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Abstract— This paper is devoted to the classification of hy-
perbent functions, i.e., bent functions which are bent up to
a primitive root change. We first exhibit an infinite class of
monomial functions which are not hyperbent. It implies notably
that Kloosterman sums at point 1 on F2m cannot be zero, unless
m= 4. Further, we show that hyperbent functions with multiple
trace terms can be described by means of Dickson polynomials.
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I. I NTRODUCTION

Hyperbent functionswere introduced by Youssef and Gong
in [18]. A Boolean bent functionf , on F2n, is said to be
hyperbent if it is such thatf (xk) is bent for anyk coprime
to 2n−1. Actually, the first definition of hyperbent functions
was based on a property of the so-calledextended Hadamard
transformof f which was introduced by Golomb and Gong
in [12] (see (2) below). In [12], the authors proposed thatS-
boxes should not be approximated by a bijective monomial,
providing a new criterion for theS-box design.

Further, Carlet and Gaborit established that hyperbent func-
tions can be seen as some codewords of a cyclic code fully
characterized by its non zeroes [2]. However, the classification
of hyperbent functions is not achieved and many problems
remain open.

In this paper we consider functions onF2n, with n = 2m,
or on any subfield ofF2n. Section II is a preliminary section.
Section III is devoted to monomial hyperbent functions. These
famous bent functions, discovered by Dillon [8](1974), are
strongly related with Kloosterman sumsKm. We focus on such
function fλ with λ = 1. We prove thatKm(1) 6= 0 unlessm= 4.
In other terms, we prove thatf1, defined onF2n, is not bent
unlessn= 8 (Theorem 6). We then solve a problem which was
proposed by Dillon to the second author several years ago.

In Section IV we show that the spectrum of a large class
of Boolean functions, possibly hyperbent, can be described by
means of Dickson polynomials (Theorem 7 and its proof). We
further apply this result to a class of binomial functions and
to the monomials, providing surprising results.

This paper is an extended abstract. All the proofs have to
be found in our full paper [5].

II. T HE MAIN OBJECTS

In this paper we consider functions onF2n, or on some
subfield ofF2n. The absolute trace onF2n is denoted byTr,
but for anyk and r, wherer divides k, we denote byTk

r the
trace function fromF2k to F2r :

Tk
r (β ) = β +β 2r

+β 22r
+ . . .+β 2k−r

.

Any Boolean functionf over F2n is a function fromF2n to
F2. The weight of f , denotedwt( f ), is the Hamming weight
of the image vector off , that is the number ofx such that
f (x) = 1. For any Boolean functionf over F2n we state its
Hadamard transform :

a∈ F2n 7→ F (a) = ∑
x∈F2n

(−1) f (x)+Tr(ax) (1)

and itsextended Hadamard transform

F (a,k) = ∑
x∈F2n

(−1) f (x)+Tr(axk), a∈ F2n, (2)

where gcd(k,2n− 1) = 1. Recall that, for evenn, f is bent
if and only if F (a) = ±2

n
2 for all a. Also, f is said to be

balancedif and only if F (0) = 0.

A. Hyperbent Functions

Youssef and Gong proposed in [18] to strength the bent
concept by using the extended Hadamard transform.

Definition 1: Any Boolean functionf on F2n, n = 2m, is
saidhyperbentif, for all a and for allk, F (a,k) ∈ {±2m}.

They later introduce a class of possible hyperbent functions.
In this paper, we restrict ourselves to this class.

Definition 2: Let R be a set of representatives of the cyclo-
tomic cosets modulo2m+1 for which each coset has the full
size2m. Define the Boolean functions onF2n of the form:

f (x) = ∑
r∈E

Tr(βrx
(2m−1)r) whereE ⊆ R, βr ∈ F2n. (3)

Any hyperbent function of the form (3) belongs to the class
PS ap, a subclass of the partial spread familyPS − intro-
duced by Dillon [8, pp. 95-100].

Theorem 1:[8] Let f be a Boolean function overF2n, n =
2m, and set

Ef = { x∈ F2n | f (x) = 1 }.



