Cryptanalysis of a McEliece Cryptosystem Based on QC-LDPC Codes

Ayoub Otmani ${ }^{1}$

Ayoub.Otmani@info.unicaen.fr
Léonard Dallot ${ }^{1}$ Jean-Pierre Tillich ${ }^{2}$

Leonard.Dallot@info.unicaen.fr
jean-pierre.tillich@inria.fr

1 GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (UMR 6072)
2 Projet Secret, INRIA-Rocquencourt

I. Background

Introduction

- Asymmetric cryptography concepts introduced by Diffie \& Hellman ('76)
- Rivest, Shamir \& Adleman invented RSA ('77)
- First asymmetric cryptosystem
- Widely accepted for practical uses
- But, alternative cryptosystems exist ... such as MCELIECE cryptosystem

McEliece Cryptosystem

- Let $\mathfrak{F}_{n, k, t}$ be a family of Goppa codes of length n and dimension k capable to correct $\leq t$ errors.
- Cryptosystem described by three algorithms:

1. $(P K, S K) \longleftarrow \operatorname{Setup}\left(\mathbf{1}^{\lambda}\right)$
2. $\mathbf{c} \in \mathbb{F}_{2}^{n} \longleftarrow \operatorname{Encrypt}\left(\mathbf{m} \in \mathbb{F}_{2}^{k}\right)$
3. $\mathbf{m}^{\prime} \in \mathbb{F}_{2}^{k} \longleftarrow \operatorname{Decrypt}\left(\mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}\right)$

McEliece.Setup

$(P K, S K) \leftarrow \operatorname{Setup}\left(\mathbf{1}^{\lambda}\right)$

1. Take n, k, t according to λ
2. Randomly choose a generator matrix $G^{\prime} \in \mathfrak{F}_{n, k, t}$
3. Randomly pick:
$-n \times n$ permutation matrix P
$-k \times k$ invertible matrix S
4. Set $G=S \times G^{\prime} \times P$ and $\gamma: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{k}$ as the decoding algorithm associated with G^{\prime}
5. Output

$$
P K=(G, t) \quad \text { and } \quad S K=(S, P, \gamma)
$$

McEliece.Encrypt

$\mathbf{c} \in \mathbb{F}_{2}^{n} \leftarrow \operatorname{Encrypt}\left(\mathbf{m} \in \mathbb{F}_{2}^{k}\right)$

1. Pick a random vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$ of weight $\leq t$
2. Output $\mathbf{c}=\mathbf{m} \times G \oplus \mathbf{e}$

McEliece.Decrypt

$$
\mathbf{m}^{\prime} \in \mathbb{F}_{2}^{k} \leftarrow \operatorname{Decrypt}\left(\mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}\right)
$$

1. Calculate $\mathbf{z}=\mathbf{c}^{\prime} \times P^{-1}$
$/ / \mathbf{z}=\mathbf{m} \times\left(S \times G^{\prime}\right) \oplus\left(\mathbf{e} \times P^{-1}\right)$
2. Compute $\mathbf{y}=\gamma(\mathbf{z})$
$/ / \mathbf{y}=\mathbf{m} \times S$
3. Output $\mathbf{m}^{\prime}=\mathbf{y} \times S^{-1}$
$/ / \mathbf{m}^{\prime}=\mathbf{m}$

McEliece Cryptosystem - Security Assumptions

- One-Wayness under Chosen Plaintext Attack (OW-CPA)

Difficult to invert Encrypt (decoding attack)

- Unmasking hardness

Difficult to extract secret matrices and a decoding algorithm from the public matrix (structural attack)

McEliece Cryptosystem Security - OW-CPA

1. Decoding random linear codes is NP-Hard

E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On the intractability of certain coding problems. IEEE Transactions on Information Theory, 24(3):384-386, 1978.
2. Best practical algorithms operate exponentially with the length and the rate
A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory, 44(1):367-378, 1998.

