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Abstract. Based on a computer search, Anne Canteaut conjectured that the exponent 22r+2r+
1 in F26r and the exponent (2r + 1)2 in F24r yield bent monomial functions. These conjectures are
proved in [A. Canteaut, P. Charpin, and G. Kyureghyan, A new class of monomial bent functions, in
Proceedings of the 2006 IEEE International Symposium on Information Theory, (ISIT 06 Seattle),
IEEE Press, Piscataway, NJ, 2006, pp. 903–906] and [N. G. Leander, IEEE Trans. Inform. Theory,
52 (2006), pp. 738–743]. Both exponents are of binary weight 3 and define functions from the
Maiorana–McFarland class M of bent functions to the subfield. In this paper we show that these
are the only such exponents. Our proof is based on the classification of the permutation binomials

X2k+2 +νX of finite fields of even characteristics. We also extend the result of Leander, determining
all bent monomial functions with the exponent (2r + 1)2.

Key words. cubic bent function, monomial Boolean function, permutation polynomial, Maiorana–
McFarland family of bent functions

AMS subject classifications. 11T71, 11T06, 68R01

DOI. 10.1137/060677768

1. Introduction. A bent function is a Boolean function with an even number
of variables which has the maximal possible Hamming distance from the set of affine
Boolean functions. More precisely, a function f : Fn

2 → F2 (n even) is called bent if

∑
x∈F2t

2

(−1)f(x)+〈a,x〉 = ±2
n
2

for any a ∈ Fn
2 . Observe that the bent functions are defined in a vector space over F2

with an inner product. Sometimes it is more convenient to consider bent functions
in the finite field F2n with the inner product taken to be the absolute trace function.
Working in the finite field can be advantageous because of its additional multiplicative
structure. The classification of the bent functions in finite fields and vector spaces is
completely equivalent. Let us restate the definition of a bent function in F2n , where
n is even. A function f : F2n → F2 is called bent if∑

x∈F2n

(−1)f(x)+Tn
1 (αx) = ±2

n
2

for any α ∈ F2n , where Tn
1 is the absolute trace over F2n .

Several recent papers are devoted to the study of bent functions which are mono-
mial, i.e., which are of the form

x ∈ F2n �−→ f(x) = Tn
1 (λxd) for some λ ∈ F2n ,
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CUBIC MONOMIAL BENT FUNCTIONS 651

where d is said to be the exponent of f . One of the goals in this research is to find
exponents d and the field elements λ defining a bent function. Also, some properties of
bent functions are observed by studying monomial ones. For instance, the only known
so-called nonnormal bent functions are constructed with monomial bent functions [3].
A further example is

{ fλ : F26r → F2 | fλ(x) = T 6r
1 (λx22r+2r+1), λ ∈ F∗

23r and T 3r
r (λ) = 0 },

which is closed under the addition of different elements and consists of bent functions
of degree 3 (see [1, 2]). To our knowledge, this is the first example of such a family of
nonquadratic bent functions.

Based on a computer search carried out for n ≤ 24, Anne Canteaut conjectured
that the exponent 22r + 2r + 1 in F26r and the exponent 22r + 2r+1 + 1 in F24r yield
bent monomial functions. These conjectures are proved in [1, 10]. Both exponents
are of binary weight 3 and define bent functions from the Maiorana–McFarland class
M of bent functions. More precisely, the obtained bent functions are concatenations
of affine Boolean functions of the subfield F

2
n
2

or shifts of such functions. Using
the techniques introduced in [1], this paper continues the study of cubic monomial
functions. After introducing some preliminary definitions and results in section 2, in
section 3 the cubic monomial functions, which can be represented as a concatenation of
affine Boolean functions of the subfield F

2
n
2
, are classified. Furthermore, it is shown

that among these functions only the ones with the exponents 2
n
2 +2j+1 may define

new bent functions. In section 4 the Walsh spectrum of the corresponding monomial
functions are studied. It is shown that only exponent 22r + 2r+1 + 1 for n = 4r
of that type defines a bent function. This uses the classification of all permutation

polynomials X2k+2+νX over a finite field of even characteristics obtained in section 5.
Finally, the result of [10] is extended by determining all bent monomial functions with
the exponent 22r + 2r+1 + 1. In particular, all presently known (found by computer
search) monomial bent functions are proved to belong to an infinite family of bent
monomial functions. These families are as follows:

• d = 2i + 1 and λ �∈ {yd|y ∈ F2n} (folklore).
• d = (2

n
2 − 1)�, gcd(�, 2

n
2 + 1) = 1, and λ corresponds to a zero of the Kloos-

terman sum (Dillon [6], Lachaud and Wolfmann [9]).
• If n is not a multiple of 3 and (i, n) = 1, then d = 22i−2i +1 and λ �∈ {y3|y ∈

F2n} (Dillon and Dobbertin [7]).
• If n = 4r and r is odd, then d = 22r + 2r+1 + 1 (Leander [10]) and λ =

λ′a22r+2r+1+1, where λ′ ∈ ωF2r , ω ∈ F4 \ F2, and a ∈ F24r (this paper).

• If n = 6r, then d = 22r + 2r + 1 and λ = λ′a22r+2r+1, where a ∈ F26r and
λ′ ∈ F23r such that T 3r

r (λ′) = 0 (Canteaut, Charpin, and Kyureghyan [1]).