Let us denote by{Si , i = 1,2. . .N} a set of subspaces ofF2n

of dimensionm satisfying:

i 6= j ⇒ Si ∩Sj = {0} .

The function f is bent, and said to be inPS −, when it
satisfies

Ef =
N⋃

i=1

S∗i with N = 2m−1,

whereS∗i = Si \{0}.
According to the previous theorem, we give now a sligthly
different version of [18, Theorem 1].

Theorem 2:Let γ be a generator ofG , the cyclic subgroup
of F∗2n of order2m+1. Let f be any function of type (3). Then
f is hyperbent if and only if

# { i | f (γ i) = 1, 0≤ i ≤ 2m }= 2m−1,

where#E denotes the cardinality of any setE.

To express precisely some function of type (3) which are
bent (and then hyperbent) remains open.

Open Problem 1:Characterize a class of functionsf of
type (3) which are bent, by giving explicitely theβr .

B. Monomial hyperbent functions

It is well-known that monomials functions of type (3),
can be defined by means of the Kloosterman sums. In this
subsection, we consider the Boolean functions onF2n :

fλ (x) = Tr(λx2m−1) , λ ∈ F2m. (4)

Let us define the Kloosterman sums overF2m:

Km(λ ) = ∑
y∈F2m

(−1)Tm
1 ( 1

y+λy), (5)

whereTm
1 (a) is the absolute trace onF2m. Then we have the

following result which is due to Dillon [8], [9]:
Theorem 3:The function fλ , defined by (4) is bent if and

only if the Kloosterman sumKm satisfiesKm(λ ) = 0.

The set of the values of Kloosterman sums was described
by Lachaud and Wolfmann in [14] for anym (even or odd).
As a consequence, these authors proved that there are someλ
such thatKm(λ ) = 0, for anym. But this proves the existence
of suchλ only, leading to :

Open Problem 2:Describe, for some sequence ofm, the set
of thoseλ such thatfλ is bent or, equivalently,Km(λ ) = 0.

The previous problem appeared as a very difficult problem.
Through numerical results it is possible to introduce some
conjecture concerning a partial problem. In Section III-B we
present our main result in this context : we completely solve
the caseλ = 1. Open Problem 2 can be restricted as follows
(from a divisibility property ofKm [13]).

Lemma 1: If Tm
1 (λ ) = 1 thenKm(λ ) 6= 0, i.e., the function

fλ , defined by (4) is not bent.

C. Dickson Polynomials

An excellent presentation of the work of Dickson can be
found in [16]. In our approach, we follow several recent papers
where the reader can find a basic overview [10], [11]. Here
we introduce some useful properties, restricting ourselves to
our context.

Dickson polynomialDr ∈ F2[x] are recursively defined by

D0(x) = 0 andD1(x) = x ;
Di+2(x) = xDi+1(x)+Di(x).

(6)

Using this definition, some basic properties are easily proved.
Proposition 1: The polynomials defined by (6) satisfy (for

i, j > 0) :
• deg(Di) = i,
• D2i(x) = (Di(x))2,
• Di j (x) = Di(D j(x)),
• Di(x+x−1) = xi +x−i .
We also have the following fundamental result.
Theorem 4:The Dickson polynomialDi ∈ F2[x] is a per-

mutation onF2m if and only if gcd(i,22m−1) = 1.

III. H YPERBENTFUNCTIONS AND ZEROES OF

KLOOSTERMAN SUMS

In this section, we study the monomial functionsx 7→
Tr(xr(2m−1)) over F2n, n = 2m. First, we are going to show
that it is sufficient to treat the caser = 1.

A. Monomial Functions

Recently, Leander [15] proposed another proof of Theorem
3, giving more informations on the spectrum of functionsfλ
defined by (4). The next theorem (and its proof) is principally
due to Leander. In our proof, we include the casea = 0 ; we
also consider the general form,fλ ,r instead of fλ .

