Quelques pistes pour accélérer les calculs sur les courbes elliptiques

Laurent Imbert
ARITH - LIRMM, CNRS, Univ. Montpellier 2
Journées C2, Carcans, 17-21 mars 2008

What is an elliptic curve?

Elliptic curves appear in various areas in mathematics: number theory, complex analysis, cryptography, mathematical physics. Their name comes from the studies of elliptic integrals (Euler, Gauss).

An elliptic curve is

- a geometrical object: a nonsingular curve given by an equation

$$
y^{2}=f(x), \text { with } \operatorname{deg} f=3,4
$$

- an algebraic object: one can "add" two points on a curve to obtain a third point that is also on the curve.

The equation of an elliptic curve

- An elliptic curve over a field K of characteristic $\neq 2,3$ is given by an equation of the form

$$
\begin{equation*}
E: Y^{2}=X^{3}+a X+b, \text { with } a, b \in K \tag{1}
\end{equation*}
$$

and $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$

- j-invariant: $1728 a^{3} / 4 \Delta$
- The set of K-rational points points of an elliptic curve is

$$
E(K)=\left\{(x, y) \in K \times K ; Y^{2}=X^{3}+a X+b\right\} \cup\{O\}
$$

- In the general case, we consider the long Weierstrass form of an elliptic curve

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$.

Adding points on an elliptic curve

Algebraic description of the addition operation

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two points on

$$
E: Y^{2}=X^{3}+a X+b
$$

The slope of the line $\left(P_{1}, P_{2}\right)$ is

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq \pm P 2 \\ \frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}
$$

The sum of P and Q is the point

$$
P+Q=\left(\lambda^{2}-x_{1}-x_{2}, \quad \lambda\left(x_{1}-x_{3}\right)-y_{1}\right) .
$$

Properties of the addition on an elliptic curve

For all $P, Q, R \in E$, the addition law has the following properties:

- $P+O=O+P=P$
- $P+(-P)=0$
- $(P+Q)+R=P+(Q+R)$
- $P+Q=Q+P$

Thus, $(E,+)$ forms an Abelian group.

Abelian groups are widely used in public-key cryptography!

Group based cryptography

Many cryptographic protocols require the use of a finite Abelian group.
For practical use one wants a group G such that

- the group operation is easy to implement (finite algebraic groups are good candidates),
- the computation of discrete logarithms in G is hard.

DLP: Find the least positive integer x (if it exists) such that $h=g^{x}$ for two elements $g, h \in(G, \times)$. If $\# G$ is prime such a discrete logarithm always exists.

Examples:

- the (multiplicative) subgroup \mathbb{F}_{q}^{*} of a finite field
- the group of points of an elliptic curve defined over a finite field

Elliptic curve over a finite field

What field can we use?

Software implementations: prime fields \mathbb{F}_{p}, p large prime

- Mersenne primes: $\quad M_{n}=2^{n}-1 \quad\left(M_{521}=2^{521}-1\right)$
- Pseudo-Mersenne primes: $\quad 2^{n}-c, c$ small $\quad\left(2^{255}-19\right)$

Hardware implementations: binary fields $\mathbb{F}_{2^{m}}, m$ large (prime)

- Reduction polynomial: trinomial, pentanomial, all-one polynomial
- Bases: polynomial bases, normal bases

Why not? General extension fields $\mathbb{F}_{p^{m}}, p, m$ prime, p^{m} large

- Optimal Extension Fields (OEF)

What about sizes?

Security	RSA	DH, DSA	ECC
level (in bits)	$\mathbb{Z} / n \mathbb{Z}, n=p q$ p, q primes $(\|n\|$ in bits $)$	\mathbb{F}_{q}^{*} q prime power $(\|q\|$ in bits $)$	\mathbb{F}_{p} p prime $(\|p\|$ in bits $)$
80	1024	1024	160
112	2048	2048	224
128	3072	3072	256
192	4096	4096	384
256	15360	15360	512

What curves can we use?

