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On Cryptographic Properties of the Cosets ofR(1; m)
Anne Canteaut, Claude Carlet, Pascale Charpin, and Caroline Fontaine

Abstract—We introduce a new approach for the study of weight
distributions of cosets of the Reed–Muller code of order1. Our ap-
proach is based on the method introduced by Kasami in [1], using
Pless identities. By interpreting some equations, we obtain a neces-
sary condition for a coset to have a “high” minimum weight. Most
notably, we are able to distinguish such cosets which have three
weights only. We then apply our results to the problem of the non-
linearity of Boolean functions. We particularly study the links be-
tween this criterion and the propagation characteristics of a func-
tion.

Index Terms—Boolean function, derivation, nonlinearity, prop-
agation criterion, Reed–Muller codes.

MAIN NOTATION

• is the set of Boolean functions of variables;
• , is the codeword of length equal to the

ordered list of all values of ; and denote, respectively,
the zero codeword and the all-one codeword;

• denotes the usual dot product between two vectorsand
;

• denotes the dual of a subspace , i.e.,

• is the subset of consisting of all linear
functions

• denotes the kernel of ;
• , , , , and are, respectively, de-

fined by (1), Definition II.1, (5), and (6);
• is the finite field of order ;
• is the group algebra ;
• is the set of two-dimensional affine subspaces of;
• is the set of two-dimensional linear subspaces;
• is the linear space spanned by .

I. INTRODUCTION

T HE general framework of this paper is double: coding
theory (and in particular the class of Reed–Muller codes)

on one hand and symmetric cryptography (block ciphers and
stream ciphers) on the other hand. In both of these general
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domains, the Boolean functions defined on the set of all
binary words of length play an important role. Some open
problems on Boolean functions are of most interest in both
fields. One of them is the determination of those functions
which lie at large Hamming distance from the Reed–Muller
code of order , . This code can be viewed as the
set of all affine forms on the -dimensional vector space

(an affine form is the sum of a linear form and of one of
the constants or ). The Hamming distance between two
Boolean functions is equal to the number of words of at
which they take different values. The maximum Hamming
distance between a general Boolean function and is
the covering radius of this code. Its value is known only when

is even or when .
The covering radius of a code is an important parameter,

which can be used for analyzing and improving the decoding
algorithms devoted to this code. The knowledge of the covering
radius of has therefore theoretical and practical im-
portance for coders. It is also a serious challenge for cryptogra-
phers: the design of conventional cryptographic systems relies
on two fundamental principles introduced by Shannon [2]:con-
fusionanddiffusion. The distance from a Boolean function to
the set of all affine functions is called thenonlinearityof the
function and it allows to quantify some kind of confusion. More
precisely, the Boolean functions used in block ciphers must have
a large nonlinearity to resist linear attacks [3]; in stream ciphers,
the use of highly nonlinear Boolean functions prevents fast cor-
relation attacks [4]. The knowledge of the maximum nonlin-
earity of Boolean functions is therefore necessary to appreciate
(together with other criteria) the practical interest of a given
Boolean function for cryptographic applications. Unfortunately,
the covering radius of for odd is unknown. We

know only that it lies between and
(the lower bound can be slightly improved for ). One
aim of this paper is studying, for odd, those functions whose
nonlinearities lie between these two numbers.

For even, the situation seems better since we know the
exact value of the covering radius of :
(except that thebentfunctions, whose nonlinearity is maximum,
are not all determined and that their determination is considered
as a difficult open problem). However, from a cryptographic
point of view, the case even is in fact not better than the case

odd, since bent functions are notbalanced(i.e., their values
are not uniformly distributed); bent functions are then usually
improper for use in cryptosystems. For this reason, it is also nec-
essary to study those functions which have large but not optimal
nonlinearity, say between and . This
is what we do also in this paper. Among these functions there
are some balanced functions. The maximum nonlinearity of bal-
anced functions is unknown for any .
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We study also other cryptographic criteria related to the no-
tion of diffusion. Thestrict avalanche criterion(SAC) was in-
troduced by Webster and Tavares [5] and this concept was gen-
eralized into thepropagation criterion(PC) by Preneel [6] (see
also [7]). The SAC, and its generalizations, are based on the
properties of the derivatives of Boolean functions. These prop-
erties describe the behavior of a function whenever some input
coordinates are complemented. We want to point out the re-
lations between the propagation criterion and the nonlinearity.
These two criteria are of most interest and form the subject of
many current works. The general idea we develop, with these
aims, is that the whole Fourier spectra of the functions have to be
taken in account. This point of view leads us to consider both the
Fourier spectrum of any given Boolean function and the coset
of the Reed–Muller code of ordergenerated by the associated
codeword. Therefore, several representations are proposed, in
particular in the context of group codes, the aim being to have
in hand all useful tools.

