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Abstract. We investigate the link between the nonlinearity of a Boolean
function and its propagation characteristics. We prove that highly nonlin-
ear functions usually have good propagation properties regarding differ-
ent criteria. Conversely, any Boolean function satisfying the propagation
criterion with respect to a linear subspace of codimension 1 or 2 has a
high nonlinearity. We also point out that most highly nonlinear functions
with a three-valued Walsh spectrum can be transformed into 1-resilient
functions.

1 Introduction

The design of conventional cryptographic systems relies on two fundamental
principles introduced by Shannon [25]: confusion and diffusion. Confusion aims
at concealing any algebraic structure in the system. Diffusion consists in spread-
ing out the influence of a minor modification of the input data over all out-
puts. Most conventional primitives are concerned with these essential principles:
secret-key ciphers (block ciphers and stream ciphers) as well as hash functions.
Confusion and diffusion can be quantified by some properties of the Boolean
functions describing the system. Confusion corresponds to the nonlinearity of
the involved functions, i.e., to their Hamming distances to the set of affine func-
tions. Diffusion is related to the propagation characteristics of the considered
Boolean function f : these properties describe the behaviors of the derivatives
x 7→ f(x + a) + f(x). The relevant cryptographic quantities are the biases of
the output probability distributions of the derivatives relatively to the uniform
distribution; they are measured by the auto-correlation coefficients of the func-
tion. Diffusion is therefore estimated by complementary indicators: propagation
criterion, distance to the set of all Boolean functions with a linear structure and
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sum-of-squares indicator. All these quantities will be here considered in a unified
approach.

A major link between diffusion and confusion criteria was pointed out by
Meier and Staffelbach [18]. They proved that maximal nonlinearity and perfect
propagation characteristics are equivalent requirements for Boolean functions
with an even number of variables. Unfortunately those functions which achieve
perfect diffusion and perfect confusion (called bent functions) are not balanced;
that means that they do not have a uniform output distribution. The construc-
tion of balanced Boolean functions having a high nonlinearity and good prop-
agation characteristics then remains an open problem although such functions
are essential components of cryptographic primitives.

In this paper we further investigate the link between diffusion and confusion
criteria for Boolean functions. We show that highly nonlinear functions usually
coincide with the functions having remarkable propagation characteristics. In
this context, we point out the major role played by the highly nonlinear func-
tions whose Walsh spectrum takes three values. We exhibit general constructions
of such functions and we prove that they can easily be transformed into balanced
first-order correlation-immune functions. They are therefore well-suited combin-
ing functions for pseudo-random generators since they ensure a high resistance
to fast correlation attacks.

2 Cryptographic Criteria for Boolean Functions

A Boolean function with n variables is a function from the set of n-bit vectors,
Fn

2 , into F2. Such a function f can be expressed as a unique polynomial in
x1, . . . , xn called its algebraic normal form (see e.g. [14]). Some cryptographic
applications require that this polynomial has a high degree. For instance, when
f is used as a combining function in a pseudo-random generator, its degree
conditions the linear complexity of the produced running-key. The following
notation will be intensively used in the paper. The usual dot product between
two vectors x and y is denoted by x · y. For any α ∈ Fn

2 , φα is the linear
function with n variables defined by φα(x1, . . . , xn) = α · x =

∑n
i=1 αixi. The

Walsh transform of a Boolean function f refers to the Fourier transform of the
corresponding sign function x 7→ (−1)f(x). In this context we denote by F(f)
the value in 0 of the Walsh transform of f :

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f)

where wt(f) is the Hamming weight of f , i.e., the number of x ∈ Fn
2 such that

f(x) = 1.
The Walsh spectrum of a Boolean function f with n variables therefore con-

sists of all values {F(f + φα), α ∈ Fn
2 }. Since linear attacks on blocks ciphers

and correlation attacks on stream ciphers equally search for a linear or an affine
approximation of the involved function, the signs of the Walsh coefficients have
no cryptographic relevance. We then often consider the set {F(f + φα + ε), α ∈
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Fn
2 , ε ∈ F2}. The values of this spectrum, called the extended Walsh spectrum,

are symmetric with respect to 0 since F(f + φα + 1) = −F(f + φα).
We now recall the main cryptographic criteria for Boolean functions and we

express all of them in terms of Walsh spectrum. A first obvious requirement in
most applications is that the output of the used Boolean function be uniformly
distributed. This corresponds to balancedness:

Definition 1. A Boolean function f is balanced if F(f) = 0.