McEliece Cryptosystem - Unmasking Hardness

Two basic attacks

1. Enumerate all permutation matrices until a generator matrix of a Goppa code is found
2. Enumerate all generator matrices of Goppa codes until a permutation equivalent matrix to the public matrix is found

McEliece Cryptosystem - Unmasking Hardness

Security recommendations

- $\mathfrak{F}_{n, k, t}$ and the Symmetric group must have huge sizes
- Problem of code equivalence solved in practise by Support Splitting Algorithm
- N. SENDRIER. Finding the permutation between equivalent codes: the support spliting algorithm. IEEE Transactions on Information Theory, vol. 46, no. 4, pages 1193-1203, July 2000.
- Time complexity increases with the dimension of the Hull
- Codes should have a big Hull

Insecure McEliece Cryptosystem Variants

- Reed-Solomon codes
V.M. Sidelnikov and S.O. Shestakov. On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete

Mathematics and Applications, 1(4):439-444, 1992.

- Concatenated codes
N. Sendrier. On the Structure of Randomly Permuted Concatenated Code. Rapport de recherche de I'INRIA - Rocquencourt. Janvier 1995
- Reed-Muller codes.
L. Minder and A. Shokrollahi. Cryptanalysis of the Sidelnikov cryptosystem. In Eurocrypt 2007, volume 4515 of Lecture Notes in Computer Science, pages 347-360, Barcelona, Spain, 2007.

Remark.

Original McEliece scheme is still unbroken. . .

McEliece Cryptosystem

- Three advantages
- Fast encryption/decryption algorithms
- Original scheme still secure
- Alternative solution to RSA for quantum computers!
- Main drawback: huge public key

For instance, parameters proposed in '78 (now outdated)

* Goppa codes with $n=1024, k=524$
* Private key $\simeq 300 \mathrm{Kbits}$
* Public key $\simeq 500$ Kbits

Reducing Key Sizes

1. Sparse matrices

A. Shokrollahi C. Monico, J. Rosenthal. Using low density parity check codes in the McEliece cryptosystem. In IEEE International Symposium on Information Theory (ISIT 2000), page 215, Sorrento, Italy, 2000.

2. Quasi-cyclic matrices

P. Gaborit. Shorter keys for code based cryptography. In Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81-91, Bergen, Norway, March 2005.

3. Sparse quasi-cyclic matrices

M. Baldi, G. F. Chiaraluce. Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In IEEE International Symposium on Information Theory, pages 2591-2595, Nice, France, March 2007.

II. Cryptanalysis of a McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes

Low Density Parity Check Codes

Some facts.

- Invented by Gallager ('68) and rediscovered by Mackay ('98)
- Linear codes defined by very sparse parity check matrices
- Iteratively decoded through Belief Propagation algorithm
- For any cryptographic use, one has to hide the sparsity of matrices

Notation.

$\mathfrak{L}_{n, k, t}$: family of LDPC codes of length n, dimension k and correcting capability of t errors.

Circulant Matrix

Definition.

- M is a circulant $p \times p$ matrix if

$$
M=\left(\begin{array}{llll}
m_{0} & m_{1} & \cdots & m_{p-1} \\
m_{p-1} & m_{0} & \cdots & m_{p-2} \\
\vdots & \vdots & \ddots & \vdots \\
m_{1} & m_{2} & \cdots & m_{0}
\end{array}\right)
$$

- Weight of M is the weight of $\mathbf{m}=\left(m_{0}, \ldots, m_{p-1}\right)$

Notation.

$$
M \longmapsto \mathbf{m}(x)=m_{0}+m_{1} x+\cdots m_{p-1} x^{p-1}
$$

Circulant Matrix

Properties. Let M and N be circulant $p \times p$ matrices

- $M+N$ is circulant

$$
M+N \longmapsto \mathbf{m}(x)+\mathbf{n}(x)
$$

- $M \times N$ is circulant

$$
M \times N \longmapsto \mathbf{m}(x) \cdot \mathbf{n}(x) \quad \bmod \left(x^{p}-1\right)
$$

