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Abstract

We study the Boolean functions fλ : F2n → F2, n = 6r , of the form f (x) = Tr(λxd) with d = 22r +
2r + 1 and λ ∈ F2n . Our main result is the characterization of those λ for which fλ are bent. We show also
that the set of these cubic bent functions contains a subset, which with the constantly zero function forms
a vector space of dimension 2r over F2. Further we determine the Walsh spectra of some related quadratic
functions, the derivatives of the functions fλ.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A number of recent papers are devoted to the description of new classes of bent functions. One
of the main purpose is to determine bent functions which do not belong to a previously known
class. For instance, in [4] are constructed non-normal bent functions and in [8] bent functions are
obtained by concatenating quadratic functions. Another goal is to find new expressions of bent
functions over finite fields. It is essentially the expressions by means of trace-functions which
are considered in [13,17,18]. More generally, any polynomial P(x) in F2n [x] can be viewed
as a function with n inputs and n outputs. The properties of P are then studied by means of
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their 2n component functions, the Boolean functions x �→ Tr(λP (x)) where Tr is the trace func-
tion from F2n to F2. Determining the weights of these functions is of great interest in coding
theory and cryptography (see [1,13] and [7], for instance).

Our paper is a contribution to the study of the so-called monomial bent functions. The mono-
mial Boolean functions F2n are those that can be expressed as x �→ Tr(λxd) for some λ ∈ F2n

and an integer d . The characterization of the exponents d and the corresponding λ defining a
bent monomial function on F2n is a difficult open problem. In this paper we study the monomial
Boolean functions on fields F2n with n = 6r (r > 1) given by

fλ(x) = Tr
(
λxd

)
, d = 22r + 2r + 1, λ ∈ F∗

2n . (1)

We first prove that the weight of fλ takes only three values when λ runs through F∗
2n , one of them

corresponding to the bent case (Theorem 1). We later describe the set of those λ such that fλ is
bent and we prove that these functions are Maiorana–McFarland bent functions. Moreover, we
show that a part of these functions form a subspace of dimension 2r of Boolean bent functions
on F2n . All these 22r − 1 bent functions are cubic (Theorem 3).

The functions fλ which are not bent appear as a concatenation of quadratic functions on F23r

(Theorem 2). We derive a divisibility property of their Walsh spectra (Corollary 1). In Section 3.4
we state some open problems on the Walsh spectra of these functions.

Many properties of a Boolean function are connected with the properties of its derivatives.
For example, the derivatives of a Boolean function are used to obtain lower bounds on the non-
linearity profile [5]. The derivatives are also involved in the computations of several criteria
about the optimality of a Boolean function for the cryptographic applications (see [6] and, for in-
stance, [3]). In Section 4, we study the derivatives of a bent and non-bent function fλ. We show
that the Walsh transform of such a derivative takes either the values {0,±25r} or the values
{0,±24r} (Theorem 4).

2. Preliminaries

In the whole paper, α is a primitive element of F2n . A Boolean function on F2n is a function of
the form x �→ Tr(P (x)), where P is any polynomial in F2n [x] and Tr is the trace function from
F2n to F2. Such a function is said to be monomial when P has only one term.

For any k dividing n and n = uk, we denote the trace function from F2n onto F2k as follows:

T n
k (b) = b + b2k + · · · + b2k(u−1)

, b ∈ F2n .

Notation Tr is used for k = 1.

2.1. Boolean functions

Let f be any Boolean function on F2n . The Hamming weight of f , denoted by wt(f ), is the
number of x ∈ F2n such that f (x) = 1. We denote by F(f ) the following value related to the
Walsh transform of f :

F(f ) =
∑

n

(−1)f (x) = 2n − 2wt(f ). (2)

x∈F2
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The function f is said to be balanced if and only if F(f ) = 0 or, equivalently, wt(f ) = 2n−1.
The linear Boolean functions on F2n are the functions

ϕa :x �→ Tr(ax), a ∈ F2n .

The affine Boolean functions on F2n are ϕa + c where c ∈ F2. The Walsh transform of f is the
mapping

u ∈ F2n �→F(f + ϕu).

The Walsh spectrum of f is the multiset

{
F(f + ϕu)

∣∣ u ∈ F2n

}
.

Definition 1. For even n, a Boolean function f on F2n is bent if and only if its Walsh transform
takes the values ±2n/2 only.

More precisely, the Walsh spectrum of a bent function f is:

F(f + ϕu) Number of u ∈ F2n

2n/2 2n−1 + (−1)f (0)2n/2−1

−2n/2 2n−1 − (−1)f (0)2n/2−1

The derivative of f with respect to b ∈ F2n , denoted by Dbf , is the Boolean function

Dbf :x �→ f (x) + f (x + b).

The bent functions are exactly the ones which have all their derivatives Dbf , b �= 0, balanced.
Observe that if f is a bent function and L : F2n → F2n is a affine permutation then f ◦ L is also
bent. Also f + l is bent for any affine function l : F2n → F2. The bent functions, which can be
obtained from f with such transformations, are called affinely equivalent to f .

2.2. Quadratic Boolean functions

Let q be a power of 2 and V be an n-dimensional vector space over Fq . A map Q :V → Fq

is called a quadratic form on V if

(a) Q(cx) = c2Q(x) for any c ∈ Fq and x ∈ V ,
(b) B(x,y) := Q(x + y) + Q(x) + Q(y) is bilinear on V .

The kernel K of a quadratic form Q is the subspace of V defined by

K = {
x ∈ V : B(x,y) = 0 for any y ∈ V

}
.
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Given a basis {γ1, . . . , γn} of V , let x = ∑n
i=1 xiγi := (x1, . . . , xn), where xi ∈ Fq . Then using

(a) and (b) we get

Q(x) = Q

(
n∑

i=1

xiγi

)
=

n∑
i=1

Q(γi)x
2
i +

∑
i<j

B(γi, γj )xixj .

