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Hyperbent Functions, Kloosterman Sums, and
Dickson Polynomials

Pascale Charpin and Guang Gong, Senior Member, IEEE

Abstract—This paper is devoted to the study of hyperbent func-
tions in � variables, i.e., bent functions which are bent up to a
change of primitive roots in the finite field GF����. Our main pur-
pose is to obtain an explicit trace representation for some classes
of hyperbent functions. We first exhibit an infinite class of mono-
mial functions which is not hyperbent. This result indicates that
Kloosterman sums on��� � cannot be zero at some points. For func-
tions with multiple trace terms, we express their spectra by means
of Dickson polynomials. We then introduce a new tool to describe
these hyperbent functions. The effectiveness of this new method
can be seen from the characterization of a new class of binomial
hyperbent functions.

Index Terms—Bent function, Boolean function, Dickson polyno-
mial, hyperbent function, Kloosterman sum, permutation polyno-
mial, quadratic function.

I. INTRODUCTION

H YPERBENT functions were introduced by Youssef and
Gong in [23]. A Boolean bent function , on , is said

to be hyperbent if is bent for any coprime with .
The first definition of hyperbent functions was based on a prop-
erty of the so-called extended Hadamard transform of which
was introduced by Golomb and Gong in [15] (see (2) below). In
[15], the authors proposed that -boxes should not be approx-
imated by a bijective monomial, providing a new criterion for
the -box design.

Further, an extensive study of hyperbent functions was made
by Carlet and Gaborit [3]. These authors showed that the hyper-
bent functions exhibited in [23] are those elements of the
class due to Dillon [11]. They also established that hyperbent
functions can be seen as a partial set of codewords of a cyclic
code fully determined by its nonzeroes. However, the classifica-
tion of hyperbent functions and many related problems remain
open. This fact has also been made clear in a more recent paper
due to Kuzmin et al. [17].

In particular, it seems difficult to define precisely an infinite
class of hyperbent functions, as indicated by the number of Open
Problems which we propose in the present paper. This is the
context of our paper, where we introduce new tools mainly for
the description of hyperbent functions.

In this paper, we consider functions on , with ,
or on any subfield of . Section II is a preliminary section
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wherein we explain the main objects which are here involved,
standardize the notation, and describe the context.

Section III concerns monomial hyperbent functions. These
famous bent functions, discovered by Dillon [11] (1974), are
strongly related to Kloosterman sums. We give a completed ver-
sion of a result of Leander [19], which specifies the spectrum of
such a function by means of , the Kloosterman sum on

at point (Theorem 5). After several general properties,
we focus on specific families of such that . This
is equivalent to saying that for such the function cannot be
bent. In particular, we prove that unless . In
other terms, we prove that , defined on , is not bent unless

. We then solve a problem which was proposed by Dillon
to the second author several years ago.

In Section IV, we show that the spectrum of a large class
of Boolean functions, possibly hyperbent, can be described by
means of Dickson polynomials (Theorem 7 and its proof). We
further apply this result to a class of binomial functions and
to a class of monomial functions, providing surprising results.
By Theorem 8, we characterize a class of binomial hyperbent
functions. Proposition 4 is a generalization. Monomial hyper-
bent functions, which are related to the zeros of some Kloost-
erman sums, are here described by means of Dickson permuta-
tion polynomials.

II. THE MAIN OBJECTIVES

In this paper, we consider functions on , or some subfield
of . The absolute trace on is denoted by , but for any

and , where divides , we denote by the trace function
from to

Any Boolean function over is a function from to .
The weight of , denoted , is the Hamming weight of the
image vector of , that is the number of such that .
For any Boolean function over we state its Hadamard
transform

(1)

and its extended Hadamard transform

(2)

where and . Recall that, for even
is bent if and only if for all . Also, is said

to be balanced if and only if .
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A. Hyperbent Functions

Youssef and Gong proposed in [23] to strengthen the bent
concept by using the extended Hadamard transform and stated
the following.

Definition 1: Any Boolean function on is said
to be hyperbent if its extended Hadamard transform takes only
the values .

They later introduced a class of possible hyperbent functions.
In this paper, we restrict ourselves to the class of possible hy-
perbent functions defined as follows.

Definition 2: Let be a set of representatives of the cyclo-
tomic cosets modulo for which each coset has the full
size . Define the Boolean functions on of the form

where

(3)
Carlet and Gaborit, in [3], showed that any hyperbent function of
the form (3) belongs to the class , a subclass of the partial
spread family introduced by Dillon [11, pp. 95–100)]. We
first recall the definition of .