2. Preliminaries. Let F2n be the finite field with 2n elements. If n = ms, then
Tn
m is the trace function from F2n onto F2m given by

Tn
m(x) = x + x2m

+ · · · + x2m(s−1)

for any x ∈ F2n .

Note that Tn
m is an F2m -linear function.

2.1. Boolean functions. Boolean functions on F2n are given by Tn
1 (p(x)),

where p(x) is a polynomial over F2n . Further, we will use the notation

F(f) =
∑

x∈F2n

(−1)f(x)
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652 PASCALE CHARPIN AND GOHAR M. KYUREGHYAN

for a given Boolean function f . The weight of f , denoted wt(f), is the number of x
such that f(x) = 1 and it holds that

F(f) = 2n − 2wt(f).

Recall that f is said to be balanced when wt(f) = 2n−1 or, equivalently, F(f) = 0.
For a given u ∈ F2n , a linear Boolean function ϕu is defined by

ϕu(x) = Tn
1 (ux) for any x ∈ F2n ,

and every linear Boolean function is of such form. The Walsh spectrum of f is the
multiset

{ F(f + ϕu) | u ∈ F2n }.

Thus a Boolean function is bent if and only if its Walsh spectrum contains only values

±2n/2. In particular, the weight of a bent function is 2n−1 ± 2
n−2

2 .

2.2. The Maiorana–McFarland bent functions. The Maiorana–McFarland
class of bent functions was introduced in [12] and extensively studied by Dillon [6,
pp. 90–95]. It is usually called the class M of bent functions. The Maiorana–
McFarland bent functions on F2n , n = 2t, are the concatenation of 2t different affine
functions, defined on some fixed subspace of dimension t of F22t . We are interested
in the subclass of M, where the fixed subspace is the subfield F2t . This subclass we
denote by M(F2t) and define more accurately in Corollary 2.2.

Proposition 2.1. Let W be a subspace of F22t such that F22t = F2t ⊕ W .
Assume that a Boolean function f : F22t → F2 can be expressed in the form

(2.1) f(x) = f(y + a) = T t
1 (yπ(a) + h(a)) ,

where x = y + a, with y ∈ F2t and a ∈ W , and π, h : W → F2t . Let us define, for
any u ∈ F22t ,

Wu = { a ∈ W | π(a) = u + u2t }.

Then

F(f + ϕu) =

{
0 if Wu = ∅
2t

∑
a∈Wu

(−1)T
t
1 (h(a)+T 2t

t (ua)) otherwise.

Proof. For any u ∈ F22t it holds that

F(f + ϕu) =
∑

x∈F22t

(−1)f(x)+T 2t
1 (ux)

=
∑
a∈W

∑
y∈F2t

(−1)f(y+a)+T 2t
1 (u(y+a))

=
∑
a∈W

∑
y∈F2t

(−1)T
t
1(yπ(a)+h(a)+T 2t

t (u(y+a)))

=
∑
a∈W

((−1)T
t
1(h(a)+T 2t

t (ua))
∑

y∈F2t

(−1)T
t
1(y(π(a)+T 2t

t (u))).
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The second sum over F2t is 0 unless π(a) = u + u2t

; in this case it is equal to 2t.
Thus, this sum is 0 for all a if and only if Wu is empty. Otherwise we get

F(f + ϕu) = 2t
∑

a∈Wu

(−1)T
t
1 (h(a)+ua+(ua)2

t
),

completing the proof.
Corollary 2.2. Let W ⊂ F22t be such that F22t = F2t ⊕ W . Assume that a

Boolean function f : F22t → F2 can be expressed in the form

f(x) = f(y + a) = T t
1 (yπ(a) + h(a)) ,

where x = y + a, with y ∈ F2t and a ∈ W , and π, h : W → F2t . Then f is bent if
and only if π is bijective. Such functions are said to be the elements of the subclass
M(F2t) of M.

Proof. Suppose that π is not a permutation. Then there is an element b ∈ F2t

such that π(a) �= b for any a ∈ W . For every u ∈ F22t with u + u2t

= b it holds that
Wu = ∅, and thus Proposition 2.1 implies F(f +ϕu) = 0, proving the necessity of the
condition. To derive the sufficiency, note that in the case of bijective π the cardinality
of Wu equals 1 for any u ∈ F22t .

3. Decomposable cubic monomial Boolean functions. In [1], it is shown
that the monomial Boolean functions on F2n defined by the new bent exponents
22r +2r +1 (for n = 6r) and (2r +1)2 (for n = 4r), can be decomposed in form (2.1).
In this section we describe all cubic monomial Boolean functions possessing such a
decomposition.

Let 0 ≤ k ≤ 2n − 2. We denote by Ck the cyclotomic coset modulo 2n − 1
containing k, i.e.,

Ck = {k, 2k, . . . , 2n−1k} (mod 2n − 1).

Recall that if |Ck| = l, then {xk : x ∈ F2n} ⊂ F2l and F2l is the smallest subfield of
F2n with this property.

Let d = 2i + 2j + 1 and λ ∈ F22t . We consider the function f : x �→ T 2t
1 (λxd) on

F22t . Taking the smallest representative of Cd, we may assume that

(3.1) d = 2i + 2j + 1 with 0 < j < t, i− j < t and j < i.