For a given set of parameters (E, K, P, h, n), let $q:=\# K=p^{m}$ A valid curve must satisfy:

- $\# E(K)=h \times n$
- n is prime
- $n>2^{160}$ to avoid BSGS/Pollard rho attacks
- $n \neq p$ to avoid anomalous attack
- $q^{t} \not \equiv 1(\bmod n)$ for all $t \leq 20$ to avoid the MOV attack
- m is prime to avoid Weil descent attacks
- P is on the curve and has order n

These checks are usually done only once by the organisation deploying elliptic curve based solutions.

Cost estimation

- How do we estimate the cost of an algorithm?
- A not-too-bad estimation can be obtained by counting the number of field operations of each type:
- \# field addition/subtraction (A)
- \# field multiplications (M)
- \# field squarings (S)
- \# field inversions (I)
- \# "small" field multiplications, e.g. $\times d$ is denoted by (D)
- Estimates: $I \approx 30 M, S \approx 0.8 M$ over \mathbb{F}_{p}, S "negligible" over $\mathbb{F}_{2^{m}}$

We don't like inversions!

In projective coordinates, the equation of E becomes

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

$(X: Y: Z)$ denotes an element of \mathbb{P}^{2} / K; i.e. a class of $\bar{K}^{3} \backslash\{0,0,0\}$ modulo the equivalence relation
$(X: Y: Z) \sim\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right) \Leftrightarrow \exists \lambda \in \bar{K}^{*} ; X^{\prime}=\lambda X, Y^{\prime}=\lambda Y, Z^{\prime}=\lambda Z$
Only one point of E satisfies $Z=0$, the point at infinity $O=(0: 1: 0)$

- Projective: $(X: Y: Z) ;(x, y)=(X / Z, Y / Z)$
- Jacobian: $(X: Y: Z) ;(x, y)=\left(X / Z^{2}, Y / Z^{3}\right)$
- Chudnovsky Jacobian: $\left(X: Y: Z: Z^{2}: Z^{3}\right)$
- Modified Jacobian: $\left(X: Y: Z: a Z^{4}\right)$