The paper is organized as follows. Section II is devoted to
the presentation of the main tools. We first give basic properties
on Boolean functions on where the functions are implicitly
represented by theiralgebraic normal forms. The study of al-
gebraic properties of Boolean functions ofvariables leads us
to the study of binary codewords of length and of their re-
lation with Reed–Muller codes. On the other hand, we need to
use any basis in and to treat some permutations on . So
the codewords are viewed as formal sums in the binary group
algebra of the elementary -group . Section II is
also devoted to the derivation and its significance considering
the operations in .

These tools are applied in Section III, where we study the
maximal odd-weighting subspaceof a given Boolean function

. This concept was recently introduced in [8] and was shown
to be linked with the nonlinearity of . By replacing this con-
cept in the ambient space of Reed–Muller codes, we prove the
existence of maximal odd-weighting subspaces, for any(The-
orem III.1).

Section IV is devoted to the study of weight distributions
of cosets of . By Theorem IV.1 we establish general
results on the weight polynomial of any binary linear code of
length and dimension . We introducealmost-optimal
cosets of which correspond to functions with a
high nonlinearity (see Definitions II.1 and IV.1). Considering
the code , where is any coset of ,
Corollary IV.1 is then deduced: we show that it is possible
to distinguish among almost-optimal cosets those which have
three weights only, thethree-valued almost-optimal cosets.
The next subsection is an extension of Corollary IV.1. We
exhibit as an indicator of the nonlinearity, the numberof
codewords of weight in the dual code. We are more explicit
about the computation of for cosets which are contained in
the third-order Reed–Muller code .

Note that, when is odd, the main open problem is the de-
termination of almost-optimal cosets of with unknown
weight distributions. But the context is similar foreven, if we
consider the problem of the nonlinearity of balanced Boolean
functions.

Section V deals with the propagation criterion and its rela-
tions with the nonlinearity. A function is said to be almost-op-
timal (resp., three-valued almost-optimal) if the associated coset
of satisfies this property.

In Section V-A, we study thesum-of-squares indicator
of a Boolean function , which measures theglobal

avalanche criterion(GAC)—introduced in [9]. We first give
an upper bound on in the case where is almost-optimal
(Proposition V.2). This result will have a lot of applications in
the sequel of the paper. For instance, we show in this section
that an almost-optimal function of degreemust have “many”
balanced derivatives (Corollary V.1).

We next study the restrictions of a Boolean functionto each
coset of any linear subspace of (Section V-B). The main
result is given by Theorem V.1, where we establish a relation
between the Fourier spectrum ofand the Fourier spectra of its
restrictions to these subspaces.

In Section V-C, we examine the cases where the derivatives
of a given function are balanced for any belonging

to a subspace of codimension 1 or 2. These cases allow us
to obtain some characterizations of bent functions and of
three-valued almost-optimal functions. Theorem V.3 is most
surprising since it provides a full explanation of links between
bent functions and three-valued almost-optimal functions.

In the last section, we consider Boolean functions whose non-
balanced derivatives exist when belongs to a subset of
rank only. In this case, we can be more precise, by ap-
plying the results of Section V-B. We notably characterize the
almost-optimal functions which have a linear structure (Corol-
laries V.4 and V.5). By Theorem V.5, we show that the links
between such functions and some of their decompositions are
of most interest.

II. DEFINITIONS AND BASIC PROPERTIES

The distance between two codewords will always be
the Hamming distance. Theweight of any binary vector

will be the Hamming weight

The support of , denoted by , is the set of all labels
such that .