If F22t = F2t ⊕W , then setting x = y + a (y ∈ F2t and a ∈ W ), we have

T 2t
1 (λxd) = T 2t

1

(
λ(y + a)2

i+2j+1
)

= T 2t
1

(
λy2i+2j+1

)
+T 2t

1

(
λa2i

y2j+1 + λa2j

y2i+1 + λay2i+2j
)

+T 2t
1

(
λy2i

a2j+1 + λy2j

a2i+1 + λya2i+2j
)

+T 2t
1

(
λa2i+2j+1

)
.

Using the transitivity of the trace function we get that T 2t
1 (λxd) is equal to the
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following sum:

T t
1

(
T 2t
t (λ)y2i+2j+1

)
(3.2)

+ T t
1

(
T 2t
t (λa2i

)y2j+1 + T 2t
t (λa2j

)y2i+1 + T 2t
t (λa)y2i+2j

)
(3.3)

+ T t
1

(
T 2t
t (λa2j+1)y2i

+ T 2t
t (λa2i+1)y2j

+ T 2t
t (λa2i+2j

)y
)

+ T 2t
1

(
λa2i+2j+1

)
.

Our goal is to describe the set of pairs (i, j) defining a function T 2t
1 (λx2i+2j+1) of

form (2.1). Equivalently, we are going to find i, j, and λ such that (3.2) and (3.3) are
constant or linear on y for any a ∈ W . The following easy result will be used several
times in what follows. We present a brief proof of it for the convenience of the reader.

Lemma 3.1. Consider the function on F2n given by f(x) = Tn
1 (δxd), δ ∈ F∗

2n .
Assume that d is the smallest element of its cyclotomic coset.

(a) Let d = 2i + 2j + 1. Then the function f is constantly c, c ∈ F2, if and only
if c = 0 and

n = 3�, d = 22� + 2� + 1, and δ + δ2�

+ δ22�

= 0.

(b) Let d = 2i + 1. Then the function f is constantly c, c ∈ F2, if and only if
c = 0 and

n = 2�, i = � and δ ∈ F2� .

Proof. Assume that f(x) = c for all x. Then c = 0 since f(0) = 0. So the
polynomial

Tn
1 (δxd) = δxd + (δxd)2 + · · · + (δxd)2

n−1

is the null polynomial since it has degree less than 2n. Hence the cyclotomic coset Cd

has cardinality � with � < n and n = k�. Then {xk : x ∈ F2n} ⊂ F2l and we have

Tn
1 (δxd) = T l

1(x
dTn

l (δ)).

To complete the proof we find the exponents d of binary weights 3 and 2 satisfying
2ld ≡ d (mod 2n − 1).

(a) 2�(2i + 2j + 1) ≡ 2i + 2j + 1 (mod 2n − 1) if and only if n− i = i− j = j = �.
Thus n = 3�, i = 2�, and j = �. In this case, to have Tn

1 (δxd) constantly zero

it must also hold that δ + δ2�

+ δ22�

= 0.
(b) 2�(2i + 1) = 2i + 1 if and only if n− i = i = �. Then n = 2� and, moreover,

δ + δ2�

= 0.
We will also need the following observation.
Lemma 3.2. Let n = 6j and d = 24j + 22j + 1. Let fλ be the function on F2n

defined by fλ(x) = Tn
1 (λxd), λ ∈ F2n . Then, fλ is the null function when T 6j

2j (λ) = 0.

Otherwise the weight of fλ is equal to 22j−1(24j + 22j + 1). In particular, fλ cannot
be bent.

Proof. Recall that the weight of fλ, say wt(fλ), is the number of x such that
fλ(x) = 1. Since (22j − 1)d = 26j − 1, the image set of x �→ xd is equal to F22j and
every nonzero element from F22j has 24j + 22j + 1 many preimages. Using

T 6j
1 (λx24j+22j+1) = T 2j

1

(
T 6j

2j (λ)x24j+22j+1
)
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it is clear that wt(fλ) = 0 when λ satisfies T 6j
2j (λ) = 0 (see also Lemma 3.1). Otherwise

wt(fλ) = (24j + 22j + 1)#{ y ∈ F22j | T 2j
1 (T 6j

2j (λ)y) = 1 },

where #B denotes the cardinality of a set B. So we get wt(fλ) = 22j−1d. The weights
0 and 22j−1d both do not correspond to a weight of a bent function, completing the
proof.

Theorem 3.3. Let n = 2t and d = 2i + 2j + 1, where d satisfies (3.1). Given
λ ∈ F∗

2n , let us define

fλ : x ∈ F2n �→ Tn
1 (λxd).

Then fλ can be represented in the form (2.1) exactly in one of the following cases:

(i) The trivial case: n = 6j and d = 24j + 22j + 1 with λ + λ22j

+ λ24j

= 0—in
this case fλ is the null function;

(ii) n = 6j and d = 22j + 2j + 1 with λ ∈ F23j satisfying λ + λ2j

+ λ22j

= 0;
(iii) d = 2t + 2j + 1 with λ ∈ F2t .
Proof. The function fλ can be represented in the form (2.1) if and only if the sum

of the summands in (3.2) and (3.3) is either constant or linear on y. Note that since
y ∈ F2t we are interested in the behavior of d (mod 2t − 1).

Let us consider (3.2). We want to determine d such that c(y) = T t
1(T 2t

t (λ)yd) is of
degree strictly less than 3. Because of the conditions on i, j, if c(y) is not constantly
zero, then i must be equal to t. We will consider the cases i = t and i �= t separately.