Elliptic curve operations

Curve shape	ADD	reADD	mADD	DBL	mDBL
DIK2	$12 \mathrm{M}+5 \mathrm{~S}$	$12 \mathrm{M}+5 \mathrm{~S}$	$8 \mathrm{M}+4 \mathrm{~S}$	$2 \mathrm{M}+5 \mathrm{~S}$	$1 \mathrm{M}+5 \mathrm{~S}$
DIK3	$11 \mathrm{M}+6 \mathrm{~S}$	$10 \mathrm{M}+6 \mathrm{~S}$	$7 \mathrm{M}+4 \mathrm{~S}$	$2 \mathrm{M}+7 \mathrm{~S}$	$1 \mathrm{M}+5 \mathrm{~S}$
Edwards	$10 \mathrm{M}+1 \mathrm{~S}$	$10 \mathrm{M}+1 \mathrm{~S}$	$9 \mathrm{M}+1 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$	$3 \mathrm{M}+3 \mathrm{~S}$
ExtJQuartic	$8 \mathrm{M}+3 \mathrm{~S}$	$8 \mathrm{M}+3 \mathrm{~S}$	$7 \mathrm{M}+3 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$	$1 \mathrm{M}+6 \mathrm{~S}$
Hessian	$12 \mathrm{M}+0 \mathrm{~S}$	$12 \mathrm{M}+0 \mathrm{~S}$	$10 \mathrm{M}+0 \mathrm{~S}$	$7 \mathrm{M}+1 \mathrm{~S}$	$3 \mathrm{M}+3 \mathrm{~S}$
InvEdwards	$9 \mathrm{M}+1 \mathrm{~S}$	$9 \mathrm{M}+1 \mathrm{~S}$	$8 \mathrm{M}+1 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$	$3 \mathrm{M}+3 \mathrm{~S}$
JacIntersect	$13 \mathrm{M}+2 \mathrm{~S}$	$10 \mathrm{M}+2 \mathrm{~S}$	$11 \mathrm{M}+2 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$	$2 \mathrm{M}+4 \mathrm{~S}$
Jacobian	$11 \mathrm{M}+5 \mathrm{~S}$	$10 \mathrm{M}+4 \mathrm{~S}$	$7 \mathrm{M}+4 \mathrm{~S}$	$1 \mathrm{M}+8 \mathrm{~S}$	$1 \mathrm{M}+5 \mathrm{~S}$
Jacobian-3	$11 \mathrm{M}+5 \mathrm{~S}$	$10 \mathrm{M}+4 \mathrm{~S}$	$7 \mathrm{M}+4 \mathrm{~S}$	$3 \mathrm{M}+5 \mathrm{~S}$	$1 \mathrm{M}+5 \mathrm{~S}$
JQuartic	$10 \mathrm{M}+3 \mathrm{~S}$	$9 \mathrm{M}+3 \mathrm{~S}$	$8 \mathrm{M}+3 \mathrm{~S}$	$2 \mathrm{M}+6 \mathrm{~S}$	$1 \mathrm{M}+4 \mathrm{~S}$
Projective	$12 \mathrm{M}+2 \mathrm{~S}$	$12 \mathrm{M}+2 \mathrm{~S}$	$9 \mathrm{M}+2 \mathrm{~S}$	$5 \mathrm{M}+6 \mathrm{~S}$	$3 \mathrm{M}+5 \mathrm{~S}$
Projective-3	$12 \mathrm{M}+2 \mathrm{~S}$	$12 \mathrm{M}+2 \mathrm{~S}$	$9 \mathrm{M}+2 \mathrm{~S}$	$7 \mathrm{M}+3 \mathrm{~S}$	$3 \mathrm{M}+5 \mathrm{~S}$

Elliptic curve based protocols

Signatures, key agreement and encryption protocols have been adapted to elliptic curves.

ECDSA: Elliptic Curve Digital Signature Algorithm
ECDH: Elliptic Curve Diffie-Hellman (key-agreement)
ECMQV: Authenticated DH key-agreement (Menezes, Qu, Solinas, Vanstone)

ECIES: Elliptic Curve Integrated Encryption System

Computations and arithmetic needs

Scalar multiplication:

$$
k, P \longrightarrow[k] P=P+P+\cdots+P, \quad(k \text { times })
$$

is the main operation.

But various situations can occur...
which have a great influence on the implementation choices.

Computations and arithmetic needs

- generated online at random
- unknown in advance; result of online computations
- known in advance; domain parameter; private key

ECDSA: Elliptic Curve Digital Signature Algorithm
Parameters: (E, K, P, h, n)
Signature:

P
[k]P
x-coors only
Verification: $k, / \quad P, Q \quad[k] P+[/] Q$

Computations and arithmetic needs

generated online at random
unknown in advance; result of online computations

- known in advance; domain parameter; private key

ECDH: Elliptic Curve Diffie-Hellman key-agreement
Parameters: (E, K, P, h, n)

Computations and arithmetic needs

generated online at random
unknown in advance; result of online computations

- known in advance; domain parameter; private key

ECIES: Elliptic Curve Integrated Encryption System
Parameters: (E, K, P, h, n)
Encryption: $k \quad[k] P$ only the x-coord is used for decryption [k] Q

Addition chains

When the scalar k is known in advance, one computes [k]P using "short" addition chains.

An addition chain for k is a sequence $1=u_{0}<u_{1}<\cdots<u_{n}=k$ such that, for all $m \geq 1, u_{m}=u_{i}+u_{j}$ with $0 \leq i \leq j<m$.

- 289 : $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ldots, 289$
- 289 : $1,2,4,8,9,18,36,72,144,288,289$

Finding optimal addition chain is very difficult, but good heuristics exists to get raisonably short addition chains.