A second usual criterion is that f should be far from all affine functions
(regarding Hamming distance). In stream ciphers applications, when f is used
in a pseudo-random generator as a combining function or as a filtering function,
the existence of a “good” approximation of f by an affine function makes fast
correlation attacks feasible [17,13,12]. Similarly, if f is used in a block cipher as
an S-box component, this would lead to successful linear attacks [15].

Definition 2. The nonlinearity of a Boolean function f with n variables is its
Hamming distance to the set of affine functions. It can be expressed as

NL(f) = 2n−1 − 1
2
L(f) where L(f) = max

α∈Fn
2

|F(f + φα)| .

Any Boolean function f with n variables satisfies L(f) ≥ 2n/2; the functions for
which equality holds are called bent functions [23]. This lower bound can only
be achieved for even values of n. When n is odd, the lowest achievable value
of L(f) is unknown in the general case: there always exist some functions with
L(f) = 2(n+1)/2 and this value corresponds to the minimum possible nonlinearity
for any n ≤ 7. On the other hand some functions with L(f) = 27

322(n+1)/2 are
known for any odd n ≥ 15 [20,21]. From now on, we will focus on highly nonlinear
Boolean functions in the following sense:

Definition 3. Let f be a Boolean function with n variables. Then f is said to
be almost optimal if L(f) ≤ 2(n+1)/2 when n is odd, and L(f) ≤ 2(n+2)/2 when
n is even.

Besides its maximum value, the whole Walsh spectrum of a Boolean func-
tion has a great cryptographic significance. When f is used in a combining
pseudo-random generator, the distribution probability of its output should be
unaltered when any t of its inputs are fixed [27]. This property, called t-th order
correlation-immunity [26], is characterized by the set of zero values in the Walsh
spectrum [29]:

Definition 4. Let f be a Boolean function with n variables.

– f is correlation-immune with respect to a subset E of Fn
2 if F(f + φα) = 0

for all α ∈ E.
– f is t-th order correlation-immune (t-CI) if it is correlation-immune with

respect to {x ∈ Fn
2 , 1 ≤ wt(x) ≤ t}, where wt(x) denotes the Hamming

weight of the n-bit vector x, i.e., the number of its nonzero components.
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Balanced t-th order correlation-immune functions are called t-resilient functions.

These criteria may not be compatible in general: there are necessary tradeoffs
between the degree, the nonlinearity and the correlation-immunity order of a
function.

Some other criteria consider the probability distribution of the output differ-
ence of the Boolean function for a fixed input difference. They then focus on the
properties of the functions Daf : x 7→ f(x + a) + f(x) for a ∈ Fn

2 . The function
Daf is called the derivative of f with respect to direction a. The auto-correlation
function of f refers to the function α 7→ F(Dαf). The auto-correlation coeffi-
cient F(Dαf) then measures the statistical bias of the output distribution of
Dαf relatively to the uniform distribution. The propagation characteristics of a
Boolean function can then be estimated by several indicators. Some applications
require that the output difference of a function be uniformly distributed for low-
weight input differences. This property, referred as propagation criterion [22], is
notably important when the function is used in a hash function or in a block
cipher.

Definition 5. Let f be a Boolean function with n variables.

– f satisfies the propagation criterion with respect to a subset E of Fn
2 if

F(Dαf) = 0 for all α ∈ E.
– f satisfies the propagation criterion of degree k (PC(k)) if it satisfies the

propagation criterion with respect to {x ∈ Fn
2 , 1 ≤ wt(x) ≤ k}.

The strict avalanche criterion (SAC) [28] actually corresponds to the propagation
criterion of degree 1. It is also recommended that the output distribution of all
derivatives be close to the uniform distribution: the existence of a derivative
whose output takes a constant value with a high probability leads to differential
attacks [3,2]. This means that |F(Dαf)| should be small for all nonzero α ∈ Fn

2 .
Recall that the linear space of f is the subspace of those α such that Dαf is
a constant function. Such α 6= 0 is said to be a linear structure for f . The
maximum value |F(Dαf)| over all nonzero α, called the absolute indicator [30],
then quantifies the distance of f to the set of all Boolean functions with a linear
structure [18]. The only functions whose absolute indicator equals 0 are the bent
functions.

The output distributions of the derivatives can also be studied in average
through the second moment of the auto-correlation coefficients, called the sum-
of-squares indicator [30]:

Definition 6. The sum-of-squares indicator of a Boolean function f with n vari-
ables, denoted by V(f), is defined by

V(f) =
∑

α∈Fn
2

F2(Dαf) .