A. Boolean Functions

We denote by the set of Boolean functions of variables.
Let ; thus, is a function from to . The classical
representation of is its algebraic normal form

The degreeof , denoted by , is the maximal value of
such that . On the other hand, let us denote by

the codeword equal to the list of all values , .
Then we denote by the mapping
related to theFourier transform(see below). It is also related to
the weight of the codeword

(1)
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We denote by , , the linear function .
Note that the algebraic normal form of is

We now give a list of basic definitions and properties; we keep
the above stated notation.

Definition II.1: When , the function is said to be
balanced. The mapping is called the
Fourier transformof . The multiset

is called theFourier spectrumof . Thenonlinearity of
is the minimum Hamming distance between and all code-

words associated to the affine functions and . It is
equal to , where

Note that we are not only interested in the values appearing
in the Fourier spectrum, but also in the number of times they
occur. The multiset is often called theextended
Walsh spectrum (see, for instance, [10]).

The nonlinearity of being the minimum Hamming weight
of the coset we have where

is thecovering radiusof :

When is even, it is known that
and that the Fourier spectrum of functions of maximal

nonlinearity is unique [11]. In particular, it does not contain
(hence those functions are not balanced).

Definition II.2: A Boolean function , even, is said
to be bent when

The Fourier spectrum of such a function is .

The case where is odd is completely different. A recent
review is given in [12]. We have [13]

For is equal to . But
the exact lower bound is not known for .

A function has agood nonlinearityif its nonlinearity is large,
i.e., if is small. We say that is small when

This corresponds to the case where

The SAC was generalized into thepropagation criterion(PC)
by Preneel [6]. More recently, Zhang and Zheng introduced
theglobal avalanche criterion(GAC), in order to measure the
global avalanche characteristics of cryptographic functions

[9]. These criteria are based on the properties of the functions
, .

Definition II.3: Let be a Boolean function on and
. We denote by the derivative of with respect to

i) The linear spaceof is the linear subspace of those
such that is a constant function. Such, , is
said to be a linear structure of[14].

ii) Let . The function satisfiesPC with respect to
if for all the function is balanced.

iii) The function is said to have a good GAC if
is zero or is very close to zero for most nonzero.

We now recall some fundamental formulas. Parseval’s relation

(2)

and a formula which states the link betweenand its derivatives

(3)

This was proved by Carlet in [15] and [16], giving particularly

(4)

In [9], the authors propose two indicators related to the GAC:
we shall denote by theabsolute indicator

(5)

and by the second moment of the autocorrelation coeffi-
cients called thesum-of-squaresindicator

(6)

Note that obviously , since . The
next formula provides a relation between and the Fourier
spectrum of , i.e., the values , .

Proposition II.1: For any Boolean function , we have

providing, for , a relation between the Fourier spectrum
of and the sum-of-squares indicator defined by (6)

(7)

Proof: Let
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According to (3), we have for all

where

unless . Then we deduce, for any

We complete the proof by using the definition of the sum-of-
squares indicator given by (6).

Our purpose is to point out that there are interesting connec-
tions between the GAC and the nonlinearity. Note, as a trivial
example, that the bent functions—i.e., the functions which have
the best nonlinearity for even—have a perfect
GAC, since their derivatives are all balanced.For such a func-
tion , we have and . Moreover these
equalities hold for bent functions only.

On the other hand, a functionwhich has a linear space
satisfies

(8)

(see Definition II.3). Hence, takes the maximal value
and one can say thathas not a good GAC. We obviously de-
duce a lower bound for .

Lemma II.1: A function , which has a linear spaceof di-
mension , , satisfies (8) and is such that .

However, the nonlinearity of a functionwhich has a linear
structure is not always so bad. We will show later that there
exist such functions satisfying for even
and for odd (see Corollaries V.4 and V.5).

For clarity, we notice that and are invariant if
we change into : since is a constant function,
we have

for any

implying the next property.

Lemma II.2: For any , we have

and

We want to end this section with few elements onresilient func-
tions. In this paper, we do not emphasize the criterion of corre-

lation immunity. However, this concept is strongly related to the
properties of balanced functions and thus with our next results
(see [10, Sec. 7]).

Definition II.4: Let be any basis of .
A function is said to becorrelation-immune of order ,

, with respect to if for any vector
in such that , the function

is balanced. The function is said to beresilient of order if it
is additionally balanced.

We now recall the simplest link between nonlinearity and re-
siliency.