Theorem 1: [11] Let be a Boolean function over
, and set

Denote by a set of subspaces of of
dimension satisfying

Assume that is such that

where . Then, the function is bent if and only
if . In this case, is said to be in .

According to the preceding theorem, we give now a slightly
different version of [23, Theorem 1]. Although the result is
known, we present a brief proof of the next theorem, giving
some elements which we will use later.

Theorem 2: Denote by the cyclic subgroup of of
order . Let be a generator of . Let be any function
of type (3). Then is hyperbent if and only if

#

where # denotes the cardinality of any set .
Proof: Any can be written with
and ; moreover . Then depends on

only

(4)

Now, define subspaces

(5)

Then is constant on each , equal to . We now apply
Theorem 1, observing that

Setting # , we deduce that is bent if and only if
( has cardinality ). In this case, is hyperbent be-

cause for any coprime with the map is a
permutation on .

The main problem, which is the precise characterization of
function of type (3) which are bent (and then hyperbent) remains
open.

Open Problem 1: Characterize a class of functions of type
(3) which are bent, by giving explicitly the coefficients .

B. Monomial Hyperbent Functions

For the monomial functions of type (3), it is well known that
they can be defined by means of the Kloosterman sums. In this
subsection, we consider the monomial Boolean functions from

to

(6)

Define the Kloosterman sums over

(7)

where is the absolute trace on . Note that we assume

The following characterization is due to Dillon [11], [12].

Theorem 3: The function , defined by (6), is bent if and
only if the Kloosterman sum satisfies .

The set of the values of Kloosterman sums was described by
Lachaud and Wolfmann in [18] for any (even or odd).

Lemma 1: The set is the set of all the
integers in the range

As a consequence, these authors have proved that there are
some such that . But the number of such remains
unknown, leading to the following Open Problem.

Open Problem 2: Describe, for some , the set of those
such that is bent or, equivalently, .

The preceding problem appeared as a very difficult problem.
Through numerical results it is possible to introduce some
conjecture concerning a partial problem. In Section III-B,
we present our main results in this context. In particular, we
completely solve the case . Also, Open Problem 2 can be
restricted as follows.
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Lemma 2: If then , i.e., the function
, defined by (6), is not bent.

Proof: It comes directly from a result due to Helleseth and
Zinoviev [16]: For any

if
if

(8)

This implies that when .

Remark 1: We can take without loss of gener-
ality, in the definition of any monomial function when we
are looking at its spectrum. This is because is coprime
with . Any can be written with
and in the subgroup of of order . Then has the
same spectrum as .

C. Dickson Polynomials

The main reference on Dickson polynomials is Dickson’s
book [10]. An excellent presentation of the work of Dickson
can be found in [21]. In our approach, we follow several recent
papers where the reader can find a basic overview [13], [14]. A
Dickson polynomial is defined by

(9)

The Dickson polynomials have been extensively investigated for
about the last one hundred years in different contexts. Here we
introduce some useful properties on the Dickson polynomials of

. Note that they are known in many different contexts.
Dickson polynomials are recursively defined by

and

(10)

Using this definition it is easy to prove the next properties which
we use in the sequel.

Proposition 1: The polynomials defined by (10) satisfy
• ,
• ,
• ,
• ,

for any integer .

We also have the following fundamental result.

Theorem 4: The Dickson polynomial is a per-
mutation on if and only if .

In Section IV, we will show that the bentness of a func-
tion with multiple trace terms is related to some properties of
Dickson polynomials.

III. HYPERBENT FUNCTIONS AND ZEROES OF

KLOOSTERMAN SUMS

In this section, we study the bentness of monomial functions
over , by means of properties

of Kloosterman sums. In the following subsection, we are going
to show that it is sufficient to treat the case .

A. Monomial Functions

Recently, Leander [19] proposed another proof of Theorem 3,
giving more information on the spectrum of functions de-
fined by (6). The next theorem (and its proof) is principally due
to Leander. There is a small mistake in [19, Theorem 3], since
the formula (13) (below) is stated for all while it is not suit-
able for . In our proof, we include the case ; we
also consider monomial functions of general form, instead
of . This completed version will be useful later.

Theorem 5: For every integer coprime with , define
the Boolean functions on

(11)

Recall that is the Kloosterman sum on (see (7)). We
denote by the Hadamard transform of (see (1)).
Then, for any

(12)

Moreover, we have for any

(13)

Consequently, is bent if and only if or, equiva-
lently, . Also, is bent if and only if is bent.