The above presented criteria are invariant under certain transformations.
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Proposition 1. The degree, the extended Walsh spectrum (and the nonlinear-
ity), the absolute indicator and the sum-of-squares indicator are invariant under
addition of an affine function.

The invariance of the propagation characteristics is derived from F(Dα(f +
φβ)) = (−1)α·βF(Dαf) for any α and β in Fn

2 . Most notably, this proposition
implies that if there exists α ∈ Fn

2 such that F(f + φα) = 0, then f + φα is a
balanced function having the same degree, extended Walsh spectrum, absolute
indicator and sum-of-squares indicator as f .

Proposition 2. The weight, the degree, the Walsh spectrum (and the nonlinear-
ity), the absolute indicator and the sum-of-squares indicator are invariant under
right composition by a linear permutation of Fn

2 .

Both of these types of transformations change neither the size nor the rank of the
sets ECI(f) = {α ∈ Fn

2 , F(f+φα) = 0} and EPC(f) = {α ∈ Fn
2 , F(Dαf) = 0}.

The first-order correlation immunity and the propagation criterion of degree 1
can therefore be studied up to the previous equivalences:

Proposition 3. Let f be a Boolean function with n variables. If ECI(f) (resp.,
EPC(f)) has rank n, then there exists a linear permutation π of Fn

2 such that
the Boolean function f ◦ π is first-order correlation-immune (resp., satisfies the
propagation criterion of degree 1).

The rest of the paper is organized as follows. We observe in Section 3 that
the nonlinearity of a Boolean function provides an upper bound on its sum-of-
squares indicator. Moreover, we completely characterize the functions achieving
this bound: their extended Walsh spectra take at most 3 values. In Section 4
we derive a lower bound on the number of zero auto-correlation coefficients of a
function from its nonlinearity. Section 5 is devoted to the nonlinearity of Boolean
functions with a linear structure. We essentially show that these functions are
not almost optimal when the dimensions of their linear spaces exceed 1 for odd n,
and 2 for even n. Conversely, Section 6 focuses on the functions which satisfy
the propagation criterion with respect to a linear subspace of codimension 1
or 2. We prove that these functions are almost optimal and that they have a
three-valued extended Walsh spectrum when n is odd. For even n we obtain new
characterizations of bent functions. In the last section we study the correlation-
immunity order of Boolean functions with a three-valued Walsh spectrum. Such
functions are 1-resilient (up to a linear permutation) unless n is odd and they
satisfy PC(n − 1). We deduce that for any odd n and any degree d ≤ (n +
1)/2, there exist 1-resilient functions of degree d, with n variables, and with
nonlinearity 2n−1 − 2(n−1)/2.

3 Relation between the Sum-of-Squares Indicator and
the Walsh Spectrum

The auto-correlation coefficients of a Boolean function are related to its Walsh
spectrum through the following formulas. Proofs of these results can notably be
found in [5] and [30].
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Lemma 1. Let f be a Boolean function with n variables. For any α ∈ Fn
2 ,

F2(f + φα) =
∑

β∈Fn
2

(−1)α·βF(Dβf) .

Lemma 2. Let f be a Boolean function with n variables. Then∑
α∈Fn

2

F4(f + φα) = 2nV(f) .

We now point out that the nonlinearity of a function obviously provides an upper
bound on its sum-of-squares indicator, V(f). Moreover, some further information
on the Walsh spectrum of a function can be derived from the value of V(f). The
following result was proved independently in [32, Theorem 5]. We give here a
much simpler proof.

Theorem 1. Let f be a Boolean function with n variables and let L(f) =
maxα∈Fn

2
|F(f + φα)|. Then we have

V(f) ≤ 2nL(f)2

with equality if and only if the extended Walsh spectrum of f takes at most three
values, 0, L(f) and −L(f).

Proof: Let us consider the following quantity

I(f) =
∑

α∈Fn
2

F2(f + φα)
[F2(f + φα) − L(f)2

]
.

By Parseval’s relation we have
∑

α∈Fn
2
F2(f + φα) = 22n. It then follows from

Lemma 2 that I(f) = 2n(V(f) − 2nL(f)2). By definition I(f) consists of a sum
of terms Tα, α ∈ Fn

2 , which satisfy Tα ≤ 0 if and only if |F(f + φα)| ≤ L(f).
Since |F(f + φα)| ≤ L(f) for any α, all terms Tα in I(f) are non positive, and
thus I(f) ≤ 0. The equality holds if and only if all terms Tα in I(f) vanish.
This only occurs if |F(f + φα)| ∈ {0,L(f)} for all α. ut

Following Definition 3, the sum-of-squares indicator of an almost optimal
function f with n variables then satisfies V(f) ≤ 22n+1 if n is odd, and V(f) ≤
22n+2 if n is even.