Scalar multiplication algorithms

Double-and-add: $k=\sum_{i=0}^{n-1} k_{i} 2^{i}$, with $k_{i} \in\{0,1\}$
$n-1$ doublings, $n / 2$ additions on average
$314159=1001100101100101111$.
NAF, CSD: $k_{i} \in\{\overline{1}, 0,1\}$
n doublings, $n / 3$ additions on average $\mathrm{NAF}_{2}(314159)=1010 \overline{1} 010 \overline{1} 0 \overline{1} 010 \overline{1} 000 \overline{1}$
$N A F_{w}$, Window methods: $\left|k_{i}\right|<2^{w-1}$ (proces w bits at a time) n doublings, $n /(w+1)$ additions on average $\mathrm{NAF}_{3}(314159)=100030010030003000 \overline{1}$

Double-base chains: $k=\sum_{i} 2^{a_{i}} 3^{b_{i}}$, with $a_{i}, b_{i} \geq 0,\left(a_{i}, b_{i}\right) \searrow$ a_{0} doublings, b_{0} triplings, $O(\log k / \log \log k)$ additions (?) $314159=2^{4} 3^{9}-2^{0} 3^{6}-3^{3}-3^{2}-3-1$

Montgomery curves

An elliptic curve in the Montgomery form is a curve given by

$$
E_{M}: B y^{2}=x^{3}+A x^{2}+x, \quad A, B \in \mathbb{F}_{p^{k}}, p>3
$$

Arithmetic on such curves can be carried out with the x-coordinate only.

$$
\begin{aligned}
{[m+n] P } & =[m] P+[n] P=\left[X_{m+n}:-: Z_{m+n}\right] \\
X_{m+n} & =Z_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)+\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2} \\
Z_{m+n} & =X_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)-\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}
\end{aligned}
$$

For the doubling operation, we have

$$
\begin{aligned}
4 X_{n} Z_{n} & =\left(X_{n}+Z_{n}\right)^{2}-\left(X_{n}-Z_{n}\right)^{2} \\
X_{2 n} & =\left(X_{n}+Z_{n}\right)^{2}\left(X_{n}-Z_{n}\right)^{2} \\
Z_{2 n} & =4 X_{n} Z_{n}\left(\left(X_{n}-Z_{n}\right)^{2}+((A+2) / 4)\left(4 X_{n} Z_{n}\right)\right)
\end{aligned}
$$

The Montgomery ladder

Input: A point P on E_{M} and a positive integer $k=\left(k_{n-1} \ldots k_{0}\right)_{2}$
Output: The point $[k] P$ on E_{M}
1: $P_{1} \leftarrow P, \quad P_{2} \leftarrow[2] P$
2: for $i=k-1$ downto 0 do
3: if $n_{i}=0$ then
4: $\quad P_{1} \leftarrow[2] P_{1}, \quad P_{2} \leftarrow P_{1}+P_{2}$
5: else
6: $\quad P_{1} \leftarrow P_{1}+P_{2}, \quad P_{2} \leftarrow[2] P_{2}$
7: return P_{1}

Note that $P_{2}-P_{1}=P$.
Cost: $(6 M+4 S)\left(|k|_{2}-1\right)$

Conversion to Montgomery curves

$$
E_{M}: B y^{2}=x^{3}+A x^{2}+x \longleftrightarrow E_{W}: y^{2}=x^{3}+a x+b
$$

$E_{M} \longrightarrow E_{W}:$ always possible

$$
\begin{aligned}
& a:=1 / B^{2}-A^{2} / 3 B^{2} \\
& b:=-A^{3} / 27 B^{3}-a A / 3 B
\end{aligned}
$$

$E_{W} \longrightarrow E_{M}$: conditional
If $\alpha \in \mathbb{F}_{p}$ is a root of $x^{3}+a x+b$ and $3 \alpha^{2}+a$ is a quadratic residue modulo p