Proof: We denote by the cyclic group of order .
Any can be written and .
Note that and . For readability, we use
this notation : . So we have

When , using , we obtain

Now assume that . So, for any

Indeed

so that (and then equal to ) if and
only if
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Then

since . Now, it is well known
that

(different proofs can be found in [7], [11], [18], [19]). Finally

and for

According to (13), is bent if and only if . In-
deed, it is impossible to have

for , because (see Lemma 1). And
this holds for any ; further . Conversely,
if then we get from (12)

which is impossible unless . The proof is completed
since does not depend on .

Remark 2: Formula (13) is of interest for the non-bent func-
tions also. If then is not bent and its spectrum
includes exactly three values which are not zero. As pointed out,
the value only depends on .

We have seen that if is bent for some then it is bent for
any . In the remainder of this section, we assume that ,
i.e., we come back to functions defined by (6). We are going
to specify the bentness of by means of properties of elements
of . Recall that is a generator of , the cyclic group of
order in . Note that .

Lemma 3: Let . The function
is defined by (6). Then is constant on each , equal to

. Moreover, is hyperbent if and only if

#

Proof: The lemma follows from Theorem 2 and its proof,
together with the following observation:

Remark 3: Consider again the functions , defined by (11).
For any , even not coprime with , it is clear that the
previous result holds: is hyperbent if and only if
where

#

If with and odd, then divides
and thus . We have proved that cannot be bent
when is not coprime with .

So, in order to find those such that is bent, we are inter-
ested by the set of the . The next proposition is currently
known.

Proposition 2: Let and be the cyclic group of
order with generator . Then

Proof: This was first proved by Delsarte and Goethals [9]
who established that we have here the roots of

Another proof can be found in [18].

Using Lemma 3, we directly deduce from the previous propo-
sition.

Corollary 1: The function on is defined by
(6). Then is hyperbent if and only if

# (14)

Now, using (12) and (13), we have another characterization of
the bentness of by its weight.

Lemma 4: Let , defined by (6). Then the weight of is

Consequently, is hyperbent if and only if . More-
over

#

Proof: From (12), we have

which gives
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We know that is constant on any and it is hyperbent if
and only if it is equal to on exactly sets . According
to Lemma 3 the expression of means that is equal to

on sets . This is exactly the number

#

which is equal to

#

B. Non-Bent Monomials

In this subsection, we exhibit an infinite set of monomial
functions of type (6) which are not bent. We also explain the
special case , where monomial bent functions can be de-
fined explicitly. We use Theorem 3 and thus study the values

. There are some specific results which can be obtained
directly from Lemma 2.

Lemma 5: If is odd then . Let with
odd. Then

for

Proof: According to Lemma 2, we simply have to prove
that . It is clear for odd and .

Let with odd then and

Now we want to have more results, especially to complete
the case . We will show that for even,
cannot be for almost all .

Lemma 6: Let with . If , then

for

Moreover, for only.
Proof: Assume that, more generally, . Carlitz

proved that the Kloosterman sum where can
be expressed as a polynomial in (see [4, eq. (5.10)]).
For , this expression becomes very simple

(15)

Note that we rewrite here the formula due to Carlitz, considering
any Kloosterman sum as a sum on the full field (including ).

Suppose that for some . Then
and we get

Thus, must be a power of . Since is divisible
by (see Lemma 1), this is impossible unless so
that .

Now, assume that . Then (15) becomes for

with

Thus, for ; otherwise, . Therefore,
for ; otherwise, .

We now summarize our results. Denote by the set of those
, which we described in Lemmas 5 and 6. That is

if is odd
if with even

if
if with odd

(16)

Theorem 6: Let with . For any , the
Kloosterman sum

satisfies . Consequently,
• the Boolean functions , on , are

not balanced;
• the Boolean functions , on , are

not bent, for any coprime with .

Note that the previous theorem holds for any such
that , according to Lemma 2. Also, there are imme-
diate consequences of our previous results that we explain now.

Corollary 2: Let with . Then the Boolean
functions on

are not hyperbent unless . In other terms,
unless .

We proved that for any by another way
in [6], using properties of the self-reciprocal polynomials. The
preceding corollary leads naturally to the problem of the exis-
tence of binary hyperbent functions.

Open Problem 3: Study the bentness of functions of the form
(3), when for all in .

We proved that . So we deduce from (15) that
. Then, using Theorem 5, we can give the values of

the Hadamard transform of the corresponding .