Example 1. We consider the following function of degree 5 with 7 variables:

f(x1 , . . . , x7) = x1x2x3x4x5 + x1x3x7 + x1x2 + x3x4 + x5x6 .

This function is almost optimal and its extended Walsh spectrum takes exactly
5 values, 0,±8,±16. Let Ai denote the number of α such that |F(f + φα)| = i.
We have A0 = 40, A8 = 32 and A16 = 56. It follows that V(f) = 29696 < 215.

This function f can be added to a bent function with (n−7) variables for any
odd n ≥ 7. This provides an almost optimal function g with n variables whose
extended Walsh spectrum takes the following 5 values: 0,±2(n−1)/2,±2(n+1)/2.
Moreover, we have A0 = 5 · 2n−4 , A2(n−1)/2 = 2n−2 and A2(n+1)/2 = 7 · 2n−4;
thus V(g) = 22n+1 − 3 · 22n−4.
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The functions whose extended Walsh spectra take at most three values are
very specific since their extended Walsh spectrum is completely determined by
their nonlinearity. In this case the values of the Walsh transform belong to
0,±L(f).

Theorem 2. Let f be a Boolean function with n variables. Assume that the
extended Walsh spectrum of f takes at most three values, 0 and ±L(f). Then
L(f) = 2i with i ≥ n/2 and

#{α ∈ Fn
2 , |F(f + φα)| = L(f)} =

22n

L(f)2
= 22n−2i ;

#{α ∈ Fn
2 , |F(f + φα)| = 0} =

2n(L(f)2 − 2n)
L(f)2

= 2n − 22n−2i .

Moreover, the degree of f is less than or equal to n − i + 1.

Proof: Since F2(f+φα) lies in {0,L(f)2} for all α ∈ Fn
2 , we have from Parseval’s

relation ∑
α∈Fn

2

F2(f + φα) = L(f)2AL(f) = 22n

where AL(f) = #{α ∈ Fn
2 , |F(f +φα)| = L(f)}. It follows that L(f) = 2i. Since

AL(f) ≤ 2n, we deduce that i ≥ n/2. The upper-bound on the degree of f comes
from the divisibility of the Walsh coefficients [6, Lemma 3]. ut
Note that any Boolean function of degree 2 satisfies the hypotheses of the pre-
vious theorem [14, p. 441]. Theorem 2 now implies that the only almost opti-
mal functions having a three-valued extended Walsh spectrum satisfy L(f) =
2(n+1)/2 when n is odd and L(f) = 2(n+2)/2 when n is even (bent functions have
a two-valued extended Walsh spectrum).

4 Propagation Criterion on Highly Nonlinear Functions

We have pointed out that the nonlinearity of a Boolean function provides an
upper bound on its sum-of-squares indicator, i.e., on the second moment of the
auto-correlation coefficients. We now show that it also gives a lower bound on
the number of zero auto-correlation coefficients.

Proposition 4. Let f be a Boolean function of degree d with n variables and
let EPC(f) = {α ∈ Fn

2 , F(Dαf) = 0}. Then

|EPC(f)| ≥ 2n − 1 − 2n−4−2bn−2
d−1 c (L(f)2 − 2n

)
.

Proof: Since any derivative Dαf of f is a function of degree (d−1) with a linear
structure, F(Dαf) is divisible by 2b

n−2
d−1 c+2 [16]. We then deduce

V(f) =
∑

α 6∈EP C(f)

F2(Dαf) = 22n +
∑

α 6∈EP C(f),α 6=0

F2(Dαf)

≥ 22n + (2n − 1 − |EPC(f)|)22bn−2
d−1 c+4
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We know from Theorem 1 that V(f) ≤ 2nL(f). We therefore deduce the expected
result. ut

This bound is essentially relevant for functions having a high nonlinearity and
a low degree. For instance we deduce that almost optimal functions of degree 3
satisfy |EPC(f)| ≥ 2n−2 − 1 when n is even and |EPC(f)| ≥ 2n−1 − 1 when n is
odd.

Corollary 1. Let n be an odd integer. Let f be an almost optimal function of
degree 3 with n variables. Then there exists a permutation π of Fn

2 such that f ◦π
satisfies PC(1) unless there exists an affine subspace H of Fn

2 of codimension 1
such that F2(Dαf) = 2n+1 for any α ∈ H.