Theorem 5:For every integerr coprime to2m+ 1, define
the Boolean functions onF2n, n = 2m :

fλ ,r(x) = Tr(λxr(2m−1)) , λ ∈ F∗2m. (7)

Recall thatKm is the Kloosterman sum onF2m (see (5)). We
denote byFλ (a) the Hadamard transform offλ ,r (see (1)).
Then, for anyλ ∈ F∗2m,

Fλ (0) = 2m(1−Km(λ ))+Km(λ ). (8)

Moreover we have for anya∈ F∗2n

Fλ (a) = 2m(−1)Tr(λar(2m−1)) +Km(λ ). (9)

Consequently,fλ ,r is bent if and only ifK(λ ) = 0 or, equiv-
alently, Fλ (0) = 2m. Also, fλ ,r is bent if and only if fλ ,1 is
bent.

In the remaining of this section, we assume thatr = 1. We
denotefλ ,1 by fλ , i.e., we come back to functionsfλ defined
by (4). We begin by some preliminaries.

Lemma 2:Let Si = γ iF2m, 0 ≤ i ≤ 2m. The function fλ
is defined by (4). Thenfλ is constant on eachS∗i , equal to
Tr(λγ−2i). Moreover fλ is hyperbent if and only if

#{ i | Tm
1 (λ (γ i + γ−i)) = 1 }= 2m−1.



Remark 1:Consider again the functionsfλ ,r , defined by
(7). For anyr, even not coprime with2m+1, it is clear that
the previous result holds :fλ ,r is hyperbent if and only if
N = 2m−1 where

N = #{ i | Tm
1 (λ (γ ir + γ−ir )) = 1 }.

But if r divides 2m+1 then 2r divides N with r odd. Hence
N 6= 2m−1. We have proved thatfλ ,r cannot be bent whenr is
not coprime with2r +1.

Proposition 2: Let n = 2m and G be the cyclic group of
order2m+1 with generatorγ. Then

{ γ i + γ−i | 1≤ i ≤ 2m }= { u∈ F2m | Tm
1 (u−1) = 1 }.

Using Lemma 2, we deduce :
Corollary 1: The function fλ on F2n, n= 2m, is defined by

(4). Then fλ is hyperbent if and only if

#{ u∈ F2m | Tm
1 (λu) = Tm

1 (u−1) = 1 }= 2m−2 (10)

We also can characterize the bentness offλ by its weight.
Lemma 3:Let fλ , defined by (4). Then the weight offλ is

wt( fλ ) = (2m−1)
(

2m−1 +
Km(λ )

2

)
.

Consequently,fλ is hyperbent if and only ifKm(λ ) = 0.
Moreover,

#{ u∈ F2m | Tm
1 (λu) = Tm

1 (u−1) = 1 }= 2m−2 +
Km(λ )

4
.

B. Main Result on Monomials

In this section, we are going to prove Theorem 6 (see
below). Notation is as in the previous section assuming that
λ = 1. We need several lemmas ; the first one directly treats
the case wherem is odd. In this case, we apply Lemma 1.

Lemma 4: If m is odd thenKm(1) 6= 0.

According to Corollary 1, we are going to compute the
cardinality of

Rm = { u∈ F2m | Tm
1 (u) = Tm

1 (u−1) = 1 }. (11)

From Lemma 3, we know that

#Rm = 2m−2 +
Km(1)

4
. (12)

From now on we examine the case wherem= 2k, for some
integerk. We will define recursivelyRm, by using a property
of self reciprocal polynomials. We first present this property.

Lemma 5:Let m = 2k. We denote byPu the minimal
polynomial of u over F2, Pu ∈ F2[x]. Assume that there is
u∈ F2m satisfying

u 6∈ F2k and Pu = Pu−1.

Thendeg(Pu) = 2r for somer > 0 dividing k. Moreover,u2r
=

u−1 andu is a root of the polynomialx2k+1 +1.
Lemma 6:For anyu∈ F2m, m= 2k, let Pu ∈ F2[x] be the

minimal polynomial ofu over F2. Set

L0,m = { u∈ Rm | Pu = Pu−1 }
L1,m = { u∈ Rm | Pu 6= Pu−1 }.