Then set $s:=\sqrt{\left(3 \alpha^{2}+a\right)^{-1}}, \quad A:=3 \alpha s, \quad B:=s$
The change of variables $(x, y) \rightarrow(x / s+\alpha, y / s)$ gives a curve E_{M} isomorphic to E

DIK curves

In PKC 2006, C. Doche, T. Icart and D. Kohel suggested a family of curves with nice arithmetic properties

DIK2: Elliptic curves such that the multiplication-by-2 map can be split as the product of two isogenies of degree 2

DIK3: Elliptic curves such that the multiplication-by-3 map can be split as the product of two isogenies of degree 3

Isogenies

E_{1} / K and E_{2} / K are isogenous over K if there exists a rational map $\varphi: E_{1} \rightarrow E_{2}$ with coefficients in K such that $\varphi\left(O_{E_{1}}\right)=O_{E_{2}}$.

An isogeny is a group homomorphism from $E_{1}(K)$ to $E_{2}(K)$:

$$
\varphi(P+Q)=\varphi(P)+\varphi(Q)
$$

For every (non constant) isogeny $\varphi: E_{1} \rightarrow E_{2}$, there exists a unique dual isogeny $\hat{\varphi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\varphi} \circ \varphi=[\ell],
$$

where ℓ is the degree of the isogeny φ.

ℓ-division polynomials

There exists explicit formulas to compute $[\ell] P$ relying on ℓ-division polynomials ψ_{ℓ}.

$$
[\ell](x, y)=\left(x-\frac{\psi_{\ell-1} \psi_{\ell+1}}{\psi_{\ell}^{2}}, \frac{\psi_{\ell+2} \psi_{\ell-1}^{2}-\psi_{\ell-2} \psi_{\ell+1}^{2}}{4 y \psi_{\ell}^{3}}\right)
$$

The ψ_{n} 's are defined recursively
The degree of ψ_{ℓ} is $\left(\ell^{2}-1\right) / 2$

Isogenies in practice

Every isogeny of degree ℓ over K can be described as a rational map

$$
\varphi(x, y)=\left(\frac{\varphi_{1}(x, y)}{\psi(x, y)^{2}}, \frac{\varphi_{2}(x, y)}{\psi(x, y)^{3}}\right)
$$

where $\varphi_{1}, \varphi_{2}, \psi$ are polynomials of degree $\leq \ell$
Scalar multiplication $[\ell] P$ as the composition of two degree- ℓ isogenies should be better than computing $[\ell] P$ using ℓ-division polynomials of degree $\left(\ell^{2}-1\right) / 2$.

Problem: given ℓ small, find suitable elliptic curves such that $[\ell]$ can be split as the product of two isogenies of degree ℓ.

Finding isogenies

Let E_{1} and E_{2} be two elliptic curves over K with j-invariants j_{1} and j_{2} respectively.

There exists a polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$, called modular polynomial such that

$$
\Phi_{\ell}\left(j_{1}, j_{2}\right)=0 \text { iff } E_{1} \text { and } E_{2} \text { are } \ell \text {-isogenous }
$$

Given the j-invariant j of an elliptic curve E, the roots of $\Phi_{\ell}(X, j)$ are the j-invariant of the elliptic curves that are ℓ-isogenous to E.

For $\ell=2,3,5,7,13$, the degree of Φ_{ℓ} in Y is equal to 1 , such that deducing a parameterization of j is straightforward.

Explicit parameterization of curves

Using modular equations, C. Doche, T. Icart and D. Kohel were able to find explicit parameterization of elliptic curves over \mathbb{F}_{p} with 3 -isogenies with coefficients over \mathbb{F}_{p}.

For $j=(u+3)^{3}(u+27) / u$, we have $\Phi_{3}(u, j)=0$ for all u.