Proof: It follows from Proposition 3 that f can be transformed into a function
satisfying PC(1) if EPC(f) has rank n. Since the previous theorem implies that
|EPC(f) ∪ {0}| ≥ 2n−1, EPC(f) has full rank except if EPC(f) ∪ {0} is an
hyperplane of Fn

2 , i.e., a linear subspace of codimension 1. In this case, the lower
bound on the size of EPC (f) is achieved. It is clear from the proof of the previous
theorem that this occurs if and only if V(f) = 22n+1 and F2(Dαf) = 2n+1 for
any nonzero Fn

2 \ EPC (f). ut
This corollary therefore provides a fast algorithm for obtaining almost optimal
functions of degree 3 which satisfy PC(1) when the number of variables is odd.

5 Walsh Spectrum of Boolean Functions with a Linear
Structure

Theorem 1 also enables us to characterize almost optimal functions which have
a linear structure.

Theorem 3. Let f be a Boolean function with n variables. Assume that f has
a linear space V of dimension k ≥ 1. Then

L(f) ≥ 2
n+k

2

with equality if and only if f satisfies the propagation criterion with respect to
Fn

2 \ V .
In this case, k and n have the same parity and f has a three-valued extended

Walsh spectrum.

Proof: If f has a linear space of dimension k, the sum-of-squares indicator
satisfies

V(f) = 22n+k +
∑
α 6∈V

F2(Dαf) ≥ 22n+k .

Thus L(f) ≥ 2(n+k)/2 according to Theorem 1 with equality if and only f has a
three-valued extended Walsh spectrum and L(f) = 2(n+k)/2. This implies that
n and k have the same parity. ut
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Corollary 2. Let n be an odd integer and let f be a Boolean function with
n variables. The following assertions are equivalent:

(i) f is almost optimal and it has a linear structure.
(ii) there exists a linear permutation π of Fn

2 such that f ◦π satisfies PC(n−2).
(iii) there exists a linear permutation π of Fn

2 such that f ◦π satisfies PC(n−1).

Proof: Carlet [7, Prop. 1] proved that the second and third assertions are equiv-
alent. Moreover, any function satisfying PC(n − 1) has a linear structure e and
all its derivatives with respect to direction α 6∈ {0, e} are balanced. The previous
theorem then proves the equivalence with the first assertion. ut

The extended Walsh spectrum of an almost optimal function which has a
linear structure is then completely determined unless the number of variables
is even and the linear space has dimension 1. We now give an example of this
situation:

Example 2. Let f1 and f2 be the following almost optimal functions with 8 vari-
ables:

f1(x1, . . . , x8) = x1x2x3x4x5 + x1x3x7 + x1x2 + x3x4 + x5x6 + x8 ,

f2(x1, . . . , x8) = x1x3x4x6 + x4x6x7 + x1x2 + x3x4 + x5x6 + x8 .

Both of these functions have a linear space of dimension 1. From Example 1 we
know that f1 has a 5-valued extended Walsh spectrum and V(f1) = 22n+2 −
3 · 22n−3. On the other hand f2 has a 3-valued extended Walsh spectrum and
satisfies V(f2) = 22n−2.

6 Functions Satisfying the Propagation Criterion with
Respect to a Linear Subspace

The previous 3 sections have shown that almost optimal functions generally have
good propagation characteristics regarding all indicators. We now conversely fo-
cus on the Walsh spectra of the Boolean functions f which have the following
remarkable propagation property: f satisfies the propagation criterion with re-
spect to any nonzero element of a linear subspace of Fn

2 of codimension 1 or 2.

Proposition 5. Let V be a linear subspace of Fn
2 of dimension k. Let V ⊥ denote

its dual, i.e., V ⊥ = {x ∈ Fn
2 , x · y = 0 for all y ∈ V }. For any Boolean function

f with n variables, we have∑
α∈V

F2(f + φα) = 2k
∑

β∈V ⊥
F(Dβf) .

Proof: We deduce from Lemma 1:∑
α∈V

F2(f + φα) =
∑
α∈V

∑
β∈Fn

2

(−1)α·βF(Dβf)

=
∑

β∈Fn
2

F(Dβf)

(∑
α∈V

(−1)α·β
)

= 2k
∑

β∈V ⊥
F(Dβf)
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since
∑

α∈V (−1)α·β equals 2k if β ∈ V ⊥ and it equals 0 otherwise. ut
We first consider the case where a function f with n variables satisfies the

propagation criterion with respect to any β 6= 0 belonging to an hyperplane. We
will use the following well-known lemma due to Jacobi (see [8, Ch. VI]):

Lemma 3. Let n be an integer, n > 2, and let X and Y be two even integers.
Then the condition X2 + Y 2 = 2n+1 implies

– if n is even, then X2 = Y 2 = 2n ;
– if n is odd, then X2 = 2n+1 and Y = 0 – or vice-versa.