- M^{T} is circulant

$$
M^{T} \longmapsto \mathbf{m}\left(\frac{1}{x}\right) \cdot x^{p} \quad \bmod \left(x^{p}-1\right)
$$

- M is invertible iff $\mathbf{m}(x)$ is coprime with $x^{p}-1$

Circulant-by-Block Matrix

Definition. $M=\left[M_{i, j}\right]$ is circulant-by-block if $M_{i, j}$ is a circulant $p \times p$ matrix

$$
M \longmapsto \mathbf{M}(x)=\left[\mathbf{m}_{i, j}(x)\right]
$$

Properties. Let M and N be circulant-by-block matrices

- $M+N, M \times N, M^{T}$ are also circulant-by-block matrices
- M is invertible iff $\operatorname{det}(\mathbf{M})(x)$ is coprime with $\left(x^{p}-1\right)$
- M^{-1} is a circulant-by-block matrix

Quasi-Cylic Codes

- Let $n=p n_{0}$ and $r=p r_{0}$ with p, n_{0} and r_{0} positive integers
- Let H be an $r \times n$ parity check matrix of a code \mathscr{C}

Definition.

\mathscr{C} is quasi-cyclic if $H=\left[H_{i, j}\right]$ with each $H_{i, j}$ is a circulant $p \times p$ matrix \mathscr{C} is a quasi-cyclic low density parity check code if each $H_{i, j}$ is sparse

McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes ('07)

Description.

- Assume $r_{0}=1$
- Let \mathscr{C} be a QC-LDPC code defined by

$$
H=\left[\begin{array}{lll}
H_{1} & \cdots & H_{n_{0}}
\end{array}\right]
$$

where H_{i} is a sparse circulant $p \times p$ matrix of column weight d_{v}

- \mathscr{C} is able to decode up to t^{\prime} errors
- $H_{n_{0}}$ has full rank and dimension of \mathscr{C} is $k=p\left(n_{0}-1\right)$

McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes

$\operatorname{Setup}\left(1^{\lambda}\right)$

1. Choose integers s, m such that $m \ll p$ and $t=t^{\prime} / m$
2. Randomly pick invertible matrix

- $S=\left[S_{i, j}\right]$ where $S_{i, j}$ is sparse circulant $p \times p$ matrix of weight s
- $Q=\left[Q_{i, j}\right]$ where $Q_{i, j}$ is sparse circulant $p \times p$ matrix of weight m

3. Calculate a generator matrix G in row reduced echelon form from H
4. Compute $G^{\prime}=S^{-1} \times G \times Q^{-1}$
5. Output $P K=\left(G^{\prime}, t\right)$ and $S K=(S, H, Q)$

McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes

Encrypt(x)

1. Randomly choose an error $\mathbf{e} \in \mathbb{F}_{2}^{n}$ of weight t
2. Calculate $\mathbf{y}=\mathbf{x} \cdot G^{\prime} \oplus \mathbf{e}$

Decrypt(y)

1. Calculate $\mathbf{z}=\mathbf{y} \cdot Q \quad / / \mathbf{z}=\left(\mathbf{x} \cdot S^{-1} \times G\right) \oplus \mathbf{e} \cdot Q$
2. Decode \mathbf{z} into $\mathbf{x}^{\prime} \quad / / \mathbf{x}^{\prime}=\mathbf{x} \cdot S^{-1}$
3. Output $\mathbf{x}^{\prime} \cdot S$

Remark.
$\mathbf{e}^{\prime}=\mathbf{e} \cdot Q$ is of weight $\leq m t=t^{\prime}$

McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes

Proposed parameters.

- Q is chosen in diagonal form

$$
Q=\left(\begin{array}{ccc}
Q_{1} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & Q_{n_{0}}
\end{array}\right)
$$

- Q_{i} 's are invertible

McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes

Suggested values.

- $n_{0}=4, p=4032, d_{v}=13, t^{\prime}=190$ and $t=27$
- $s=m=190 / 27=7$

Key sizes.

- Public Key: 48400 bits
- Secret Key: 1716 bits

Cryptosystem Analysis

Preliminaries.