For $p>3$ prime and $u \in \mathbb{F}_{p}$, the families of elliptic curves given by

$$
y^{2}=x^{3}+3 u(x+1)^{2}
$$

has a multiplication-by-3 map that can be split as the product of two 3-isogenies over \mathbb{F}_{p},

Elliptic curves with degree 3 isogenies

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \longrightarrow\left(x_{t}, y_{t}\right) & \\
x_{t} & =x_{1}+4 u+12 u\left(\frac{x_{1}+1}{x_{1}^{2}}\right) \\
& y_{t}
\end{aligned}=y_{1}\left(1-12 u\left(\frac{x_{1}+2}{x_{1}^{3}}\right)\right), ~ \$
$$

$$
\left(x_{t}, y_{t}\right) \longrightarrow\left(x_{3}, y_{3}\right)=[3] P
$$

$$
x_{3}=\frac{1}{3^{2}}\left(x_{t}-12 u+\frac{12 u(4 u-9)}{x_{t}}-\frac{4 u(4 u-9)^{2}}{x_{t}^{2}}\right)
$$

$$
y_{3}=\frac{1}{3^{3}} y_{t}\left(1-\frac{12 u(4 u-9)}{x_{t}^{2}}+\frac{8 u(4 u-9)^{2}}{x_{t}^{3}}\right)
$$

Efficiency aspects

C. Doche, T. Icart and D. Kohel used a variant of Jacobian coordinates where a point P is represented by $\left(X_{1}: Y_{1}: Z_{1}: Z_{1}^{2}\right)$, where $x=X_{1} / Z_{1}^{2}$ and $y=Y_{1} / Z_{1}^{3}$.

One can verify that $[3] P=\left(X_{3}: Y_{3}: Z_{3}: Z_{3}^{2}\right)$ is given by

$$
\begin{array}{rlrl}
A & =\left(X_{1}+3 Z_{1}^{2}\right)^{2} & B & =u Z_{1}^{2} A \\
Y_{t} & =Y_{1}\left(Y_{1}^{2}-3 B\right) & Z_{t} & =X_{1} Z_{1} \\
D & =\left((4 u-9) C-X_{t}\right)^{2} & E & =-3 u C D \\
Y_{3} & =Y_{t}\left(X_{3}-4 E\right) & Z_{3} & =3 X_{t} Z_{t}
\end{array}
$$

Cost: $8 M+6 S$, can be reduced to $6 M+6 S$ when multiplication by u is negligible.

Edwards curves

- H. M. Edwards, A Normal Form for Elliptic Curves, Bulletin of the AMS, 44, 393-422, 2007. The elliptic curve given by

$$
\begin{equation*}
x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), \quad \text { with } a^{5} \neq a \tag{2}
\end{equation*}
$$

describes an elliptic curve over a field K of odd characteristic

- There is a birational equivalence between (2) and

$$
z^{2}=\left(a^{2}-x^{2}\right)\left(1-a^{2} x^{2}\right) \quad \longleftarrow \quad z=y\left(1-a^{2} x^{2}\right)
$$

- Every elliptic curve can be written in this form, over some extension field
- Edwards gives addition law, shows equivalence with Weierstrass form, proves addition law, gives theta parameterization, ...

Edwards curves shaped for crypto

- D. Bernstein and T. Lange introduced parameter d to cover more curves over K

$$
E: x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right), \text { avec } c d\left(1-d c^{4}\right) \neq 0
$$

- Addition: $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}, \quad y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}
$$

- Neutral element: affine point of coordonates $(0, c)$
- Negative of a point: $-(x, y)=(-x, y)$
- Doubling: $[2](x, y)=\left(\frac{x y+y x}{c(1+d x x y y)}, \frac{y y-x x}{c(1-d x x y y)}\right)$
- Unified group operations

Unified operations

- If d is not a square then Edwards addition law is complete - if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the curve then $d x_{1} x_{2} y_{1} y_{2} \neq \pm 1$
- Formula is correct for all affine point including $(0, c), P+(-P)$.
- Doubling formula is exactly identical to addition formula
- no re-arrangement like in Hessian form where

$$
[2]\left(X_{1}: Y_{1}: Z_{1}\right)=\left(Z_{1}: X_{1}: Y_{1}\right)+\left(Y_{1}: Z_{1}: X_{1}\right)
$$

Edwards addition law in projective coordinates

- The point $(X: Y: Z)$ such that

$$
\left(X^{2}+Y^{2}\right) Z^{2}=c^{2}\left(Z^{4}+d X^{2} Y^{2}\right)
$$

corresponds to the affine point $(X / Z, Y / Z)$.