Proposition II.2: Let . Let us denote by the number
of ’s in the Fourier spectrum of. Then we have

with equality if and only if the values occurring in the Fourier
spectrum of lie in .

Most notably, this implies:

• for even, if then ,
with equality if and only if the values occurring in the
Fourier spectrum of lie in ;

• for odd, if then , with
equality if and only if the values occurring in the Fourier
spectrum of lie in .

Proof: We simply use Parseval’s relation (see (2)). Let
be the set of all such that is not balanced. Then we
have

Since , we deduce that

i.e.,

Equality in the above formula holds if and only if all nonzero
values of the Fourier spectrum are equal to .

Remark II.1: By the previous property we give a significant
upper bound on the number of balanced functions , when

has a good nonlinearity. This contradicts a high order of re-
siliency.

B. Product and Derivation

The study of properties of Boolean functions ofvariables
leads us to the study of binary codewords of length. More
generally, any set of Boolean functions provides a set of code-
words and can be studied by means of tools of coding theory.



1498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001

The main concern is with Reed–Muller codes as we first state
in the next definition.

Definition II.5: The Reed–Muller code of length and
order , , denoted by , is the binary code of
length composed of the codewords where is a Boolean
function of variables whose degree is less than or equal to.

We described above some properties of by taking the
standard basis in . It is clear that any basis can be chosen.
From now on, we will consider that is a function from

to where is viewed as an additive group. We will fix
a basis in when it will be necessary. However, we have to
mention that generally, for cryptographic applications, the basis
is fixed and the properties have to be considered relatively to the
chosen basis.

The concept of “derivative” can be seen as a multiplication in
a group algebra, the ambient space of binary codes of length.
We begin by recalling some definitions and properties. An ex-
tensive study was made by Assmus and Key in [17] and Charpin
in [18] and [19]; we only give basic elements for the use of the
algebraic tools which are provided here.

Definition II.6: Let us denote by the group algebra
. The algebra is the set of all binary words of length

; such a word is a formal polynomial

The operations are

where , , , . Note that the multiplica-
tive unit is . The all-one vector and the null vector will be
denoted by and , respectively. By convention, is denoted
. An ideal of is a subgroup (and, thus, a subspace) invariant

under the multiplication by , for some . The algebra has
only one maximal ideal, called itsradical, which is the set of all
words of even weights

Thus, we can define the ideals , , generated
by the products , , providing the decreasing se-
quence

where and . Recall the fundamental
result, due to Berman [20] (see also [17, Theorem 4.2]).

Theorem II.1: The powers of the radical of the algebraare
the Reed–Muller codes. More precisely, for any,

.

In the sequel, we will generally use the notationwhen we
have to handle some multiplications in. Recall that is the
subspace generated by the codewords whose supports are the
-dimensional subspacesof [17, Corollary 3.11]

(9)

The so-calledJenning’s Basisprovides a basis of containing
a basis of each as we recall in the next proposition—a proof,
for any characteristic, can be found in [17, p. 1299].

Proposition II.3: Let be a basis of . Then
the set

is a basis of . Moreover, for each, , the set

is a basis of , the Reed–Muller code of order .
Let . The associated codeword of is written as

follows in :

So we clearly have

(10)

On the other hand, for any , we have

(11)

showing that is the associated codeword of .
More generally, the concept ofth-derivative, given in the

next definition, is actually a multiplication in the algebra.

Definition II.7: Let be a -dimensional subspace of .
The th-derivativeof with respect to is the function

where is any basis of .

Proposition II.4: Let be a -dimensional subspace of ;
denotes any basis of. Let be any func-

tion of degree . Set . Then
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The degree of is less than or equal to . When , is
the zero function. In particular, the derivative ofwith respect
to has degree at most and corresponds to the product by

in

Proof: We deduce from (11)

Set , the codeword of support . The general
formula is easily obtained by expanding the product . For
instance,

The codeword is in , by definition (see (9)). As-
sume that has degree —this means that the codeword

is in the Reed–Muller code of order. So, from The-
orem II.1, implying that the product is in

, which is the Reed–Muller code of order
. So the degree of is less than or equal to .

In the next section, we will develop a concept directly stem-
ming from the concept of derivation. To end this section we
give some obvious properties and mention an important class
of functions. Note that (resp., ) means that the
function is constant, with associated codeword(resp., ).