Hence, the quadratic form Q can be expressed in the following form:

Q(x) =
∑
i�j

cij xixj = x Cxt , (3)

where C is the upper triangular matrix with

cij =
{

Q(γi) if i = j,

B(γi, γj ) if i < j.

Furthermore, (b) and (3) imply that B(x,y) = xByt , where B is the symmetric matrix C + Ct .
The matrix B is alternating as well, i.e., xBxt = 0. Indeed, xBxt = B(x,x) = 0. Note that the
dimension k of the kernel K is equal to the corank of the matrix B

k = n − rank(B).

It is well known that the rank of an alternating matrix over any field is even [11, pp. 241, 242].
We collect the above information in the following proposition.

Proposition 1. Let V be a vector space over a field Fq of characteristic 2 and Q :V → Fq be
a quadratic form. Then the dimension of V and the dimension of the kernel of Q have the same
parity.

In this paper we are interested in the case where V is an extension field Fqn of Fq . By counting
it is easy to show that for any quadratic form Q : Fqn → Fq there are unique δi ∈ Fqn , 0 � i �
�n/2	, such that

Q(x) = T
qn

q

( �n/2	∑
i=0

δix
qi+1

)
,

except when n is even, in which case δ�n/2	 is only unique modulo Fq�n/2	 [14]. If f : F2n → F2
is a Boolean quadratic form, then its Walsh spectrum depends only on the dimension k of the
kernel of f . More precisely, the Walsh spectrum of f is:

F(f + ϕu) Number of u

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f (0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f (0)2(n−k−2)/2

(4)
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Note that f is bent if and only if k = 0. Assume that f is a monomial function of the form
x �→ Tr(ax2i+1), for some i, 1 � i � �n/2	. Set Si = {y2i+1 | y ∈ F∗

2n}. Then the dimension of
the kernel of f is known to be

k =
⎧⎨
⎩

gcd(n, i) if gcd(n, i) = gcd(n,2i),

gcd(n,2i) if 2 gcd(n, i) = gcd(n,2i) and a ∈ Si ,

0 if 2 gcd(n, i) = gcd(n,2i) and a /∈ Si .
(5)

These last properties are explained in [20, Chapter 15] (see Figs. 15.2 and 15.5) and [21]; see
also [2, Proposition 4]. For more information on the Walsh transform of the monomial quadratic
forms see [13, Appendix]. The next lemma can be directly obtained from the definitions.

Lemma 1. Let f be any quadratic Boolean function. The kernel K of f is the subspace of those b

such that the derivative Dbf is constant.

2.3. The Maiorana–McFarland bent functions

The Maiorana–McFarland class of bent functions was introduced in [22] and extensively stud-
ied by Dillon [12, pp. 90–95]. It is usually called the class M of bent functions. A bent function
from M can be viewed as a concatenation of certain affine Boolean functions.

In the next lemma we define the subclass of M that we will consider later. The concatenation
is made relatively to the cosets of F2t , a structure which is particularly adapted to the monomial
bent functions. The proof of this lemma is in fact a general proof for the class M. We give a
sketch of proof to define this subclass clearly.

Lemma 2. Let n = 2t and V = F2t . Denote by W a subspace of the representatives of the cosets
of V , that is F2n = ⋃

a∈W(a + V ). Let us consider a function f on F2n defined by

f : (y, a) ∈ V × W �→ T t
1

(
yπ(a) + h(a)

)
, (6)

where π is a bijection from W to V and h is any function from W to V . Then, f is a bent function
which belongs to the class M.

Sketch of proof. Fixing a in (6), we get a function on F2t , say fa , which is affine relatively to y.
Since π is a permutation, only one fa is constant and all the others are balanced. Thus

F(f ) =
∑
a∈W

∑
y∈V

(−1)f (y,a) = 2t (−1)T
t
1 (h(a0)),

where π(a0) = 0. Note that the functions y �→ T t
1 (yπ(a)) form the set of all linear functions

on F2t . Consider any linear function � on F2n and its restrictions �a on the cosets of V . If the
kernel of � contains V , then each �a is constant. Otherwise the �a are affine and there is one
and only one a such that fa + �a is constant. Thus, F(f + �) and F(f ) have the same absolute
value. �
Remark 1. Let f be a bent function given by (6) and g an affinely equivalent function given by

g(x) = f ◦ L(x),
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where L is an affine permutation. Then g is also in class M. More precisely, it is a concatenation
of affine functions on the subspace L−1(V ). In particular, the composition f ◦ sγ of the linear
function

sγ :x �→ γ x

and f is a concatenation of affine functions on γ −1V .

To introduce our method we consider in the next example the functions studied by Leander
in [17]. We express such a function in a form close to form (6), which implies that a large part of
these functions can be viewed as a concatenation of (not necessarily different) affine functions
on the subfield.

Example 1. Let n = 4r , r > 1. We consider the functions on F2n defined by

gλ :x �→ Tr
(
λxd

)
, d = (

2r + 1
)2

, λ ∈ F∗
22r . (7)

In [17] it is proved that these functions are bent if λ ∈ F4 \ {0,1} and r is odd. We will show
that gλ, for any r and for any λ ∈ F∗

22r , has a similar form to (6). The notation is the same as in
the statement of Lemma 2: V = F22r and W is a subspace of the representatives of the cosets
of V in F2n . Then, for any y ∈ V and a ∈ W , we compute:

gλ(y, a) = Tr
(
λ(y + a)22r+2r+1+1)

= Tr
(
λyd

) + Tr
(
λ
(
y1+2r+1

a + y2r+1+1a22r + y2a2r+1))
+ Tr

(
y
(
λ
(
a22r+2r+1 + a2r+1+1) + λ2r−1

a2r−1(22r+1)
))

+ Tr
(
λa22r+2r+1+1) = A + B + C + D.