- Since $H=\left[\begin{array}{lll}H_{1} & \cdots & H_{n_{0}}\end{array}\right]$ with $H_{n_{0}}$ invertible

$$
G=\left(\begin{array}{c|c}
& \left(H_{n_{0}}^{-1} H_{1}\right)^{T} \\
I_{k} & \vdots \\
& \left(H_{n_{0}}^{-1} H_{n_{0}-1}\right)^{T}
\end{array}\right)
$$

- This implies that k first columns of public matrix G^{\prime} is equal to

$$
G_{\leq k}^{\prime}=S^{-1} \times\left(\begin{array}{ccc}
Q_{1}^{-1} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & Q_{n_{0}-1}^{-1}
\end{array}\right)
$$

Cryptosystem Analysis

Or, equivalently by inverting $G_{\leq k}$ and adopting a polynomial approach

where $\mathbf{q}_{i}(x)$ and $\mathbf{s}_{i, j}(x)$ are sparse polynomials

Cryptosystem Analysis

Cryptanalysis principle

Given $\mathbf{g}(x)$ of degree $<p$, find $\mathbf{q}(x)$ and $\mathbf{s}(x)$ of weight $m \ll p$ such that

$$
\mathbf{g}(x)=\mathbf{q}(x) \cdot \mathbf{s}(x) \quad \bmod \left(x^{p}-1\right)
$$

Remark.

With high probability (≥ 0.94), there exists ℓ such that

$$
\left(x^{\ell} \cdot \mathbf{q}(x)\right) \cap \mathbf{g}(x)=x^{\ell} \cdot \mathbf{q}(x)
$$

Cryptanalysis - First Strategy

1. Enumerate all the m-tuples $\left(e_{1}, \ldots, e_{m}\right)$ of the support of $\mathbf{g}(x)$
2. Calculate $\mathbf{q}(x)=x^{e_{1}}+\cdots+x^{e_{m}}$
3. If $\mathbf{q}(x)$ is coprime with $x^{p}-1$ then
4. \quad Calculate $\mathbf{s}=\mathbf{q}^{-1}(x) \cdot \mathbf{g}(x) \bmod \left(x^{p}-1\right)$
5. If $w t(\mathbf{s})=m$ then
6. \quad Return $\mathbf{q}(x)$ and $\mathbf{s}(x)$
7. end if
8. end if

Cryptanalysis - First Strategy

- Time complexity.

$$
O\left(\binom{m^{2}}{m} p^{2}\right)
$$

- Numerical results. For $p=4032$ and $m=7$, we obtain $2^{50.3}$ operations
- Probability of success. $\geq 94 \%$

But we can do faster...

Cryptanalysis - Second Strategy

1. For each $1 \leq d \leq p-1$ do
2. $\quad \mathbf{g}_{d}(x)=x^{d} \cdot \mathbf{g}(x) \bmod \left(x^{p}-1\right)$
3. $\quad \mathbf{q}(x)=\mathbf{g}_{d}(x) \cap \mathbf{g}(x)$
4. If $(w t(\mathbf{q})=m)$ and $\left(\mathbf{q}(x)\right.$ coprime with $\left.x^{p}-1\right)$ then
5. $\mathbf{s}(x)=\mathbf{q}^{-1}(x) \cdot \mathbf{g}(x) \bmod \left(x^{p}-1\right)$
6. If $w t(\mathbf{s})=m$ then
7.

Return $\mathbf{q}(x)$ and $\mathbf{s}(x)$
8.