Proposition II.5: Let . Then we have the following.

1) If there exists such that then is
balanced.

2) When , is balanced if and only if there exists
such that .

3) When , is balanced if and only if there
exists such that .

Proof: For proving the first property, it is sufficient to no-
tice that implies that . We
recall the proof of the second property in Appendix I. The third
property is then deduced, since has degree at mostwhen

.

Example II.1: The above property allows us to characterize
a large class of balanced functions by means of their associated
codewords. Let be any subspace of codimensionin .
The weight of the following codewordsis :

and

Indeed, is balanced for any, since

The corresponding functions have a linear structure.

The partially bent functionswere introduced by Carlet in
[16]. These functions are quadratic-like functions, in the sense

that the dimension of their linear space is sufficient for deter-
mining their Fourier spectra. With our terminology we obtain
directly, from [16, p. 137], the form of the codewords corre-
sponding to partially bent functions.

Proposition II.6: A Boolean function of variables is said
to bepartially bentif there exists a basis of
such that , where is a bent function on the

-dimensional space for some such
that is even, and is a linear function.

The codewords corresponding to partially bent functions have
the following form:

Note that is the linear space ofand that lies in

. Moreover, is a balanced partially bent functionif and
only if there is such that (see [16, Proposition
2] and Appendix I).

Open Problem II.1:Since any quadratic function is partially
bent, the derivatives of any function of degreeare partially
bent. Characterize a class of functions of degree, , whose
derivatives are all partially bent.

Notice that there exist bent functions whose derivatives are
not all partially bent. Consider, for instance, Maiorana–McFar-
land functions: we identify the elements of , , with
the pairs where and
and we define

where is some bijection from to (with the usual dot
product “ ”) and is some function in . The derivative
of with respect to theth word of weight , , for ,
is equal to theth coordinate function of . Since the -vari-
able function only depends onvariables, its linear space
has dimension at least . Recall that the degree of a par-
tially bent function is at most the half of the codimension of its
linear space [16]. The derivative cannot be partially bent if
the degree of is greater than . This situation occurs, for ex-
ample, if where is identified with the finite field
with elements, and whereis such that
and the binary expansion ofcontains more than ’s. An
example of such is for .

III. M AXIMAL ODD-WEIGHTING SUBSPACES OFBOOLEAN

FUNCTIONS

Zheng, Zhang, and Imai introduced in [8] themaximal odd-
weighting subspaceof a given Boolean function. They indi-
cated the link between this concept and the nonlinearity of.
Replacing their concept in the ambient spaceof Reed–Muller
codes, we deduce additional properties.

Lemma III.1: Let be a -dimensional subspace of . Set
and . We denote by the
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cosets of where . Let and, for each, denote
by the restriction of to . Then the product satisfies

Furthermore,

i) (resp., ) if and only if the weight of is even
(resp., odd) for all , ;

ii) , where is the number of which
have odd weights.

Proof: We have

where . Setting , for each , with
, we obtain

Now

giving the main formula. Note that , for any .
Since is the all-one vector of length and sup-

port , i) and ii) are immediately deduced.

Proposition III.1: Let and . Then

i) lies in if and only if for any subspace
of of dimension , we have:

— i.e., the restriction of to each coset of has an even
weight.

ii) lies in if and only
if and there is a subspaceof of
dimension such that

— i.e., the restriction of to each coset of has an odd
weight.

Proof: Recall that , implying

Remember that any element can be represented with respect to
a Jenning’s Basis(see Theorem II.1 and Proposition II.3).

The code is generated by the codewords whose supports
are the subspaces of dimension [17, Corollary 3.11]. The
dual of is the code , which is generated by the
codewords whose supports are the subspacesof dimension

. Since

we obviously have if and only if the product of with
any generator of is , completing the proof of i).

Assume that . The dual of being , we have
if and only if at least one generator with support,

say , where , satisfies .
Since

we can conclude that , completing the proof of ii).

Now we give the definition of Zhenget al. [8].

Definition III.1: Let be a Boolean function on . Let
be some -dimensional subspace of . Denote by the

restriction of to , i.e., the function on defined by
.

Then is said to be amaximal odd-weighting subspaceof
if the weight of the codeword corresponding to is odd and
the weight of the codeword corresponding to is even for all
subspace which strictly contains .

