

x3
t

)
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Efficiency aspects

C. Doche, T. Icart and D. Kohel used a variant of Jacobian coordinates
where a point P is represented by (X1 : Y1 : Z1 : Z 2

1 ), where x = X1/Z
2
1

and y = Y1/Z
3
1 .

One can verify that [3]P = (X3 : Y3 : Z3 : Z 2
3 ) is given by

A = (X1 + 3Z 2
1 )2 B = uZ 2

1 A Xt = Y 2
1 + B

Yt = Y1(Y
2
1 − 3B) Zt = X1Z1 C = Z 2

t

D = ((4u − 9)C − Xt)
2 E = −3uCD X3 = Y 2

t + E

Y3 = Yt(X3 − 4E ) Z3 = 3XtZt

=

Z 2
3

Cost: 8M + 6S , can be reduced to 6M + 6S when multiplication by u is
negligible.
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Edwards curves

I H. M. Edwards, A Normal Form for Elliptic Curves, Bulletin of the
AMS, 44, 393–422, 2007. The elliptic curve given by

x2 + y2 = a2(1 + x2y2), with a5 6= a (2)

describes an elliptic curve over a field K of odd characteristic

I There is a birational equivalence between (2) and

z2 = (a2 − x2)(1− a2x2) ←− z = y(1− a2x2)

I Every elliptic curve can be written in this form, over some extension
field

I Edwards gives addition law, shows equivalence with Weierstrass
form, proves addition law, gives theta parameterization, . . .
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Edwards curves shaped for crypto

I D. Bernstein and T. Lange introduced parameter d to cover more
curves over K

E : x2 + y2 = c2(1 + dx2y2), avec cd(1− dc4) 6= 0.

I Addition: (x1, y1) + (x2, y2) = (x3, y3)

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
, y3 =

y1y2 − x1x2

c(1− dx1x2y1y2)

I Neutral element: affine point of coordonates (0, c)

I Negative of a point: −(x , y) = (−x , y)

I Doubling: [2](x , y) =

(
xy + yx

c(1 + dxxyy)
,

yy − xx

c(1− dxxyy)

)
I Unified group operations
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Unified operations

I If d is not a square then Edwards addition law is complete
- if (x1, y1) and (x2, y2) on the curve then dx1x2y1y2 6= ±1

I Formula is correct for all affine point including (0, c) , P + (−P).

I Doubling formula is exactly identical to addition formula
- no re-arrangement like in Hessian form where

[2](X1 : Y1 : Z1) = (Z1 : X1 : Y1) + (Y1 : Z1 : X1).
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Edwards addition law in projective coordinates

I The point (X : Y : Z ) such that

(X 2 + Y 2)Z 2 = c2(Z 4 + dX 2Y 2)

corresponds to the affine point (X/Z ,Y /Z ).

I Neutral element: (0 : c : 1)

I Negative of a point: −(X : Y : Z ) = (−X : Y : Z )

I Addition : (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3)

A = Z1Z2 B = A2 C = X1X2 D = Y1Y2

E = dCD F = B − E G = B + E

X3 = AF ((X1 + Y1)(X2 + Y2)− C − D)

Y3 = AG (D − C )

Z3 = cFG

I Cost: 10M + 1S + 1C + 1D + 7A
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Comparisons with other fast unified formulas

Coordinates Coût add/dbl Ref

Projective 11M + 6S + 1D Brier/Joye 03
Projective (a = −1) 13M + 3S Brier/Joye 03
Jacobi intersection 13M + 2S + 1D Liardet/Smart 01
Jacobi quartic 10M + 3S + 1D Billet/Joye 01
Hessian 12M Joye/Quisquater 01
Edwards (c = 1) 10M + 1S + 1D Bernstein/Lange 07
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Optimizing Edwards doubling (c = 1)

Affine: [2](x , y)

(
xy + yx

1 + dxxyy
,

yy − xx

1− dxxyy

)
=

(
2xy

1 + dx2y2
,

y2 − x2

1− dx2y2

)
=

(
2xy

x2 + y2
,

y2 − x2

2− x2 − y2

)
=

(
(x + y)2

x2 + y2
− 1,

y2 − x2

2− x2 − y2

)

Projective: [2](X1 : Y1 : Z1)

B = (X1 + Y1)
2

C = X 2
1

D = Y 2
1

E = C + D
H = Z 2

1

J = E − 2H
X3 = (B − E )J
Y3 = E (C − D)
Z3 = EJ

Cost: 3M + 4S + 6A
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Comparisons

Doubling:

System Cost

Proj. 5M + 6S
Proj. (a = −3) 7M + 3S
Hessian 7M + 1S
DIK 3 2M + 7S
Jac. 1M + 8S
Jac. (a = −3) 3M + 5S
Jacobi quartic 2M + 6S
Jacobi intersec. 3M + 4S
Edwards 3M + 4S
DIK 2 2M + 5S

Jac-3 vs. Edwards:

Jac-3 Edwards

Double 3M + 5S 3M + 4S
Triple 7M + 7S 9M + 4S
Add 11M + 5S 10M + 1S + 1D
Re-Add 10M + 4S 10M + 1S + 1D
Mixed 7M + 4S 9M + 1S + 1D

EFD : Explicit-Formulas Database
http://www.hyperelliptic.org/EFD/
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That’s all folks!
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