Let d = 2t + 2j + 1. Then the sum of terms in (3.2) and (3.3) becomes

g(y) = T t
1

(
T 2t
t (λ)y2j+2

)
+ T t

1

(
T 2t
t (λ)(a2t

+ a)y2j+1 + T 2t
t (λa2j

)y2
)
.

Suppose that λ �∈ F2t . So the function g is of degree 2. Indeed, the integer 2j + 1
cannot be a power of 2 and it is not in the cyclotomic coset (modulo 2t− 1) of 2j +2.
We must have

(3.4) T t
1

(
T 2t
t (λ)(a2t

+ a)y2j+1
)

= 0,

for any a ∈ W , where j < t. By Lemma 3.1(b), (3.4) holds if and only if

t = 2�, j = � and T 2t
t (λ)T 2t

t (a) ∈ F2� .

But this last condition cannot hold for any a ∈ W , since the map a �→ T 2t
t (a), from

W to F2t , is bijective. We conclude that we must have T 2t
t (λ) = 0. In this case, we

get g(y) = T t
1(T 2t

t (λa2j

)y2), which proves case (iii).
Let d = 2i + 2j + 1 with i �= t. Set d′ = d (mod 2t − 1), 0 < d′ < 2t − 1. In this

case c(y) must be constantly zero, and thus applying Lemma 3.1(a), we get

t = 3k, d′ = 22k + 2k + 1 and T 6k
3k (λ + λ2k

+ λ22k

) = T 6k
k (λ) = 0.

Hence there are two possibilities for d: either d = d′ or d = 24k + 22k + 1. Suppose
d = d′. Then the sum in (3.3) is as follows:

T 3k
1

(
T 6k

3k (λa22k

)y2k+1 + T 6k
3k (λa2k

)y22k(2k+1) + T 6k
3k (λa)y2k(2k+1)

)
= T 3k

1

(
T 6k

3k ((λ + λ2k

+ λ22k

)a22k

)y2k+1
)

= T 3k
1

(
(λ + λ2k

+ λ22k

)T 6k
3k (a22k

)y2k+1
)
,
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where the last equality follows from previously obtained condition T 6k
k (λ) = 0. Lemma

3.1(b), implies that λ + λ2k

+ λ22k

= 0, which is possible only for λ ∈ F23k , because

the polynomial X + X2k

+ X22k

divides X23k

+ X. Hence we have proved case (ii).
The last possibility is d = 24k+22k+1. We apply Lemma 3.2. If fλ is not the null

function, then F(fλ) = 2n−22jd. Since F(fλ) is not divisible by 23j , we deduce from
Proposition 2.1 that fλ cannot be represented in the form (2.1). Hence we obtain the
trivial case (i).

Further, we want to see when the decomposable cubic monomial functions are
bent. We have seen that the exponent d = 24j + 22j + 1 does not lead to a bent
monomial function. The bent monomial functions with the exponent 22j + 2j + 1 are
studied in [1], where the following result is proved.

Theorem 3.4 (see [1]). The monomial function T 6r
1 (λ′x22r+2r+1) in F26r is

bent if and only if there are λ ∈ F23r and a ∈ F26r such that T 3r
r (λ) = 0 and λ′ =

λa22r+2r+1. Moreover, all these bent functions are from the Maiorana–McFarland
class.

By Theorem 3.3 only the exponents 2t + 2j + 1 may provide further examples of
cubic monomial bent functions from M(F2t). The rest of this paper is devoted to the
study of this exponent.

4. Exponent 2t +2j +1. In the study of the Walsh spectrum of the monomial
functions with exponents 2t +2j +1, we may restrict ourselves to the elements λ from
the subfield F2t . This is a consequence of the following observation.

Lemma 4.1. Let b be such that gcd(b, 2t + 1) = 1. Then, for any μ ∈ F22t , there
are λ ∈ F2t and δ ∈ F22t such that μ = λδb. Consequently, the Walsh spectrum of
the monomial function T 2t

1 (μxb) is the same as the one of T 2t
1 (λxb).

Proof. Let α be a primitive element of F22t . Since gcd(2t − 1, 2t + 1) = 1, any
element μ ∈ F∗

22t can be expressed as follows:

μ = α�(2t−1)αk(2t+1), 0 ≤ � ≤ 2t, 0 ≤ � ≤ 2t − 2.

Since b and 2t + 1 are coprime, it holds that μ = λδb with λ = αk(2t+1) and
δb = α�(2t−1).

The next proposition gives the explicit decomposition of the function

(4.1) gλ(x) = T 2t
1

(
λx2t+2j+1

)
, 0 < j < t, λ ∈ F∗

2t .

Proposition 4.2. Let W ⊂ F22t be such that F22t = F2t⊕W . Then the function
gλ defined in (4.1) can be written as follows:

gλ(y, a) = T t
1 (yπ(a) + h(a)) , y ∈ F2t , a ∈ W,

where π, h : W → F2t are given by

π(a) = λ2t−1

(a + a2t

)2
j−1

+ λ(a2t

+ a)2
j+1

and

h(a) = λa2t+1(a + a2t

)2
j

.