- Neutral element: (0:c:1)
- Negative of a point: $-(X: Y: Z)=(-X: Y: Z)$
- Addition : $\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{array}{rll}
A=Z_{1} Z_{2} \quad & B=A^{2} \quad C=X_{1} X_{2} \quad D=Y_{1} Y_{2} \\
E=d C D \quad & F=B-E \quad G=B+E \\
X_{3}= & A F\left(\left(X_{1}+Y_{1}\right)\left(X_{2}+Y_{2}\right)-C-D\right) \\
Y_{3}= & A G(D-C) \\
Z_{3}= & \\
&
\end{array}
$$

- Cost: $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{C}+1 \mathrm{D}+7 \mathrm{~A}$

Comparisons with other fast unified formulas

Coordinates	Coût add/dbl	Ref
Projective	$11 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D}$	Brier/Joye 03
Projective $(a=-1)$	$13 \mathrm{M}+3 \mathrm{~S}$	Brier/Joye 03
Jacobi intersection	$13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$	Liardet/Smart 01
Jacobi quartic	$10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$	Billet/Joye 01
Hessian	12 M	Joye/Quisquater 01
Edwards $(c=1)$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$	Bernstein/Lange 07

Optimizing Edwards doubling $(c=1)$

Affine: [2] (x, y)
$\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y}\right)$
$=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right)$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{2-x^{2}-y^{2}}\right)$
$=\left(\frac{(x+y)^{2}}{x^{2}+y^{2}}-1, \frac{y^{2}-x^{2}}{2-x^{2}-y^{2}}\right)$

Projective: $[2]\left(X_{1}: Y_{1}: Z_{1}\right)$
$B=\left(X_{1}+Y_{1}\right)^{2}$
$C=X_{1}^{2}$
$D=Y_{1}^{2}$
$E=C+D$
$H=Z_{1}^{2}$
$J=E-2 H$
$X_{3}=(B-E) J$
$Y_{3}=E(C-D)$
$Z_{3}=E J$
Cost: $3 \mathrm{M}+4 \mathrm{~S}+6 \mathrm{~A}$

Comparisons

Doubling:

System	Cost
Proj.	$5 \mathrm{M}+6 \mathrm{~S}$
Proj. $(a=-3)$	$7 \mathrm{M}+3 \mathrm{~S}$
Hessian	$7 \mathrm{M}+1 \mathrm{~S}$
DIK 3	$2 \mathrm{M}+7 \mathrm{~S}$
Jac.	$1 \mathrm{M}+8 \mathrm{~S}$
Jac. $(a=-3)$	$3 \mathrm{M}+5 \mathrm{~S}$
Jacobi quartic	$2 \mathrm{M}+6 \mathrm{~S}$
Jacobi intersec.	$3 \mathrm{M}+4 \mathrm{~S}$
Edwards	$3 \mathrm{M}+4 \mathrm{~S}$
DIK 2	$2 \mathrm{M}+5 \mathrm{~S}$

Jac-3 vs. Edwards:

	Jac-3	Edwards
Double	$3 \mathrm{M}+5 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$
Triple	$7 \mathrm{M}+7 \mathrm{~S}$	$9 \mathrm{M}+4 \mathrm{~S}$
Add	$11 \mathrm{M}+5 \mathrm{~S}$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Re-Add	$10 \mathrm{M}+4 \mathrm{~S}$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Mixed	$7 \mathrm{M}+4 \mathrm{~S}$	$9 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$

EFD: Explicit-Formulas Database http://www.hyperelliptic.org/EFD/

That's all folks!