For odd values of n, the functions with n variables having balanced deriva-
tives Dβf for every nonzero β in an hyperplane can be characterized as follows:

Theorem 4. Let n be an odd integer, n > 2, and f be a Boolean function with
n variables. Then the following properties are equivalent.

(i) There is an hyperplane H ⊂ Fn
2 such that f satisfies the propagation crite-

rion with respect to H \ {0}.
(ii) f has a three-valued extended Walsh spectrum, L(f) equals 2(n+1)/2 and

there is some a ∈ Fn
2 such that

∀β ∈ Fn
2 , F2(f + φβ) 6= F2(f + φβ+a) .

(iii) There is a linear permutation π of Fn
2 such that f ◦ π(x1, . . . , xn) = (1 +

xn)g + xnh where both g and h are bent functions with (n − 1) variables.

Proof: (i) ⇒ (ii) . Let a ∈ Fn
2 be such that H = {x ∈ Fn

2 , a · x = 0}.
Proposition 5 gives for any β ∈ H

F2(f + φβ) + F2(f + φβ+a) = 2
∑
α∈H

F(Dα(f + φβ)) .

Since Dα(f + φβ) = Dα(f) + α · β, we have

F2(f + φβ) + F2(f + φβ+a) = 2
∑
α∈H

(−1)α·βF(Dαf) = 2F(D0f) = 2n+1 .

From Lemma 3, we deduce that, for any β ∈ H , F2(f +φβ) = 2n+1 and F2(f +
φβ+a) = 0, or vice-versa. It then follows that, for any β ∈ Fn

2 , F(f +φβ) belongs
to {0,±2(n+1)/2} and that F2(f + φβ) 6= F2(f + φβ+a).

(ii) ⇒ (iii). Let (e1, . . . , en) denote the canonical basis of Fn
2 . Let π be a linear

permutation of Fn
2 such that π−1(a) = en. Assertion (ii) gives for any β ∈ Fn

2 ,

F2(f ◦ π + φβ) + F2(f ◦ π + φβ+en) = 2n+1 . (1)

For any β in the hyperplane spanned by e1, . . . , en−1, φβ does not depend on xn.
We then have φβ(x1, . . . , xn) = φ(x1, . . . , xn−1) where φ describes the set of all
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linear functions with (n − 1) variables when β varies. Using the decomposition
f ◦ π(x1, . . . , xn) = (1 + xn)g + xnh, we obtain

F(f ◦ π + φβ) = F(g + φ) + F(h + φ) and
F(f ◦ π + φβ+en) = F(g + φ) − F(h + φ) .

Equation (1) now gives

F2(g + φ) + F2(h + φ) =
1
2
(F2(f ◦ π + φβ) + F2(f ◦ π + φβ+en)

)
= 2n .

We deduce from Lemma 3 that, for any linear function φ, both F2(g + φ) and
F2(h + φ) equal 2n−1, and thus that g and h are bent.

(iii) ⇒ (i). Let H ′ be the hyperplane spanned by e1, . . . , en−1. For any α ∈ H ′,
Dα(f ◦ π) can be decomposed as

Dα(f ◦ π)(x1, . . . , xn) = (1 + xn)Dαg(x1, . . . , xn−1) + xnDαh(x1, . . . , xn−1) .

If g and h are bent, the derivatives Dαg and Dαh are balanced for any α ∈ H ′,
α 6= 0. It follows that Dα(f ◦ π) is balanced and thus Dαf is balanced for any
nonzero α in π(H ′). ut
Remark 1. Assertion (iii) can actually be generalized. For any vector α ∈ Fn

2 ,
the restrictions of a Boolean function with n variables to Hα = {x ∈ Fn

2 , α ·x =
0} and to its complementary set can be identified with Boolean functions with
(n − 1) variables. Moreover, α 6∈ Hα if and only if

∑n
i=1 αi is odd. In this case,

Fn
2 is the direct sum of Hα and H⊥

α . Exactly as in the previous theorem, we can
prove that if f satisfies (i) then for any α ∈ Fn

2 such that
∑n

i=1 αi is odd, there
exists a linear permutation π of Fn

2 such that both restrictions of f to Hα and
to its complementary set are bent.

When the number of variables is even, we obtain a similar result which pro-
vides new characterizations of bent functions. The detailed proof, which relies
on the same arguments as the previous one, can be found in [4].