Proof. For any y ∈ F2t and a ∈ W , we compute

gλ(y, a) = gλ(y + a) = T 2t
1

(
λ(y + a)d

)
.
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We have T 2t
1 (λyd) = 0 since λ and y are in F2t . The part which is (a priori) quadratic

relative to y is

B = T 2t
1

(
λ(y1+2j

a + y2j+1a2t

+ y2a2j

)
)

= T 2t
1

(
λy2j+1(a2t

+ a) + λy2a2j
)

= T 2t
1 (λy2a2j

) = T t
1(λy2(a + a2t

)2
j

),

since λy2j+1(a2t

+ a) ∈ F2t . Further, we compute the part which is linear relative to
y:

C = T 2t
1

(
y(λ(a2t+2j

+ a2j+1) + λ2t−j

a2t−j(2t+1))
)

= T 2t
1

(
yλ(a2t+2j

+ a2j+1)
)

= T t
1

(
yλ(a2t

+ a)2
j+1

)
,

since λ2t−j

a2t−j(2t+1) ∈ F2t . Finally,

gλ(y, a) = T t
1

(
y(λ2t−1

(a + a2t

)2
j−1

+ λ(a2t

+ a)2
j+1)

)
+ T 2t

1 (λad).

So, we have gλ(y, a) = T t
1 (yπ(a) + h(a)), where π(a) is the coefficient of y above and

h(a) = λT 2t
t (ad) = λa2t+1(a + a2t

)2
j

,

since d = 2t + 2j + 1 and 2td ≡ 1 + 2t + 2t+j .
The obtained decomposition allows us to get some information on the Walsh

spectrum of gλ in general. By Proposition 2.1 we obtain

F(gλ + ϕu) = 2t
∑

a∈Wu

(−1)T
t
1 (h(a)+T 2t

t (ua)),(4.2)

where Wu = { a ∈ W | π(a) = u + u2t } and, by convention, the sum above is null if
Wu = ∅. Note that

Wu = Wu+β for all β ∈ F2t .

Recall that gλ is bent if and only if π is a permutation (see Corollary 2.2).
As a direct consequence of (4.2) we get a lower bound on the multiplicity of the

value 0 in the Walsh spectrum of gλ. This is because Wu = ∅ when u + u2t

is not in
the image of π.

Proposition 4.3. Let I be the cardinality of the image of π in F2t . Then

#{ v ∈ F22t | F(gλ + ϕv) = 0 } ≥ 2t(2t − I).

Equation (4.2) gives also an upper bound on the magnitude of the value of Walsh
transform at u in terms of the cardinality of Wu.

Proposition 4.4. For any u, F(gλ + ϕu) ≡ 0 (mod 2t). Moreover,

|F(gλ + ϕu)| ≤ 2t × #Wu.
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As we have seen, the Walsh spectrum of gλ could be determined as soon as we
know the set Wu, which describes the preimages of the mapping π : W → F2t . Recall
that

π(a) = λ2t−1

(a + a2t

)2
j−1

+ λ(a2t

+ a)2
j+1.

Since the mapping a �→ a + a2t

is a permutation from W to F2t , we have π(a) =
π′(a + at), where π′ : F2t → F2t is given by

(4.3) π′(y) = λ2t−1

y2j−1

+ λy2j+1, y ∈ F2t .

Hence our problem is linked with the one of determining the image of π′ or, equiva-
lently, of (π′)2.

Problem 1. Let λ ∈ F2t . For any τ ∈ F2t , compute the number of y ∈ F2t such
that

λ2y2(2j+1) + λy2j

+ τ = 0.

This problem can be easily solved for τ = 0, which yields information on F(gλ +
ϕu) for u ∈ F2t as in subsection 4.1 shown. Subsection 4.2 is devoted to the charac-
terization of λ and j such that the equation of Problem 1 has exactly one solution.

4.1. The case u ∈ F2t . Let u ∈ F2t . Then Wu = { a ∈ W | π(a) = 0 } and
Wu = Wu′ for all u′ ∈ F2t . Clearly, π′(0) = 0, where π′ is given by (4.3). For nonzero
y, it holds that

π′(y) = 0 ⇔ y2j−1+1 = λ2t−1−1 ⇔ y2j+2 =
1

λ
.

Thus, for any u ∈ F2t ,

(4.4) Wu =

{
a ∈ W | a = 0 or (a + a2t

)2
j+2 =

1

λ

}
.

Lemma 4.5. Let u ∈ F2t . Then the constant term of gλ, given by

h(a) = λa2t+1(a + a2t

)2
j

,

satisfies T t
1(h(a)) = 1 for any nonzero a ∈ Wu.

Proof. Note that h(0) = 0 and assume now that a �= 0. Using (4.4), we have

(a + a2t

)2
j+2 = λ−1. By replacing (a + a2t

)2
j

in h(a), we get

h(a) = λa2t+1λ−1(a + a2t

)−2 =
a2t+1

(a + a2t)2
.

The elements a and a2t

are the solutions in F22t of the equation

x2 + (a + a2t

)x + a2t+1 = 0,

while they do not belong to F2t . This implies that the polynomial X2 +(a+a2t

)X +

a2t+1 ∈ F2t [X] is irreducible over F2t . Hence

T t
1

(
a2t+1

(a + a2t)2

)
= T t

1(h(a)) = 1.
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Now we can describe the values F(gλ + ϕu) for u ∈ F2t more precisely. Notably,
we compute the weight of each function gλ.