We have A = 0 since λ and y are in F22r . Moreover,

B = Tr
(
λy2r+1+1(a22r + a

) + λy2a2r+1) = Tr
(
λy2a2r+1)

,

since λy2r+1+1(a22r + a) ∈ F22r . Thus we have that any function gλ, defined by (7), is a concate-
nation of 22r affine functions on F22r . In order to specify the form of these functions, we compute
the part which is linear relatively to y:

C = Tr
(
yλ

(
a22r+2r+1 + a2r+1+1)),

since λ2r−1
a2r−1(22r+1) ∈ F22r . Finally

gλ(y, a) = T 2r
1

(
yπ(a) + λT 4r

2r

(
ad

))
,

where π is the mapping from W to V given by

π(a) = λ
(
a + a22r )2r+1+1 + λ22r−1(

a + a22r )2r

.
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2.4. Definition of the functions fλ

Let n = 6r , r > 1 and α be a primitive element of F2n . Further let the functions fλ be defined
by (1). Recall that d = 22r + 2r + 1 and it holds

2n − 1 = (
23r − 1

)(
23r + 1

) = d
(
22r − 1

)(
22r − 2r + 1

)
.

If λ = γ θd for some γ, θ ∈ F2n , then fλ(x) = fγ (θx), and we call fγ a shift of fλ. A shift of fλ

has the same Walsh spectrum as fλ does. Next we want to show that to obtain an information
about Walsh spectrum of fλ it is enough to consider λ ∈ F23r . Indeed, take the partition of the
multiplicative group of F∗

2n into the cosets of the subgroup 〈αd〉 generated with αd , i.e.

F∗
2n =

d−1⋃
i=0

αi
〈
αd

〉
,

where 〈αd〉 = {αd� | 0 � � < 2n−1
d

}. Note that if two elements λ and γ belong to the same coset
of 〈αd〉, then the functions fλ and fγ are shifts of each other. Finally, we observe that every coset
of 〈αd〉 contains an element from the subfield F23r . More precisely, for any j , 0 � j � d − 1,

αj(23r+1) belongs to one and only one αi〈αd〉. Indeed, we have

23r + 1 = (
23r − 1

) + 2 ≡ d
(
2r − 1

) + 2 ≡ 2 (mod d).

Then i = 2j if 0 � j � (d − 1)/2 and i = 2j − d , otherwise.

Lemma 3. The subset of F23r

{
αj(23r+1)

∣∣ 0 � j � d − 1
}

is a set of the representatives of the cosets {αi〈αd〉 | 0 � i � d − 1 } with

j =
{

i/2 if i is even,

(d + i)/2 if i is odd.

According to the previous lemma, to study the spectra of all the functions fλ defined by (1),
it is sufficient to study the functions that we introduce below.

Definition 2. Let n = 6r with r > 1. Let us define the Boolean functions on F2n :

fλ(x) = Tr
(
λxd

)
, where

⎧⎨
⎩

d = 22r + 2r + 1,

λ = αj(23r+1),

0 � j � d − 1.

(8)

Remark 2. When r = 1, then n = 6 and d = 7. In this case, the bent functions fλ belong to the
class of bent functions of the form: x �→ Tr(νx2t−1) (functions on F2n with n = 2t). These were
studied by Dillon, as examples of the so-called PS bent functions [12]. When n = 6 we have
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fλ(x) = Tr(λx7), with λ ∈ F8 and it is very easy to determine the bent functions. We know that
fλ is bent if and only if the function on F8

gλ :x �→ T 3
1

(
x3 + λx

)
is balanced (see [17, §II.B]). But it is well known that this cubic function is balanced if and only
if T 3

1 (λ) = 0. We will see later that, in fact, this result holds when r > 1.

3. On the spectrum of fλ

In this section fλ is defined by (8). We denote by G the subgroup of F∗
2n of order 23r + 1.

Since gcd(23r + 1,23r − 1) = 1, any x ∈ F∗
2n has a unique representation:

x = yz, y ∈ F∗
23r and z ∈ G. (9)

3.1. The weight of fλ

Here we prove that wt(fλ) takes only three values (Theorem 1). Recall that F(fλ) = 2n −
2wt(fλ).

Proposition 2. Let us define

Lλ = {
z ∈ G

∣∣ T 6r
r

(
λzd

) �= 0
}
.

Then the weight of fλ is wt(fλ) = 2r−1d #Lλ.

Proof. Using (9), we will express wt(fλ) as an integer sum on the pairs (y, z). Note that yd ∈
F2r , for y ∈ F23r , since 23r − 1 = (2r − 1)d . So, it is clear that the application y �→ yd is d-to-1
from F∗

23r onto F∗
2r .

Now, we have:

wt(fλ) =
∑

x∈F2n

Tr
(
λxd

) =
∑
z,y

Tr
(
λ(zy)d

)

=
∑
z∈G

∑
y∈F23r

T r
1

(
ydT 6r

r

(
λzd

))

=
∑
z∈G

d
∑

ρ∈F2r

T r
1

(
ρT 6r

r

(
λzd

))

= #Lλ × d × 2r−1,

since ρ �→ T r
1 (ρA) is linear on F2r , for any A �= 0. �

Our next goal is to compute the cardinality of Lλ. Actually, we will compute the cardinality
of Nλ, which is introduced in the next lemma. We denote by Lλ the set G \ Lλ:

Lλ = {
z ∈ G

∣∣ T 6r
r

(
λzd

) = 0
}
.