Then#Rm = #L0,m+#L1,m, where

#L0,m = 2 #Rk,

whereRm is defined by (11),(12).
Proof: First note thatRm∩F2k = /0. This is because for

u∈ F2k

Tm
1 (u) = Tk

1 (u+u2k
) = 0.

The setRm is composed of two kinds of elements:

• The roots of pairs of polynomials(Pu,Pu−1), with Pu 6=
Pu−1. The number of roots of such a pair equals4δ where
2δ is the degree ofPu.

• The roots of polynomialsPu which are self-reciprocal,
i.e., Pu = Pu−1.

Hence, we have by definition :#Rm = #L0,m+#L1,m. Note that
all Pu with u∈ Rm have degrees which dividem but not k :
these degrees are even. Notably,4 divides#L1,m sinceL1,m is
composed of roots of pairs of distinct polynomials.

Let u∈ Rm such thatPu = Pu−1. Sinceu 6∈ F2k, we deduce
from Lemma 5 that the elements ofL0,m are roots of the
polynomial x2k+1 + 1. Applying Proposition 2 to the cyclic
subgroup of order2k +1 in F∗2m, sayGk, we get

L0,m = { u∈ F2m | u2k+1 = 1 andTm
1 (u) = 1 }

= { u∈ Gk | Tk
1 (u+u−1) = 1 }.

Since

{ u+u−1 | u∈ Gk \{1} }= { v∈ F∗2k | Tk
1 (v−1) = 1 },

we deduce that

#L0,m = 2 #{ v∈ F2k | Tk
1 (v) = Tk

1 (v−1) = 1 }.
We obtain#L0,m = 2 #Rk from (11), completing the proof.

Lemma 7:Let m= 2rk wherek is odd (r,k≥ 1). Then

#L1,m≡ 0 (mod 2r+1). (13)

MoreoverL1,m 6= 0 for any m≥ 6 andL1,2 = L1,4 = 0.

Now, we are able to prove :
Theorem 6:Let n= 2m with m≤ 2. The Kloosterman sum

Km(1) = ∑
x∈F2m

(−1)Tm
1 ( 1

x +x),

satisfiesKm(1) 6= 0 unlessm= 4. In other terms, the Boolean
function x 7→ Tm

1 (x−1 +x) is not balanced unlessm= 4.
Consequently, the Boolean functionx 7→ Tr(x2m−1), on F2n,

is not bent unlessn = 8.
Proof: We have seen thatKm(1) = 0 if and only if #Rm =

2m−2. And this is impossible for oddm. So we assume that
m= 2rk, r ≥ 1 andk odd. We have from Lemma 6:

#Rm = #L0,m+#L1,m = 2#R2r−1k +#L1,m

= #L1,m+2#L1,2r−1k +2#L0,2r−1k.

By induction, one proves easily that

#Rm = #L1,m+2#L1,2r−1k + . . .+2r−1#L1,2k +2r#Rk. (14)



It is easy to compute the firstRi . Note thatR1 = R3 = {1}.
Also #R2 = 2 and #R4 = 4. More generally we have for odd
k > 1 (see (12)):

#Rk = 2k−2 +
Kk(1)

4
≡ 2ε +1 (mod 8),

where ε = 0 if k > 3 and ε = 1 if k = 3. This is because
Tk

1 (1) = 1 implying Kk(1) ≡ 4 (mod 8) (see [13]). If r = 1
andk > 1, we get

#R2k = 2#Rk +#L1,m = 2k−1 +
Kk(1)

2
+#L1,m,

where 4 divides 2k−1 + #L1,m but does not divideKk(1)/2.
Then, it is impossible to have#R2k = 22k−2.

From now on assume thatr > 1 so thatm= 4, 8, 12. . ..
From Lemma 7, the equation (14) becomes:

#Rm = 2r+1M +2r
(

2k−2 +
Kk(1)

4

)
,

for k > 1 and#Rm = 2r+1M +2r for k = 1, whereM is some
positive integer. We suppose first thatm≥ 8 so thatM 6= 0
(see Lemma 7) andr < m−2.