Theorem 5. Let n be an even integer, n > 2, and f be a Boolean function with
n variables. Then the following properties are equivalent.

(i) There is an hyperplane H ⊂ Fn
2 such that f satisfies the propagation crite-

rion with respect to H \ {0}.
(ii) For any hyperplane H ⊂ Fn

2 , f satisfies the propagation criterion with re-
spect to H \ {0}.

(iii) f is bent.
(iv) f(x1, . . . , xn) = (1 + xn)g + xnh where both g and h are almost optimal

functions with (n − 1) variables having a three-valued extended Walsh spec-
trum and, for any linear function φ with (n − 1) variables, we have

F2(g + φ) 6= F2(h + φ) .
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As pointed out in the remark following Theorem 4, Property (iv) also holds
if we consider the decomposition of a bent function with respect to any vector
α such that

∑n
i=1 αi is odd. Note that this theorem is of interest for effective

purposes: for checking that a function f is bent it is sufficient to compute the
F(Dαf) for α in some hyperplane.

Similar techniques provide the following result for functions satisfying the
propagation criterion with respect to a linear subspace of codimension 2.

Theorem 6. Let f be a Boolean function with n variables, n > 2. Assume that
there exists a linear subspace V ⊂ Fn

2 of codimension 2 such that f satisfies the
propagation criterion with respect to V \ {0}.

– If n is odd, then f is an almost optimal function with a three-valued extended
Walsh spectrum and there is a linear permutation π of Fn

2 such that

f ◦ π(x1, . . . , xn) = (1 + xn−1)(1 + xn)g00 + xn−1(1 + xn)g10

+(1 + xn−1)xng01 + xn−1xng11

where all gij are almost optimal functions with (n − 2) variables having a
three-valued extended Walsh spectrum.

– If n is even, then f is either bent or it satisfies L(f) = 2(n+2)/2 and its
Walsh coefficients belong to {0,±2n/2,±2(n+2)/2}. Moreover, there is a linear
permutation π of Fn

2 such that

f ◦ π(x1, . . . , xn) = (1 + xn−1)(1 + xn)g00 + xn−1(1 + xn)g10

+(1 + xn−1)xng01 + xn−1xng11

where the Walsh coefficients of all gij belong to {0,±2(n−2)/2,±2n/2}.

Converses are not valid in Theorem 6: for odd n, there exist some functions
which are not almost optimal and whose restrictions are almost optimal and
have a three-valued extended Walsh spectrum. Moreover, the set of all functions
satisfying the propagation criterion with respect to a subspace of codimension 2
does not contain all almost optimal functions with a three-valued extended Walsh
spectrum.

Example 3. Let f(x1, . . . , x7) = x1x2x3x4+x1x3x5x6+x1x2x3+x1x3x7+x1x2+
x3x4 + x5x6. This almost optimal function has a three-valued extended Walsh
spectrum but the set {α ∈ F 7

2 ,F(Dαf) = 0} ∪ {0} does not contain any linear
space of dimension 5.

Theorems 4 and 6 can be used for generalizing some results given in [31]: any
Boolean function with an odd number of variables which has at most 7 nonzero
auto-correlation coefficients is almost optimal and it has a three-valued extended
Walsh spectrum. This result does not hold anymore when f has 8 nonzero auto-
correlation coefficients:
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Example 4. For any odd n ≥ 5, the function

f(x1, . . . , xn) = x2x3x4x5 + x1x4x5 + x3x5 + x2x4 + g(x6, . . . , xn) (2)

where g is any bent function with (n−5) variables, is such that {α∈Fn
2 ,F(Dαf) 6=

0} = Span(e1, e2, e3). This function satisfies L(f) = 2(n+1)/2 but its extended
Walsh spectrum has exactly 5 values, 0,±2(n−1)/2,±2(n+1)/2. Moreover, its sum-
of-squares indicator is V(f) = 22m−3 [1]. Since the bent function g can take
any degree less than or equal to (n − 5)/2, the function defined in (2) can be
obtained for any degree d, 4 ≤ d ≤ (n − 5)/2. Other almost optimal functions
whose extended Walsh spectra have more than 3 values can be found in [10,11].

7 Correlation-Immunity of Boolean Functions with a
Three-Valued Extended Walsh Spectrum

We now show that most functions with a three-valued extended Walsh spectrum
can be easily transformed into a 1-resilient function, i.e. into a function which
is balanced and first-order correlation-immune. Since the values of the extended
Walsh spectrum are symmetric with respect to 0, if the extended Walsh spectrum
of a function has exactly three values, then one of these values is 0. Such a
function can therefore be transformed (by addition of a linear function) into a
balanced function which have the same extended Walsh spectrum.