A. Canteaut et al. / Finite Fields and Their Applications 14 (2008) 221–241 229
Lemma 4. Given a λ ∈ F23r , set

Nλ =
{
y ∈ F∗

23r

∣∣∣ T 3r
r (λy) = 0 and T 3r

1

(
1

y

)
= 1

}
. (10)

Then #Lλ = 2 · #Nλ + 1.

Proof. Note that z23r = z−1 for any z ∈ G. We have z ∈ Lλ if and only if T 6r
r (λzd) = 0. Since

Lλ is contained in G and gcd(d,23r + 1) = 1, the number of such z is also obtained by taking as
a condition T 6r

r (λz) = 0. Thus we want to compute the number of z satisfying

T 6r
r (λz) = T 3r

r

(
λ
(
z + z−1)) = 0,

since λ ∈ F23r . It is clear that z satisfies the equality above if and only if z−1 satisfies it too. On
the other hand, it is well known that

{
z + z−1

∣∣ z ∈ G \ {1}} =
{
u ∈ F∗

23r

∣∣∣ T 3r
1

(
1

u

)
= 1

}

(see [16] for instance). Thus, computing #Lλ is equivalent to computing the number of u ∈ F∗
23r

satisfying T 3r
1 (u−1) = 1 and T 3r

r (λu) = 0, which is the cardinality of Nλ. Moreover, each such u

corresponds to a unique pair (z, z−1) and we add 1, for z = 1, to obtain the cardinality of Lλ. �
Theorem 1. Let the functions fλ (and λ itself ) be defined by (8). Let Gd denote the subgroup of
order d of F∗

23r . Consider the solutions v ∈ Gd of the equation:

v2 + v
T 3r

r (λ)

λ2r + 1

λ2r−1
= 0. (11)

Then F(fλ) = 2n − 2rd #Lλ where #Lλ is computed as follows.

(a) If Eq. (11) has one and only one solution in Gd then #Lλ = 22r (2r − 1); this holds if and
only if T 3r

r (λ) = 0.
(b) If Eq. (11) has no solution in Gd then #Lλ = 2r (22r − 2r − 1).
(c) Otherwise, Eq. (11) has two solutions in Gd and #Lλ = 2r (22r − 2r + 1).

Consequently, we obtain:

Case F(fλ)

(a) 23r

(b) 24r + 23r+1 + 22r

(c) −(24r + 22r )
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Proof. Let β be a primitive element of the subfield F23r . According to Lemma 4, computing
#Lλ is equivalent to computing #Nλ. Since 23r − 1 = (2r − 1)d we can express any y ∈ F∗

23r as
follows:

y = uβi, u = βkd, 0 � k � 2r − 2 and 0 � i � d − 1.

Note that u belongs to F∗
2r while βi for i �= 0 does not. Thus T 3r

r (λy) = uT 3r
r (λβi), which

implies that (10) can be rewritten

Nλ =
d−1⋃
i=0

{
y ∈ βiF∗

2r

∣∣∣ T 3r
r

(
λβi

) = 0 and T 3r
1

(
1

y

)
= 1

}
.

Let I = {0 � i � d − 1 | T 3r
r (λβi) = 0}. The linear function g :y �→ T 3r

r (y) from F23r to F2r

is surjective. So its kernel has dimension 2r . Moreover, g(y) = 0 for y ∈ βiF∗
2r as soon as

g(βi) = 0, and therefore

#I = 22r − 1

2r − 1
= 2r + 1.

Hence, with y = uβi ,

#Nλ =
∑
i∈I

#

{
y ∈ βiF∗

2r

∣∣∣ T 3r
1

(
1

y

)
= 1

}

=
∑
i∈I

#

{
u ∈ F∗

2r

∣∣∣ T r
1

(
1

u
T 3r

r

(
β−i

)) = 1

}

= 2r−1 × #
{
i ∈ I

∣∣ T 3r
r

(
β−i

) �= 0
}

= 2r−1(2r + 1 − #
{
i ∈ I

∣∣ T 3r
r

(
β−i

) = 0
})

. (12)

Hence in order to find #Nλ, we have to compute the number of i such that i ∈ I and
T 3r

r (β−i ) = 0. Setting w = βi , 0 � i � d − 1, we have to solve the system:⎧⎨
⎩

λw + (λw)2r + (λw)22r = 0,

1

w
+ 1

w2r + 1

w22r
= 0.

(13)

Note that w = 1 (i.e., i = 0) is not a solution of (13). So we have w2r−1 �= 1, which allows us to
express w22r

from the second equation:

w22r = w2r

w2r−1 + 1
,

that we substitute in the first equation. We can multiply this first equation by w2r−1 + 1 and we
get:

λ
(
w2r + w

) + λ2r (
w2r+1−1 + w2r ) + λ22r

w2r = 0,
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which gives, with δ = T 3r
r (λ),

δw2r + λw + λ2r

w2r+1−1 = 0.

Dividing the previous equation by λ2r
w, we finally get:

w2(2r−1) + w2r−1 δ

λ2r + 1

λ2r−1
= 0.

Setting v = w2r−1, we get Eq. (11). Note that, by definition, v describes the subgroup Gd of F∗
23r

of order d . Also, observe that because of definition of w, the correspondence w �→ v is a bijec-
tion.