In both cases (k > 1 or k = 1) it is easy to check that#Rm 6=
2m−2 since#Rm is divisible by2r and not by2r+1. For k > 1
it is sufficient to see thatKk(1)/4 is odd. If m= 4 then#R4 =
4 = 22, completing the proof.

There is an immediate consequence of the previous theorem,
considering again monomial functions of the form (7).

Corollary 2: For all r with gcd(r,2m+1) = 1, the Boolean
function f1,r(x) on F2n is not hyperbent unlessn = 8.

IV. H YPERBENTFUNCTIONS IN TERMS OFDICKSON

POLYNOMIALS

When f is a monomial trace term, the bentness off is
established through some Kloosterman sum. However, iff is
a sum of multiple trace terms, defined by (3), there is no
technique which has found to dealt with this case. In this
section, using the results developed in Section III, we show
that the bentness of those functions with some restriction is
related to the Dickson polynomials.

A. Main Characterization

Dickson polynomials are denotedDr ∈ F2[x] wherer in R, a
set of representatives of the cyclotomic cosets modulo2m+1
of size2m.

Theorem 7:Let us consider any function of type (3) onF2n,
n = 2m, with coefficients inF2m :

f (x) = ∑
r∈E

Tr(βrx
(2m−1)r) whereE ⊆ R, βr ∈ F2m, (15)

and the related Boolean function onF2m :

g(x) = ∑
r∈E

Tm
1 (βrDr(x)) (16)

Then f is hyperbent if and only if

#{ u∈ F2m | Tm
1 (u−1) = 1 andg(u) = 1 }= 2m−2.

Consequently,f is hyperbent if and only if

∑
x∈F2m

(−1)Tm
1 (x−1)+g(x) = 2m−2wt(g). (17)

Proof: Recall thatwt(g) is the weight ofg and γ is a
generator of the subgroupG of F2n of order2m+1. We have

f (γ i) = ∑
r∈E

Tr(βrγ(2m−1)ir ) = ∑
r∈E

Tm
1

(
βr(γ2ri + γ−2ri )

)
.

Then, applying Theorem 2,f is hyperbent if and only ifN =
2m−1 where

N = #{ j | ∑
r∈E

Tm
1 (βr(γ r j + γ−r j )) = 1 }. (18)

For u = γ + γ−1, we now use basic properties of Dickson
polynomials (see Proposition 1).

γ r j + γ−r j = Dr j (u) = Dr(γ j + γ− j), 1≤ j ≤ 2m.

Using Proposition 2, we rewritte (18) as follows :

N = #{ j | ∑
r∈E

Tm
1 (βrDr(γ j + γ− j)) = 1 }

= 2 #{ u∈ F2m | Tm
1 (u−1) = 1 andg(u) = 1 },

whereg(x) is defined by (16).
Denote byh the functionx 7→ Tm

1 (x−1). To prove (17), we
have to compute the Hadamard transform of the functionh+g
in point 0, sayF (0). We know thatF (0) = 2m−2wt(h+g).
By definition of the Hamming weight, we have:

wt(h+g)= wt(h)+wt(g)−2wt(hg)= 2m−1−2wt(hg)+wt(g).

Note thatwt(h) = 2m−1 since the inverse function is a permu-
tation. By definition,hg(x) = 1 if and only if h(x) = g(x) = 1
providing wt(hg) = N/2. Then f is hyperbent if and only if
wt(hg) = 2m−2 or, equivalently,F (0) = 2m−2wt(g).

B. A Class of Binomial Functions

The results in Theorem 7 provide a way to transfer the
evaluation of the weight of the functionf in the cyclic group
G to the evaluation of the weight of some Boolean function
on F2m. The later problem is easier than the former one, since
we could use the divisibility of some cyclic codes, especially,
for special classes of functions of type (15). To illustrate our
purpose we are going to treat some binomial functions of type
(15). Let, for anyλ ∈ F∗2m,

f (x) = Tr
(

λ (x(2r−1)(2m−1) +x(2r+1)(2m−1))
)

(19)

with 0 < r < m. Then, according to Theorem 7, we have

g(x) = Tm
1 (λ (D2r−1(x)+D2r+1(x))).