End if
9. End if
10. End for

Cryptanalysis - Second Strategy

- Time complexity.

$$
O\left(p^{3}\right)
$$

- Numerical results. For $p=4032$, we obtain 2^{36} operations
- Probability of success. Difficult to evaluate but experimentally $\simeq 69 \%$

Cryptanalysis - Third Strategy

- Recall that each row of $\mathbf{G}_{\leq k}^{-1}(x)$ is of the form

$$
\left(\begin{array}{lll}
\mathbf{d}_{1}(x) & \ldots & \mathbf{d}_{n_{0}-1}(x)
\end{array}\right)
$$

with

$$
\mathbf{d}_{i}(x)=\mathbf{q}(x) \cdot \mathbf{s}_{i}(x) \quad \bmod \left(x^{p}-1\right)
$$

- Define $\mathbf{E}_{i, j}(x)=\mathbf{d}_{i}(x) \cdot \mathbf{d}_{j}^{-1}(x) \bmod \left(x^{p}-1\right)$
- Note that we also have

$$
\mathbf{E}_{i, j}(x)=\mathbf{s}_{i}(x) \cdot \mathbf{s}_{j}^{-1}(x) \quad \bmod \left(x^{p}-1\right)
$$

Cryptanalysis - Third Strategy

- Let \mathscr{E} be the code defined by the generator matrix

$$
\mathbf{E}(x)=\left(\begin{array}{llll}
\mathbf{1}(x) & \mathbf{E}_{2,1}(x) & \cdots & \mathbf{E}_{n_{0}-1,1}(x)
\end{array}\right)
$$

- Then \mathscr{E} contains p codewords of low weight $\left(n_{0}-1\right) m=21$ since

$$
\mathbf{s}_{1}(x) \cdot \mathbf{E}(x)=\left(\begin{array}{llll}
\mathbf{s}_{1}(x) & \mathbf{s}_{2}(x) & \cdots & \mathbf{s}_{n_{0}-1}(x)
\end{array}\right)
$$

- Applying dedicated algorithms like Stern or Canteaut-Chabeaud
- Time complexity is about $2^{32.1}$ with Stern's algorithm

Secret Parity Check Matrix Extraction

- Once secret matrices S and $Q_{1}, \ldots, Q_{n_{0}-1}$ are found, calculate matrix

$$
\tilde{G}=S \times G^{\prime} \times\left(\begin{array}{cccc}
Q_{1} & & & \mathbf{0} \\
& \ddots & & \\
& & Q_{n_{0}-1} & \\
\mathbf{0} & & & I_{p}
\end{array}\right)=\left(\begin{array}{ll|}
\\
I_{k} & \left(H_{n_{0}}^{-1} H_{1}\right)^{T} \times Q_{n_{0}}^{-1} \\
\vdots \\
& \left(H_{n_{0}}^{-1} H_{n_{0}-1}\right)^{T} \times Q_{n_{0}}^{-1}
\end{array}\right)
$$

- Note that we still need to discover $H_{1}, \ldots, H_{n_{0}}$ and $Q_{n_{0}}$

Secret Parity Check Matrix Extraction

- Define $A_{i}=H_{i} \times H_{n_{0}}^{-1} \times\left(Q_{n_{0}}^{-1}\right)^{T}$ and $B_{i, j}=A_{i} \times A_{j}^{-1}$
- Note that we also have:

$$
B_{i, j}=H_{i} \times H_{j}^{-1}
$$

- Define the code \mathscr{C}_{1} spanned by the generator matrix G_{1}

$$
G_{1}=\left(\begin{array}{llll}
I_{p} & B_{2,1} & \cdots & B_{n_{0}-1,1}
\end{array}\right)
$$

- \mathscr{C}_{1} contains p codewords of low weight $\left(n_{0}-1\right) d_{v}=39$ since

$$
H_{1} \times G_{1}=\left(\begin{array}{cccc}
H_{1} & H_{2} & \cdots & H_{n_{0}-1}
\end{array}\right)
$$

Secret Parity Check Matrix Extraction

- Time complexity is about 2^{37} with Stern's algorithm
- Final step:

1. Compute $H_{i}^{-1} \times A_{i}=H_{n_{0}}^{-1} \times\left(Q_{n_{0}}^{-1}\right)^{T}$
2. Apply strategy 1 or 2 to find $H_{n_{0}}$ and $Q_{n_{0}}$

Conclusion

- Key reduction is a crucial issue when considering McEliece cryptosystems
- Hiding structure is also a main security issue
- Successfully combining these two aspects represents a big challenge