Proposition 4.6. Let u ∈ F2t and Wu be given by (4.4). Set s = gcd(2j−1 +
1, 2t − 1). Then we have the following:

(i) If s = 1 (i.e., t/ gcd(j − 1, t) odd) then #Wu = 2 and

F(gλ + ϕu) =

{
0 if T t

1(u(a + a2t

)) = 0,

2t+1 if T t
1(u(a + a2t

)) = 1,

where a is the unique element of Wu different from 0. Note that each value
above occurs 2t−1 times. In particular, F(gλ) = 0.

(ii) Set Ss = {us|u ∈ F2t}. For s > 1 we have that
• if λ �∈ Ss, then F(gλ + ϕu) = 2t for any u.
• if λ ∈ Ss, then |F(gλ+ϕu)| ≤ (s+1)2t. In particular, F(gλ) = (1−s)2t.

Consequently, if gλ is bent then s > 1 and λ �∈ Ss.
Proof. According to (4.4), we get from (4.2) and Lemma 4.5 that

F(gλ + ϕu) = 2t
∑

a∈Wu

(−1)T
t
1 (h(a)+u(a+a2t ))

= 2t − 2t
∑

a∈Wu,a�=0

(−1)T
t
1 (u(a+a2t )).

(i) When s = 1 then Wu contains only 0 and a unique a such that (a+a2t

)2
j+2 =

λ−1. Consequently, F(gλ + ϕu) = 0 or 2t+1 depending on whether T t
1(u(a +

a2t

)) = 0 or 1. Since u runs through F2t , each such case occurs 2t−1 times.
In particular, for u = 0, we get F(gλ) = 0.

(ii) Now assume that s > 1. If λ �∈ Ss, then Wu = {0}, implying F(gλ +ϕu) = 2t

for any u.
Denote by Gs the subgroup of F∗

2t of order s. If λ ∈ Ss, then

Wu = {0} ∪ { a ∈ W | a + a2t ∈ yGs with y2j+2 = λ−1 }

(where y ∈ F2t). Using Proposition 4.4, we conclude that |F(gλ + ϕu)| ≤ (s + 1)2t

when λ ∈ Ss. Finally, observe that for u = 0, we get F(gλ) = (1 − s)2t.

4.2. The bent functions. In this section we find all j and μ ∈ F22t defining
bent monomial functions x �→ T 2t

1 (μx2t+2j+1). Remember that this is equivalent to
describing those λ ∈ F2t for which π′, defined in (4.3), is a permutation. Consider

(π′(y))2 = λy2j

+ λ2y2j+1+2

= λ(y + λ2t−j

y2t−j(2j+1+2))2
j

= λ(y + λ2t−j

y2t−j+1+2)2
j

= λ2(λ−2t−j

y + y2t−j+1+2)2
j

.

Thus, the function gλ is bent if and only if the mapping ρ : F2t → F2t , given by

ρ(y) = y2t−j+1+2 + νy,

where ν = λ−2t−j

, is a permutation. All such permutation polynomials are charac-
terized in Theorem 5.1 of the next section. In particular, Theorem 5.1 implies the
following proposition.
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Proposition 4.7. Let gλ = T 2t
1 (λx2t+2j+1), 0 < j < t, λ ∈ F∗

2t . Then, gλ can
be bent only if t = 2r, r odd, and j = r + 1.

In [10] it is shown that the exponent 22r + 2r+1 + 1 in F24r , r odd, yields a bent
function if λ is chosen to be β5, where β is the root of the polynomial X4 + X + 1.
Theorem 5.1 allows us to extend this result.

Theorem 4.8. Let ω ∈ F4 \ F2. The monomial function T 4r
1 (μx22r+2r+1+1) on

F24r is bent for some μ ∈ F24r if and only if r is odd and there are λ ∈ ωF2r and
a ∈ F24r such that μ = λa22r+2r+1+1.

5. On some binomial quadratic permutations in F2t . In this section we
describe all permutation polynomials of type

X2k+2 + νX

in a finite field of characteristics 2. More precisely, we will prove the next theorem.
Theorem 5.1. Let 0 ≤ k ≤ t− 1 and ν �= 0. Then the polynomial

ρ(X) = X2k+2 + νX in F2t [X]

is a permutation polynomial of F2t if and only if t is even and
• either k = 1 and ν is not a third power in F2t , or
• t = 2r, r ≥ 3 with r odd, k = r, and ν ∈ ωF2r , where ω ∈ F22 \ F2.

We will use some well-known facts about the quadratic monomial Boolean func-
tions. Our main reference is [11, pp. 175–189]; we give only the idea of a proof of
Proposition 5.2. The interested reader may see [8, 10] for these proofs and [5, 8] for
some other properties of the quadratic monomial functions.

Proposition 5.2. Let gcd(t, i) = s and F : F2t → F2t be given by F (x) = x2i+1.
Let fμ, μ ∈ F∗

2t , be the Boolean function defined by fμ(x) = T t
1(μF (x)). Then the

following properties hold:
(a) The function F is bijective if and only if t/s is odd.
(b) If t/s is odd, then the Walsh transform of the Boolean function fμ takes the

values {0,±2
t+s
2 }. In particular, fμ is never bent.

(c) Assume that t/s is even. The function fμ is bent if and only if μ is not
a (2i + 1)th power in F2t . Otherwise, its Walsh transform takes the values

{0,±2
t+2s

2 }.
Proof. The function F is bijective if and only if gcd(2i + 1, 2t − 1) = 1 which is

equivalent to s = gcd(2i, t), i.e., t/s odd.