We apply the recursive definition of Dickson polynomials (see
Section II-C) :

D2r+1(x) = xD2r (x)+D2r−1(x) = x2r+1 +D2r−1(x),

leads tog(x) = Tm
1 (λx2r+1). Hence, we can study the bentness

of f , defined by (19), if we can exhibit some property on the
Hadamard transform of the functionx 7→ Tm

1 (x−1 + λx2r+1).



For instance, we have to prove that this function is balanced
wheng is balanced too (according to (17)). We obtain directly
the following characterization which could be seen as a
generalization of Theorem 3.

Theorem 8:Let n= 2m. Consider any functionf defined by
(19), with λ ∈ F∗2m. Assume that the functionx 7→ Tm

1 (λx2r+1)
is balanced onF2m.

Then f is hyperbent if and only if

∑
x∈F2m

(−1)Tm
1 (x−1+λx2r +1) = 0

Note that the previous equality is valid for anyr such that
gcd(2r + 1,2m− 1) = 1. So we are expecting a number of
hyperbent functions of type (19). To describe a subset of such
functions is, in particular, to solve the next problem.

Open Problem 3:Describe the set ofλ ∈ F∗2m such that
the function onF2m, x 7→ Tm

1 (x−1 + λx2r+1), where2r + 1 is
coprime to2m−1, is balanced.

The simplest case isr = 1. For our next result, we use
a property on the divisibility of theinverse cubicsums [4,
Lemma 5].

Proposition 3: Let n = 2m with m odd. Let, for anyλ ∈
F∗2m, the Boolean function onF2n

f (x) = Tr
(

λ (x2m−1 +x3(2m−1))
)

. (20)

Then we have :

(i) If m= 3 then f is hyperbent unlessλ = 1.
(ii) Let m≥ 5. If Tm

1 (λ ) = 1 then f is not hyperbent.

C. Monomial Hyperbent Functions in Terms of Dickson Poly-
nomials

Another interesting consequence of Theorem 7 concerns
monomial functions defined by (7),fλ ,r with λ ∈ F∗2m. We
assume thatgcd(r,22m−1)) = 1 so thatDr is a permutation
polynomial. Our main result is :

Theorem 9:Recall thatKm denotes the Kloosterman sum
over F2m (see (5)). Dickson polynomialsDr (see Section II-
C) are defined for anyr coprime to22m−1 and r ≤ 2m. Let
λ ∈ F∗2m be fixed. Then the functionsfλ ,r are bent if and only
if one of these statements is satisfied :

(1) - Km(λ ) = 0 ;

(2) - One proves for only oner that

∑
x∈F2m

(−1)Tm
1 (x−1+λDr (x)) = 0 ;

(2) - All functions x 7→ Tm
1 (x−1 +λDr(x)) are balanced.

V. CONCLUSION

A number of recent papers are devoted to bent Boolean
functions expressed by means of trace-functions [1], [2], [6],
[10], [15]. In this paper, we contribute to the knowledge of this
fascinating class of functions, by studying a subclass of the
so-calledPS − class. Such functions are not yet classified,
even when they are monomials.

In this paper, we show that the link between the monomials
and some Kloosterman sums is generalized in a link between
multiple trace terms functions and some exponential sums
where Dickson polynomials are involved. We emphasize that
we have here introduced a new method for exploring the
possibly hyperbent functions.

The results of Section IV-C are surprising. For instance, as
soon as we have characterized one monomial bent function we
can then generate a sequence of balanced functions using the
Dickson permutation polynomials. We are mainly interested
by the bentness, but to have properties on the full spectrum is
of interest also. In particular, some formula in this paper can
be seen as approximations of the components of the inverse
function.
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