Corollary 3: The Boolean functions on

are bent. Consider the functions on

They are not bent and the values of its Hadamard transform are
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TABLE I
THE ZEROES OF � ��� FOR � � ��

To illustrate our purpose, we list in Table I the zeroes of
for small values of

Explanation of Table I: in the second column, we list coset
leaders such that for . In the third
column of Table I, we list a primitive polynomial

as a vector for defining . For example,
for , the entries in the second column correspond to

for , where is a cyclotomic cosets
modulo . For , and
the primitive polynomial is .

IV. HYPERBENT FUNCTIONS IN TERMS OF

DICKSON POLYNOMIALS

When is a monomial trace term, the bentness of is estab-
lished through some Kloosterman sum. However, if is a sum
of multiple trace terms, defined by (3), there is no technique to
deal with this case. In this section, using the results developed
in Section III, we show that the bentness of those functions with
some restriction is related to the Dickson polynomials.

A. Main Characterization

Dickson polynomials are defined here as polynomials in
(see Section II-C). They are denoted by where in

. Recall that is a set of representatives of the cyclotomic
cosets modulo of size .

Theorem 7: Let . Consider any function of type (3)
on with coefficients in

(17)

where . Define the related Boolean function on

(18)

Then is hyperbent if and only if

# and

Consequently, is hyperbent if and only if

(19)

Proof: Recall that is the weight of and is a gen-
erator of the subgroup of of order . We have

Then, applying Theorem 2, is hyperbent if and only if
where

# (20)

For , we now use basic properties of Dickson
polynomials (see Proposition 1)

Using Proposition 2, we rewrite (20) as follows:

#

# and

where is defined by (18).
Denote by the function . To prove (19), we

have to compute the Hadamard transform of the function
at point , say . We know that .
By definition of the Hamming weight, we have

Note that since the inverse function is a permu-
tation. By definition, if and only if
providing . Then is hyperbent if and only if

or, equivalently, .

As a consequence of the previous theorem, we obtain an ana-
logue of Theorem 3. If the function is balanced in (19) then

. So we have the following.

Corollary 4: Let and be the Boolean functions defined
in Theorem 7. Assume that is balanced. Then is bent if and
only if
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B. A Class of Binomial Functions

The results in Theorem 7 provide a way to transfer the evalu-
ation of the weight of the function in the cyclic group to the
evaluation of the weight of some Boolean function on . The
latter problem is easier than the former, since we could use the
divisibility of some cyclic codes, especially for special classes
of functions of type (17). To illustrate, we are going to treat some
binomial functions of type (17). Let, for any

(21)

where and . Then, according
to Theorem 7, we have

We apply the recursive definition of Dickson polynomials (see
Section II-C)

that leads to . Hence, we can study the
bentness of , defined by (21), if we can exhibit some property
on the Hadamard transform of the function

For instance, we have to prove that this function is balanced
if is balanced as well (according to Corollary 4). Thus, we
characterize directly a new class of bent functions. We obtain
here binomial bent functions defined by means of the zeros of
(so-called) inverse-quadratic exponential sums while by The-
orem 3, monomial bent functions and Kloosterman sums were
considered.

Theorem 8: Let . Consider any function de-
fined by (21), with . Assume that the function

is balanced on .
Then is hyperbent if and only if

Note that for any such that ,
the function is a permutation on so that the
Boolean function is balanced for any . So
we are expecting a number of hyperbent functions of type (21).
To describe a subset of such functions is, in particular, to solve
the next problem.

Open Problem 4: Describe the set of such that the
function on , where is
coprime with , is balanced.

Remark 4: The functions of type (21) are defined under the
condition

and

Thus, we have to guarantee that and each belongs
to a cyclotomic coset modulo of size . This is to say

that, with and ,
it is impossible to have dividing such that

for or . In other words, there is no such that

(22)

The simplest case is ; thus, and .
In this case, there is no such that (22) holds for . Indeed

is impossible unless and . Before we present
the result about the case , we introduce a lemma on the
divisibility of the inverse cubic sums, which has been recently
established by Charpin, Helleseth, and Zinoviev. It turns out that
this result is essential for proving the next proposition.

Lemma 7: [7, Lemma 5] Let be odd, . Define, for
any , the Boolean function over

Then

if
if

Proposition 3: Let with odd. Define, for any
, the Boolean function on

(23)

Then we have the following.
(i) If and then is monomial

hyperbent.
(ii) Let . If then is not hyperbent.

Proof: Note that is a permutation on for odd
. Hence, the function is balanced for any .