Equation (11) is an equation of degree 2 which has either 0 or 1 or 2 solutions in F∗
23r . If it

has 2 solutions, v1 and v2, then v1 ∈ Gd implies v2 ∈ Gd since v1v2 = 1/λ2r−1. So (11) has one
and only one solution in Gd if and only if δ = 0. Using (12) we get #Nλ = 2r−12r ; moreover, by
Lemma 4, we have

#Lλ = 23r + 1 − 22r − 1 = 2r
(
22r − 2r

)
.

In the same way, when (11) has no solution in Gd we get #Nλ = 2r−1(2r + 1) and then
#Lλ = 2r (22r − 2r − 1). If (11) has 2 solutions in Gd then #Nλ = 2r−1(2r − 1) and #Lλ =
2r (22r − 2r + 1), completing the proof of the cases (a)–(c). Then we are able to compute F(fλ),
using Proposition 2 and F(fλ) = 2n − 2wt(fλ). �
Remark 3. We call the case (a) the bent case since fλ could be bent in this case only. Clearly
there are λ such that δ = T 3r

r (λ) = 0. Moreover, our numerical results show that there are λ such
that case (b) (respectively case (c)) holds. Note that Eq. (11) has no solution in F23r if and only if

T 3r
1

(
λ2r+1

δ2

)
= T r

1

(
1

δ2
T 3r

r

(
λ2r+1)) = 1.

3.2. Another expression of fλ

In this subsection we want to express any function fλ by means of its restrictions on the
(additive) cosets of F23r . We proceed as in Section 2.3. Set V = F23r and let W be a subspace
of F2n which is a set of the representatives of the cosets of V . Thus, for any x ∈ F2n there is a
unique pair (y, a) ∈ V × W such that x = y + a. Then, we define

fλ(y, a) = fλ(y + a) = Tr
(
λ(y + a)d

)
. (14)

Theorem 2. Let δ = T 3r
r (λ). Define the function π from W to V :

π(a) = λ22r (
a + a23r )22r+2r + δT 6r

3r

(
a22r+2r )

. (15)

Then, for any (y, a) ∈ V × W :

fλ(y, a) = T 3r
1

(
y2r+1δ

(
a + a23r )22r + yπ(a) + λ

(
ad + a23r d

))
. (16)
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Proof. We compute fλ(y, a), which is defined by (14):

fλ(y, a) = Tr
(
λ(y + a)d

)
= Tr

(
λyd

) + Tr
(
λ
(
a22r

y2r+1 + a2r

y22r+1 + ay2r (2r+1)
))

+ Tr
(
λ
(
y22r

a2r+1 + y2r

a22r+1 + ya2r (2r+1) + ad
))

= A + B + C.

First A = Tr(λyd) = 0 since λ and y are in F23r . Now, using the properties of the trace function,
we have

B = Tr
(
y2r+1(λa22r + λ2r

a22r + λ22r

a22r ))
= Tr

(
y2r+1a22r (

λ + λ2r + λ22r ))
= T 3r

1

(
y2r+1δ

(
a + a23r )22r )

.

Finally the part which is affine relatively to y is:

C = Tr
(
y
(
λa2r (2r+1) + λ2r

a2r (2r+1) + λ22r

a22r (22r+1)
) + λad

)
= T 3r

1

(
yT 6r

3r (D) + λT 6r
3r

(
ad

))
,

where

T 6r
3r (D) = (

λ22r + δ
)
T 6r

3r

(
a22r+2r ) + λ22r

T 6r
3r

(
a24r+22r )

= λ22r

T 6r
3r

(
a22r (

a + a23r )2r ) + δT 6r
3r

(
a22r+2r )

= λ22r (
a + a23r )22r+2r + δT 6r

3r

(
a22r+2r )

which is exactly π(a), completing the proof of (16). �
3.3. The bent functions

Now we use Lemma 2 to characterize those λ such that fλ is bent. A part of these bent
functions form a subspace of the Boolean functions of degree 3.

Theorem 3. The function fλ, defined by (8), is bent if and only if T 3r
r (λ) = 0. There are 2r + 1

such bent functions. In general, if λ runs through F∗
2n , then there are

(
22r − 1

)(
23r + 1

)
bent functions fλ, defined in (1). All these bent functions belong to the class M. Moreover, the
set

B = {
fλ

∣∣ λ ∈ F23r , T 3r
r (λ) = 0

}
,
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where f0 is the null function, is a subspace of the vector space of Boolean functions on F2n

over F2. Its dimension is 2r and any function fλ ∈ B∗ is a cubic bent function.

Proof. First, if δ �= 0 then fλ cannot be bent, since F(fλ) /∈ {±23r}. This was proved by The-
orem 1. So, we consider the functions fλ expressed by (16) with δ = 0. Notation is as in
Theorem 2. Then we get:

fλ(y, a) = T 3r
1

(
yπ(a) + λ

(
ad + a23r d

))
(17)

with π(a) = λ22r
(a + a23r

)22r+2r
. The linear function a �→ a + a23r

is a bijection from W to V ,
since its kernel is W ∩V = {0}. We conclude that π is a bijection from W to V because 2r +1 and
23r − 1 are coprime. According to Lemma 2, the functions expressed by (17) are bent functions
belonging to the class M. Now, set

S = {
λ = α�(23r+1)

∣∣ 0 � � � d − 1, T 3r
r (λ) = 0

}
.

Note that S is the set of those λ corresponding to bent functions defined by (8). The application
y �→ T 3r

r (y), from V to F2r , has a kernel of dimension 2r . Moreover, for any λ ∈ S we have
T 3r

r (λu) = 0 for any u ∈ F∗
2r . Then #S = (22r − 1)/(2r − 1) = 2r + 1, implying that there are

2r + 1 bent functions defined by (8), each of them having (2n − 1)/d shifts. Thus, we get

(
2r + 1

)(
23r + 1

)(
2r − 1

) = (
22r − 1

)(
23r + 1

)
bent functions fλ, when λ runs through F∗

2n (see Section 2.4). Moreover, as it was explained in
Remark 1 these shifts are also elements of the class M.