Theorem 7. Let f be balanced Boolean function with n variables. Assume that
its extended Walsh spectrum takes three values. Then there exists a linear per-
mutation of Fn

2 such that f ◦ π is 1-resilient if and only if there is no linear
permutation π′ of Fn

2 such that f ◦ π′ satisfies PC(n − 1).

Proof: Recall that Proposition 3 asserts that f can be transformed into a 1-
resilient function if and only if ECI(f) has rank n. We know from Theorem 2
that L(f) = 2i for some i ≥ n/2 and that the number of zero Walsh coefficients
of f is |ECI(f)| = 2n − 22n−2i. Since f is balanced, it can not be bent and
thus i ≥ (n + 1)/2. It follows that |ECI(f)| ≥ 2n−1 with equality if and only
if i = (n + 1)/2. We obviously deduce that ECI(f) has full rank when L(f) >
2(n+1)/2. Let us now assume that n is odd and L(f) = 2(n+1)/2. The only case
where ECI(f) does not have full rank is when it is an hyperplane of Fn

2 . Let
{0, a} = ECI(f)⊥. Proposition 5 applied to ECI(f) leads to

0 =
∑

α∈ECI (f)

F2(f + φα) = 2n−1 (F(D0f) + F(Daf)) = 2n−1(2n + F(Daf)) .

Thus F(Daf) = −2n; f is then an almost optimal function which has a linear
structure. From Corollary 2 we deduce that f can be transformed into a function
satisfying PC(n − 1).

Conversely, if there is a linear permutation π such f ◦ π satisfies PC(n − 1)
then L(f) = 2(n+1)/2 and f has a linear structure a. We now apply Proposition 5
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to H = {0, a}⊥:∑
α∈H

F2(f + φα) = 2n−1(2n + F(Daf)) = 0 or 22n .

Since by hypothesis f ◦ π is balanced, we have that∑
α∈H

F2(f + φα) ≤ L(f)2(2n−1 − 1) < 22n .

Thus
∑

α∈H F2(f + φα) = 0. It follows that F(f + φα) = 0 for all α ∈ H . Since
|ECI(f)| = 2n−1, we deduce that ECI(f) = H and thus it has rank n − 1. ut
For any odd n, 1-resilient functions with n variables having nonlinearity 2n−1 −
2(n−1)/2 can then be easily constructed. According to Theorem 5 it is sufficient
to consider the restriction of a bent function with (n + 1) variables to any hy-
perplane {x ∈ Fn+1

2 , α · x} where
∑n+1

i=1 αi is odd. We then only have to check
that this function has no linear structure and we transform it by addition of an
appropriate linear function and by composition with a linear permutation.

Corollary 3. Let n be an odd integer. For any integer d, 2 ≤ d ≤ (n+1)/2, there
exists a 1-resilient function with n variables having degree d and nonlinearity
2n−1 − 2(n−1)/2.

Proof: We consider the following bent function with (n + 1) variables which
belongs to the Maiorana-McFarland class [9]:

∀(x, y) ∈ F
n+1

2
2 × F

n+1
2

2 , f(x, y) = x · π(y) + h(y)

where h is any Boolean function with (n+1)/2 variables and π is the permutation

of F
n+1
2

2 identified with the power function x 7→ xs over F
2

n+1
2

. We choose for
example s = 2k + 1 with k < (n + 1)/2 and n+1

2 gcd(k,(n+1)/2) odd, or s = 7 when
(n + 1) is power of 2. Let g be the restriction of f to the hyperplane {x ∈
Fn+1

2 , x1 = 0}. The restriction of f has no linear structure when all derivatives
of f have degree at least 2. Here we have for any (α, β),

D(α,β)f(x, y) = α · π(y + β) + x · (π(y + β) + π(y)) + Dβg(y) .

Our choice for permutation π implies that the degree of D(α,β)f is at least 2
when (α, β) 6= (0, 0) (see e.g. [19]). It follows that g has no linear structure; it
can therefore be transformed into a 1-resilient almost optimal function. Since
there is no restriction on h, h can be chosen of any degree less than or equal to
(n + 1)/2. Thus g can take any degree d, 4 ≤ d ≤ (n + 1)/2. Note that such
almost optimal functions of degree 2 and 3 can easily be constructed from the
functions with 5 variables given in [1]. ut

Note that Sarkar and Maitra [24] provide a construction method for 1-resilient
functions with n variables having nonlinearity 2n−1−2(n−1)/2 and degree (n−2),
for any odd n ≥ 5.
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