According to Theorem 8, is hyperbent if and only if

Denote by the left-hand side of the above identity. For ,
we use Lemma 7 with . We have

where and, further, . From Lemma 7, is
congruent to modulo as soon as . Thus, in this
case .
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Now, if then we have seen that (22) holds. Actually
(23) becomes

If then . Note that, since
then

Thus, if , we get a monomial function of type
(6). Such function is bent if and only if . Since

we have

for

Thus

It is well known that the function is balanced
if and only if

This completes the proof.

Bent functions of the form (23) exist for , as it is proved
by the next example.

Example 1: Let . In , we have .
Also

where replaces . There are 57 values of for which
the sum above is zero.1 Therefore, there are 57 functions , as
defined in Proposition 3, which are hyperbent for .

We also computed the number of hyperbent functions for
, using the same method, and found 595 such functions.

The previous result leads to a more specific research problem.

Open Problem 5: Let odd. Find an infinite class
of balanced functions on of the form

C. Monomial Hyperbent Functions in Terms of Dickson
Polynomials

In this subsection, we show another interesting conse-
quence of Theorem 7. If in Theorem 7, then

. We consider again any monomial
function defined by (11)

with and . We have proved that the
bentness of depends on only. Thus, Theorem 7, together
with Theorem 5, yields the following result about the monomial
functions.

1The weight enumerators of cyclic codes of length ��� with two non-zeros,
� and � , are listed in [5, pp. 1028–1029].

Corollary 5: For any integer , let

where is the Dickson polynomial of degree . Then, the
function is hyperbent if and only if there is coprime with

such that

# and

This is equivalent to the following: there is coprime with
such that

(24)

Note that is balanced when is a permutation polynomial,
i.e., when (see Section II-C). In this case,

. Thus, we have proved the next surprising
property.

Proposition 4: Recall that denotes the Kloosterman sum
over (see (7)) and Dickson polynomials are defined in
Section II-C. Let be such that . Then, for
any coprime with with

(25)

This is to say that the function is
balanced on .

We can formulate differently the results of this section.

Proposition 5: Let . Then the functions , where
, are bent if and only if one of the following

equivalent conditions is satisfied:
• ;
• there is an such that (25) is satisfied;
• all functions are balanced.

Remark 5: In this remark, we show some unusual conse-
quences related to Corollary 5. For clarity, we only consider
satisfying . In this case, is a permutation
on .

1) We denote the left-hand side of (25) by . From
Corollary 5, is hyperbent if and only if
which depends on . On the other hand, from Theorem 5,

is hyperbent if and only if which is inde-
pendent of .

2) Another fascinating result from Corollary 5 is related with
Corollary 2, where we proved that for .
Thus, is not hyperbent for any relatively coprime
with . Therefore, we have that in (25).
However the function

has multiple trace terms, since has multiple terms. Usu-
ally, it is not easy to determine whether such a function is
balanced or not. However, through this hyperbent connec-
tion, we know that this exponential sum is not equal to zero,
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since it is determined by , the Kloosterman sum at
. The case is explained in the next example.

Example 2: We know that . The Dickson poly-
nomials which are permutations on are, up to equivalence,
those with . They are

Note that in we have . It is easy to check
directly (25).

V. CONCLUSION

A number of recent papers has dealt with the subject of the
trace representation of bent Boolean functions [1]–[3], [8], [13],
[19], [20]. In this paper, we contribute to the knowledge of this
fascinating class of functions, by studying a subclass of the
so-called class. Such functions are not yet classified, even
in the monomial case (see Open Problem 1). First, we show the
nonbentness of an infinite class of monomials by means of a
property of some Kloosterman sums.

Kloosterman sums appear in many problems where it is cru-
cial to determine the sums for specific (see [14], for
example). Also, in a number of recent papers, Dickson poly-
nomials have been effectively used. We follow this approach;
in particular, that of [13] and [14]. In this paper, we show that
the link between the monomials and some Kloosterman sums
can be generalized to a link between multiple trace terms func-
tions and some exponential sums where Dickson polynomials
are involved. We emphasize that we have introduced here a new
method for exploring possible hyperbent functions.

Considering our first results on monomials and binomials,
it seems that our work has several extensions. The results of
Section IV-C are surprising. For instance, as soon as we have
characterized one monomial bent function we can then generate
a sequence of balanced functions using the Dickson permuta-
tion polynomials. We are mainly interested in the bentness, but
also in properties of the full spectrum. In particular, some for-
mulas in this paper can be seen as approximations of the compo-
nents of an inverse function. Note that only basic properties of
Dickson polynomials of have been used in the questions
on Dickson polynomials, which appear throughout our paper.
For instance, by Theorem 7 we see that any property of linear
combinations of Dickson polynomials could be of interest. We
study the simplest such combination in Section IV-B.
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