Let λ ∈ S. Consider the shifts fuλ of fλ such that uλ ∈ F23r . This holds for u ∈ F∗
2r only, since

we must have u = vd for some v in F23r . So we have 2r − 1 such shifts. Since T 3r
r (uλ) = 0, we

have proved that B contains 22r −1 bent functions. B is a subspace because of the linearity of the
trace function: if fλ and fμ are in B then fλ+μ ∈ B. All functions fλ are of degree 3, completing
the proof. �

To illustrate the previous theorem, we compute the number of bent functions for r = 2.

Example 2. Let r = 2; so n = 12 and d = 21. At first let us look more closely on the numerical
results given in Table 1. They show that fαi is bent for i ∈ {7,9}, where α is a primitive element
of F212 . Then we get five cosets αi〈α21〉 whose elements define bent functions. Indeed i is a
representative of its 2-cyclotomic coset modulo 21: 7 is the representative of {7,14} and 9 is the
representative of {9,15,18}. So, we get at all 975 = 5 × 195 bent functions.

Now, using Lemma 3 and the previous calculation, we get five bent functions fλ with λ ∈ F26 :

λ = α65j , j ∈ J, J = {7,14,9,15,18}.
And, using Theorem 3, there are 975 = 15 × 65 many bent fλ if λ ∈ F212 . The subspace of bent
functions of dimension 4 is obtained by taking all elements λ in α65j 〈α21〉, j ∈ J , which belong
also to the subfield F26 , that is

λ = α65�, � = j + kd, j ∈ J and 0 � k � 2.
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Table 1
Walsh spectra of fαi over F212 where α is a root of the primitive polynomial x12 + x6 + x4 + x + 1. It corresponds to

the case r = 2, n = 12 and d = 21. The spectra of the functions x �→ Tr(αix21), where i ∈ I with I = {0,1,3,5,7,9},
are presented. The set I is a set of representatives of the 2-cyclotomic cosets modulo 21. In this table, a spectrum is
presented as a list: value [number] value [number] . . . . The set of all bent functions is described in Example 2

i Weight of f Spectra

0 211 + 136 112 [546] 48 [1092] −16 [1365] −80 [1092] −272 [1]
1 211 + 136 112 [546] 48 [1092] −16 [1365] −80 [1092] −272 [1]
3 211 + 136 112 [546] 48 [1092] −16 [1365] −80 [1092] −272 [1]
5 211 − 200 400 [1] 144 [441] 80 [84] 16 [1764] −48 [1764] −240 [42]
7 211 − 32 64 [2080] −64 [2016]
9 211 − 32 64 [2080] −64 [2016]

We get 15 such bent functions.

3.4. Functions which are not bent

In this section, we consider the functions fλ which are not bent. We obtain the divisibility of
the Walsh transform of such fλ from Theorems 1 and 2.

Corollary 1. Assume that T 3r
r (λ) �= 0, i.e. fλ is not bent. Set s = 2r . Then for all b ∈ F2n

F(fλ + ϕb) ≡ 0
(
mod 2s

)
.

Moreover, this does not hold for s > 2r .

Proof. Notation is as in Theorem 2. When fλ is not bent, we have seen that it can be expressed
as a concatenation of quadratic functions of the form T 3r

1 (νy2r+1 + cy + c′). This property holds
for fλ + ϕb for any b. Indeed

(fλ + ϕb)(y + a) = fλ(y + a) + Tr
(
b(y + a)

)
= T 3r

1

(
νy2r+1 + y

(
c + T 6r

3r (b)
) + c′ + T 6r

3r (ba)
)

and we have

F(fλ + ϕb) =
∑
a

∑
y

(−1)(fλ+ϕb)(y,a).

Any quadratic function of the form y �→ T 3r
1 (νy2r+1) on F23r is such that the values of its Walsh

transform are {0,±22r} when ν �= 0. This is because the dimension k of its kernel equals r (see
Section 2.2). We can conclude that F(fλ + ϕb) is divisible by 22r . By Theorem 1, we know that
F(fλ) is divisible by 22r and not divisible by 22r+1, completing the proof. �

Concerning the non-bent spectra, our numerical results lead to several conjectures that we list
below. To illustrate our purpose, we present the case r = 2 in Table 1.
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Conjecture 1. There are three different spectra only, one “bent” and two “non-bent,” for the
functions fλ. These three spectra correspond to the three cases listed in Theorem 1.

For any non-bent function fλ, the value F(fλ) appears only once and the value 0 never
appears.

4. Some quadratic functions: the derivatives

The derivative of fλ (λ ∈ F∗
2n ) with respect to a ∈ F∗

2n is the function

Dafλ(x) = Tr
(
λxd

) + Tr
(
λ(x + a)d

)
.

Our purpose, in this section, is to study some properties of these specific quadratic functions.
Firstly, we are interested in the Walsh spectra of these functions. To obtain the Walsh spectra of
the functions Dafλ it is enough to consider the spectra of the functions D1fμ with μ = λad .
Indeed,

Dafλ(x) = Tr
(
λxd

) + Tr
(
λ(x + a)d

)
= Tr

(
λad

(
a−1x

)d) + Tr
(
λad

(
a−1x + 1

)d)
= D1fλad

(
a−1x

)
.

The following proposition gives more information about Dafλ.

Proposition 3. Let a ∈ F∗
2n and μ = λad . Then D1fμ is the function ga,λ given by

ga,λ(x) = Tr
(
μx22r+1 + Ax2r+1 + Bx + μ

)
, (18)

with

A = μ + μ25r

, B = μ + μ24r + μ25r

.