Set S = {y2i+1|y ∈ F2t}. The function fμ is bent if and only if t/s is even and
μ �∈ S (see [10, Thm. 2]). Otherwise the Walsh spectrum of fμ is the same as that

of the function x �→ T t
1(x2i+1). The Walsh transform of this quadratic function takes

the values

{0,±2
t+s
2 } if t/s is odd,

{0,±2
t+2s

2 } if t/s is even and μ ∈ S.

(see [11, Thm. 11.13]).
Further, we need also the following property of the Walsh transform of quadratic

Boolean functions.
Proposition 5.3. Let gcd(t, i) = s, t/s be odd. Let f be the Boolean function on

F2t defined by f(x) = T t
1(x2i+1 + βx). Then f is balanced if and only if T t

s(β) �= 1.
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Proof. Note that T t
s(1) = 1 since t = su with odd u. Such a function f is balanced

if and only if there is a ∈ F∗
2t such that the derivative of f with respect to a constantly

equals 1, that is,

ha(x) = f(x) + f(x + a) = 1 for all x

(see a proof in [4, Prop. II-5]). We compute the derivative of f with respect to a:

ha(x) = T t
1(ax2i

+ a2i

x + a2i+1 + βa) = T t
1

(
x(a2t−i

+ a2i

) + a(a2i

+ β)
)
.

Then ha is constant if and only if a22i

= a, i.e., a ∈ F∗
2s . In this case,

ha(x) = T t
1(a + βa) = T s

1

(
aT t

s(1 + β)
)

= T s
1

(
a(1 + T t

s(β))
)
.

So, there is a ∈ F∗
2s such that ha = 1 if and only if T t

s(β) �= 1.
Now we are going to prove Theorem 5.1 by means of the two following lemmas.
Lemma 5.4. Let ν ∈ F2t and ρ : F2t → F2t be given by the polynomial

(5.1) ρ(X) = X2k+2 + νX, 2 ≤ k ≤ t− 1.

Take c = gcd(t, k − 1). Then ρ is a permutation polynomial of F2t if and only if

t

c
is odd and T t

c (γ
2k+1ν) �= 1 for every γ ∈ F2t .

In this case, t is even, t
gcd(t,k) is even, and k is odd.

Proof. It is well known that a mapping g : F2t → F2t is bijective if and only if∑
x∈F2t

(−1)T
t
1 (βg(x)) = 0

for any β ∈ F∗
2t . Consider the sum

S =
∑

x∈F2t

(−1)T
t
1 (βx2k+2+βνx) =

∑
x∈F2t

(−1)T
t
1 (β2n−1

x2k−1+1+βνx).

Suppose t/c is even; then by Proposition 5.2(c), there is a β such that the function

x �→ T t
1(β2n−1

x2k−1+1) is bent. Clearly, S �= 0 for such a β. Hence ρ defines a
permutation only if t/c is odd.

We assume that t/c is odd, i.e., by Proposition 5.2(a), the mapping x �→ x2k−1+1

is a permutation on F2t . Then β2n−1

= γ2k−1+1 for some γ ∈ F2t and

S =
∑

x∈F2t

(−1)T
t
1 ((γx)2

k−1+1+γ2k+2νx)

=
∑

z∈F2t

(−1)T
t
1 (z2k−1+1+γ2k+1νz),

where z = γx. Hence, we are interested in ν ∈ F2t satisfying

(5.2)
∑

z∈F2t

(−1)T (z2k−1+1+γ2k+1νz) = 0 for every γ ∈ F2t .
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By Proposition 5.3, condition (5.2) is satisfied if and only if

(5.3) T t
c (γ

2k+1ν) �= 1 for every γ ∈ F2t .

Let s = gcd(t, k). If (5.3) holds, then t/s must be even because otherwise x �→ x2k+1

would be a permutation. Hence t must be even. Further, k − 1 must be even when
t/c is odd.

Now we are going to prove that condition (5.3) is generally impossible.
Lemma 5.5. Let t = 2r, 1 ≤ k ≤ r, and c = gcd(t, k−1), where k is odd. Assume

that there exists an element λ ∈ F∗
2t satisfying

T t
c (γ

2k+1λ) �= 1 for every γ ∈ F2t .

Then k = r and c = 2. In particular, r is odd.
Proof. Note that c is even, by hypothesis, and thus c ≥ 2. Denote by N the

number of x ∈ F2t satisfying

T t
c (x

2k+1λ) = 1.

We have

∑
x∈F2t

∑
a∈F2t

(−1)T
t
1 (a(T t

c (x2k+1λ)+1))

= 2t × #{ x ∈ F2t | T t
c (x

2k+1λ) = 1 }
= 2tN.

Hence we can use the results on the Walsh transform of quadratic monomial functions
to bound N . Our goal is to show that N ≥ 1, except for the case k = r. Setting
b = T t

c (a), the above sum can be modified to

N =
1

2t

∑
b∈F2c

2t−c(−1)T
c
1 (b)

∑
x∈F2t

(−1)T
c
1 (b(T t

c (x2k+1λ)))

=
1

2c

∑
b∈F2c

(−1)T
c
1 (b)

∑
x∈F2t

(−1)T
t
1 (bλx2k+1)

=
1

2c

⎛
⎝2t +

∑
b∈F∗

2c

(−1)T
c
1 (b)

∑
x∈F2t

(−1)T
t
1 (bλx2k+1)

⎞
⎠ .

Let s = gcd(t, k). Since t/s is even, we have, by Proposition 5.2,

F(h) =
∑

x∈F2t

(−1)T
t
1 (bλx2k+1) ∈ {0,±2r+s,±2r}.

Thus,

N =
1

2c

⎛
⎝2t +

∑
b∈F∗

2c

(−1)T
c
1 (b) εb

⎞
⎠ ,
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where εb ∈ {0,±2r,±2r+s}. In particular,

(5.4) N >
1

2c
(
2t − 2c2r+s

)
= 2t−c − 2r+s = 2r(2r−c − 2s).

Let us prove that r − c ≥ s unless k = r. Recall that c = gcd(2r, k − 1) is even.
Moreover, s is odd, c < k ≤ r, and, clearly, gcd(s, c) = 1.

First, note that r − c ≥ s for s = 1, since r − c ≥ 1. So we assume that s ≥ 3.
Set c = 2c′ so that r = sc′v for some c′ and some v ≥ 1. So we have

r − c = sc′v − 2c′ = c′(sv − 2).

If v > 1, then for any c′,

r − c = c′(sv − 2) = c′(s + (s(v − 1) − 2)) ≥ s.

If v = 1, then r = c′s and we want to check when c′(s − 2) ≥ s. Setting s = 2 + τ
with τ odd, it holds if and only if c′τ ≥ τ + 2. This last inequality is satisfied unless
c′ = 1 or c′ = 2 and τ = 1.

In the case where c′ = 2 and τ = 1, we have r = 6 and s = 3 so that k = 3, since
s = gcd(r, k). Further, c = 4 and we get k > c, a contradiction.

Finally, it appears that r − c ≥ s unless c′ = 1 and v = 1, the case where
r = s = k. According to (5.4), we conclude that N ≥ 1 unless k = r. In this case, we
have k = r = s, which implies that r is odd and c = 2, completing the proof.

Now we are able to prove our main theorem.
Proof of Theorem 5.1. We are now able to determine which polynomials of type

ρ(X) = X2k+2 + νX, ρ ∈ F2t [X],

with 0 ≤ k ≤ t − 1, are permutations of F2t . If k = 0, then ρ(X) = X3 + νX. So ρ
cannot be a permutation, since it has two roots in F2t . For k = 1, we get

ρ(X) = X4 + νX = X(X3 + ν),

which is a linearized polynomial. Thus, it is a permutation polynomial if and only if
it has only one root, i.e., ν is never equal to x3 when x runs through F∗

2t .
We now assume that k > 1. According to Lemmas 5.4 and 5.5, we know that ρ

is a permutation only when t = 2r, with r odd, k = r, and c = gcd(2r, r − 1) = 2.
Moreover, those ν such that ρ is a permutation are the elements of F∗

2t which satisfy

(5.5) T 2r
2 (γ2r+1ν) �= 1 for every γ ∈ F22r .

Note that {γ2r+1|γ ∈ F22r} = F2r , and therefore (5.5) is equivalent to

(5.6) T 2r
2 (δν) �= 1 for every δ ∈ F2r .

It remains to describe the set of suitable ν. Consider the map �ν : F2r → F22 defined
by �ν(z) = T 2r

2 (νz). Note that �ν is F2-linear and

�ν(z) = νz + · · · + (νz)2
r−1

+ ν2r+1

z2 + · · · + ν22(r−1)

z2r−2

.

So �ν cannot be constant.
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Moreover, if also (5.6) holds, then

(5.7) {�ν(z)|z ∈ F2r} = {0, ω}, where ω ∈ F22 \ F2.

Assume that �ν satisfies (5.7) for such ω. We consider now the map �νω2 . Since
�νω2(z) = ω2�ν(z), we have

(5.8) {�νω2(z)|z ∈ F2r} = {0, 1}.

From (5.8) it follows that T 2
1 (�νω2(z)) = 0 for every z ∈ F2r . Observe, that

T 2
1 (�νω2(z)) = T 2

1 (T 2r
2 (νω2z)) = T 2r

1 (νω2z) = T r
1 (T 2r

r (νω2)z).

But the function z �→ T r
1 (T 2r

r (νω2)z) is constantly zero if and only if T 2r
r (νω2) is zero,

which is equivalent to νω2 ∈ F2r . To complete the proof, note that for any ν = ωu,
with u ∈ F2r , we have

�νω(z) = ω�1(uz) = ωT r
1 (uz),

implying (5.7).
Remark 1. Note that we have proved the following: There are 2(2r − 1) permu-

tations of F22r with polynomial form X2r+2 + νX. These correspond to

ν ∈ (ωF∗
2r ) ∪

(
ω2F∗

2r

)
with notation F4 = {0, 1, ω, ω2}.

6. Conclusion. As one may see from the list of known monomial bent func-
tions in the introduction, the quadratic monomial bent functions are easily character-
ized. The complete classification of the cubic monomial bent functions T 2t

1 (λx2i+2j+1)
seems to be a difficult problem. In this paper all bent exponents 2t +2j +1 are found.
Further, it is shown that all cubic monomial bent functions from the Maiorana–
McFarland family to the subfield are known. All known bent exponents (computer
search for n ≤ 24, exhaustive search for n ≤ 20) are covered by the examples in the
introduction. However, the following question remains open.

Open Problem 1. Are there cubic monomial bent functions besides those listed
in the introduction of this paper?
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