Consequently,

Dafλ(x) = ga,λ

(
a−1x

)
.

Proof. According to the previous remark, it is sufficient to compute D1fλad (denoted by ga,λ):

ga,λ(x) = Tr
(
μ

[
x22r+2r + x22r+1 + x2r+1 + x22r + x2r + x + 1

])
= Tr

(
μx22r+1 + (

μ + μ25r )
x2r+1 + (

μ + μ24r + μ25r )
x + μ

)
. �
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4.1. The kernels of derivatives

The Walsh spectrum of the function ga,λ is equal to the one of the following functions:

hμ(x) = Tr
(
μx22r+1 + (

μ + μ25r )
x2r+1), μ = λad, (19)

for any a and any λ in F∗
2n . Note that hμ is a quadratic form from F2n into F2. Thus using the

results of Section 2.2, the Walsh spectrum of hμ is completely defined as soon as the dimension
of its kernel is known. Our next goal is to describe this kernel.

Lemma 5. Let K(μ) be the kernel of the quadratic form hμ and A = μ + μ25r
. Then K(μ) is

the subspace of the roots of P ∈ F2n [x] given by

P(x) = μx22r + Ax2r + (μx)24r + (Ax)25r

.

Proof. We compute the derivatives of hμ with respect to any b ∈ F∗
2n :

Dbhμ(x) = Tr
(
μ

(
x22r

b + b22r

x
) + A

(
x2r

b + b2r

x
) + μb22r+1 + Ab2r+1)

= Tr
(
x
(
μb22r + Ab2r + (μb)24r + (Ab)25r )) + hμ(b).

According to Lemma 1, we get for any μ ∈ F∗
2n

K(μ) = {
b ∈ F2n

∣∣ μb22r + Ab2r + (μb)24r + (Ab)25r = 0
}
. �

Recall that a polynomial of the form
∑m−1

i=0 aix
qi

with coefficients in an extension field Fqm

of Fq is called a q-polynomial over Fqm [19, p.107]. If Fqm is considered as a vector space over
Fq , then q-polynomials are the linear maps of this vector space. Hence we can speak from the
kernel of a q-polynomial. Clearly, the kernel and the image set of a q-polynomial are subspaces
of Fqm over Fq . In particular, these sets have cardinality qk for some k. The polynomial P(x)

considered here is a 2r -polynomial. As a consequence, the dimension of the kernel of P(x) (i.e.,
the dimension of any K(μ)) equals kr for some k. On the other hand, K(μ) has at most 24r

elements because P(x) can be written as (P ′(x))2r
with degP ′ = 24r .

Consider now the quadratic form from Fq6 to Fq (q = 2r ):

Hμ(x) = T 6r
r

(
μx22r+1 + Ax2r+1).

The set of roots of P(x) is also the kernel K of Hμ. Indeed, K is the set of those b such that
B(x) = 0 for all x with

B(x) = Hμ(x) + Hμ(b) + Hμ(x + b)

(see Section 2.2). Since Dbhμ(x) = T r
1 (B(x)), we get

B(x) = T 6r
r

(
P(b)x

)
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(see the proof of Lemma 5). Thus, the kernel K of Hμ is equal to K(μ). By Proposition 1, the
dimension of K over F2r must have the same parity as 6, so it is even. We conclude that the
dimension of K over F2r is either 2 or 4, implying that the one of K(μ) over F2 is either 2r

or 4r .

Proposition 4. The kernel K(μ) of the quadratic function hμ, defined by (19), has dimension
either 2r or 4r .

4.2. The spectrum of hμ

In this subsection we determine for which μ the dimension of K(μ) is 2r and for which it
is 4r , studying the kernel of P(x). First we prove two lemmas. The first lemma can be easily
generalized to any finite field.

Lemma 6. Let q = 2r , n = rm and U(x) be any q-polynomial over F2n . Set ImU =
{U(x) | x ∈ F2n},

V = {
x ∈ F2n

∣∣ U(x) + U(x)2r = 0
}

and W = {
x ∈ F2n

∣∣ U(x) = 0
}
.

Then, ImU ∩ F2r equals either F2r or {0}. Furthermore, dimV is equal to

{
dimW if ImU ∩ F2r = {0},
dimW + r if ImU ∩ F2r = F2r .

Proof. Suppose that there exist ξ ∈ F ∗
2r and x0 ∈ F2n such that U(x0) = ξ . Then for any δ ∈ F2r

it holds

U
(
δξ−1x0

) = δξ−1U(x0) = δ,

proving the first statement. Recall that U(x)+U(x)2r = 0 if and only if U(x) ∈ F2r . To complete
the proof note that every element in ImU has 2u many preimages, where u = dimW . �

We again consider K(μ) and P(x), as defined by Lemma 5.

Lemma 7. For any μ, we have P(x) = L(x2r + x) with

L(x) = μx2r + (μx)24r + μ25r (
x25r + x

)
. (20)

In particular, K(μ) contains F2r . Furthermore, denoting by I be the image set of the mapping
x �→ x2r + x, x ∈ F2n , we have

dimK(μ) = dim
{
x ∈ I

∣∣ L(x) = 0
} + r. (21)

Proof. We have:
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P(x) = μx22r + (
μ + μ25r )

x2r + μ24r

x24r + (
μ25r + μ24r )

x25r

= μ
(
x + x2r )2r + μ24r (

x + x2r )24r + μ25r (
x + x24r )2r

= L
(
x + x2r )

with

x + x24r = (
x + x2r )24r + (

x + x2r )25r

.

Since K(μ) is the kernel of P , equality (21) is directly obtained. We use that every element from
I has 2r preimages. �

Proposition 4 and Lemma 7 imply that P(x) has always some roots which do not belong
to F2r . Actually, we have to find the nonzero X such that

L(X) = 0, X = x2r + x, x ∈ F2n , (22)

where L is defined by (20). Note that X = x2r + x if and only if T 6r
r (X) = 0.

Lemma 8. Let σ = μ2r+24r + μ2r+23r + μ22r+24r
. The polynomial L is given by (20). Then we

have:

(a) Assume σ �= 0. If X is a solution of (22) then X = σγ for some γ ∈ F22r .
(b) If σ = 0, then any y, y = L(x) + L(x)2r

for some x, satisfies

μ23r

y + μ24r

y22r = 0

and μ is a (2r + 1)th power.

Proof. We compute R(x) = L(x) + L(x)2r
:

R(x) = μx2r + (μx)24r + μ25r (
x25r + x

) + μ2r

x22r + (μx)25r + μ
(
x + x2r )

= Ax + μ2r

x22r + μ24r

x24r

,

with A = (μ + μ25r
). Now we compute

M(x) = μ23r

R(x) + μ24r

R(x)22r

= (
μ23r

A + μ24r+1)x + (
μ23r+2r + A22r

μ24r )
x22r

= σ 22r

x + σx22r

,

noticing that (μ23r
A + μ24r+1)24r = σ . We get M(σ) = 0.

If σ �= 0 then the kernel of M is exactly σF22r . Hence the kernel of R is a subspace of σF22r .
But σ is a root of R too:
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R(σ) = μ1+2r+24r + μ1+2r+23r + μ1+22r+24r

+ μ2r+24r+25r + μ2r+23r+25r + μ22r+24r+25r

+ μ1+2r+23r + μ2r+23r+25r + μ1+2r+24r

+ μ22r+24r+25r + μ2r+24r+25r + μ1+22r+24r

= 0.

Consequently the kernel of R coincides with σF22r . Since the kernel of L is a subspace of the
kernel of R, then any nonzero solution of (22) belongs to σF∗

22r , completing the proof of (a).
Now suppose that σ = 0, so that M is the null polynomial. Hence any y = R(x) satisfies

μ23r
y + μ24r

y22r = 0, that is, for any such nonzero y,

y22r−1 =
(

1

μ2r−1

)23r

. (23)

This is possible only if μ is a (2r + 1)th power in F2n , completing the proof. �
Now, we are ready to find the Walsh spectrum of hμ, i.e. to determine the dimension of K(μ)

(see Lemma 5).

Theorem 4. Let σ = μ2r+24r + μ2r+23r + μ22r+24r
. Then

dimK(μ) =
{

2r if σ �= 0,

4r if σ = 0.

Consequently, the Walsh transform of hμ takes the values {0,±25r} if σ = 0 and {0,±24r},
otherwise.

Proof. Notation is as in Lemma 8 and in its proof. Consider again the polynomial R which has
degree 24r .

When σ �= 0, we have shown in the proof of Lemma 8 that the kernel of R has dimension 2r .
Thus the dimension of the kernel of L is at most 2r . By Lemma 7 it holds dimK(μ) � 3r , and
Proposition 4 implies dimK(μ) = 2r .

Assume that σ = 0. By Lemma 8, we know that the image of R is contained in the subspace

J = {0} ∪ {
y ∈ F2n , y22r−1 = μ−23r (2r−1)

}
,

where μ = β2r+1 for some β . Clearly, we have J = cF22r with c = β−23r
. Thus the image set

of R has dimension at most 2r . Therefore, the dimension of the kernel of R is at least 4r . Since
R has degree 24r , this dimension is exactly 4r . Now, the kernel of L, say K1, is a subspace of
the kernel of R. Since R(x) = L(x) + L(x)22r

we get from Lemma 6

dimK1 ∈ {3r,4r}.
But dimK(μ) = dimK1 + r (see Lemma 7) which leads to dimK(μ) = 4r , completing the
proof. �
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Table 2
The exponents d , defining bent Boolean functions on F2n , n = 2t , of the form x �→ Tr(λxd ) for some λ ∈ F2n . An
exhaustive search shows that there are no other d for n � 20

Type Exponent Condition References

PSap a(2t − 1) gcd(a,2t + 1) = 1 [12,16]
Kasami 22i − 2i + 1 gcd(i, n) = 1 [13]
Maiorana–McFarland 2i + 1 n = gcd(n, i)s, s even [15]

(2r + 1)2 n = 4r [9,17]
22r + 2r + 1 n = 6r This paper

5. Conclusions

The complete classification of monomial bent functions is not achieved. We give in Table 2
the list of known such functions. There are no other for n � 20. Actually, little is known about
this corpus, as recalled in [17]. They do not all lie in the known classes, especially in class M.
For instance, some bent functions characterized in [13], namely with Kasami exponents, are not
normal [4], implying that they do not belong to any previously known class. On the other hand,
the most recent results on monomial bent functions provide subclasses of M.

During our work, we investigated general tools for the study of monomial bent functions.
Although our proofs, in this paper, seem specific, we introduce several tools for the study of a
larger class of Boolean functions, expressed by trace functions, especially those which are of
degree 3. Notably, we showed by Example 1 that some functions studied in [17] can be viewed
as a concatenation of affine functions. This result will be completed in a forthcoming paper, in a
more general context (see [9,10]).

The study of functions fλ which are not bent leads to several open problems (see Conjec-
ture 1). For this reason, we studied the properties of derivatives of all fλ. Our study of the
functions ga,λ can also be placed into the context of the general study of quadratic functions,
a topic which is currently discussed [8,23].
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