Using Proposition III.1 we are able to complete this defini-
tion.

Theorem III.1: Let be a Boolean function of degree. Re-
call that denotes the corresponding codeword of. Let be
a -dimensional subspace of and set . Then
we have

a) is a maximal odd-weighting subspace ofif and only
if the product is equal to the all-one codeword; or,
equivalently, if the th-derivative of with respect to ,
say for some basis of , is
equal to the constant function.

b) If is a maximal odd-weighting subspace of, then
. Moreover, there exists at least one-dimensional

maximal odd-weighting subspace of.

Proof: By definition, is a maximal odd-weighting sub-
space of if and only if the weight of the restriction of to
and to any coset of is odd. This is because the set
is a subspace containing and any subspace containingis
a union of an even number of cosets of. In accordance with
Lemma III.1, we obtain: is a maximal odd-weighting sub-
space of if and only if . Since ,
then is the codeword corresponding to (see
Proposition II.4), completing the proof of a).

Since has degree, is in . From
Proposition III.1 ii) and from a), there exists of dimension

which is a maximal odd-weighting subspace of. Moreover,
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from Proposition III.1 i), it is not the case for any of dimen-
sion .

Remark III.1: In their paper, Zhenget al.noticed that if is
a maximal odd-weighting subspace ofof dimension , ,
then . Note that it is simply because (with the
above notation)

Moreover, when , this inequality holds for , for any
, since any second derivative of is .

Note that, according to Proposition II.5, a Boolean function of
degree has a maximal odd-weighting subspace of dimension

as soon as it has a balanced derivative.

IV. THE WEIGHTS OFCOSETS OF THEREED–MULLER CODE

OF ORDER

In this section, we study the nonlinearity through the prop-
erties of weight polynomials of cosets of . To be more
precise, we establish a necessary condition for such a coset to
have a high minimum weight.

A. An Extension of the Results of Kasami

The major result of this section is presented in Theorem IV.1,
providing a new point of view on the characterization of the
weight distributions of the cosets for any . This
result is based on Pless identities, introduced by Pless in [21],
and which are obtained from MacWilliams identities (see also
[22, Ch. 5]).

Let denote an binary linear code, and its dual,
which has as minimum distance. Let us denote by (resp.,

), , the number of codewords of (resp., )
whose Hamming weight is . If , then we have the fol-
lowing Pless identities (see [22, p. 130]):

(12)

In the next theorem, we treat linear binary codesof length
and dimension . Note that we will focus later on the linear
codes , for any .

Theorem IV.1:Let be a positive integer, . Consider
any binary linear code of length , dimension

, and minimum distance. Let us denote by (resp.,
) the number of codewords of weightin (resp., ) and

by the number

(13)

Assume that contains the all-one vector and that is
such that . Then, for any positive integer

, we have

(14)

If then which can be expressed as

(15)

Equality holds in (15) if and only if and if the
weight distribution of is: and we get the
expression shown at the bottom of the page for the other nonzero

’s. Since , the minimum distance of is exactly .
Proof: The proof is based on the study of the numbers

We are particularly interested in and ; according to (12),
we have

which gives, replacing by and by

(16)
In the same way, we obtain
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which finally gives, replacing by and by

(17)

Since the codeword belongs to , we have , for
all , and thus,

Then

for odd

for even
(18)

Thus, we have , and from (17) we deduce

Thus, must satisfy

which implies —i.e., the minimum distance of is .
Now we compute . On one hand, we have by (18)

(19)

On the other hand, we express by means of (16) and
(17). Therefore, we deduce from (19)

Equation (13) implies that the quantity consists of a sum
of terms , , with for every
such that . If then for
every nonzero weight , since . Thus,
if then , which exactly corresponds to
the inequality (15).

Moreover, equality holds in (15) if and only if the values of
such that lie in (i.e., ).

Then . We obtain the values by computing
by means of (16) and (18).

We now come back to the code
, . Note that such a code satisfies the hy-

pothesis of the previous theorem. Indeed, the code contains the
all-one vector and, denoting by (resp., ), , the
number of codewords of (resp., ) of weight , we have
the following proposition.

Proposition IV.1: The code is contained in ;
thus, we have . The codewords of which
have weight are the indicators of two-dimensional affine sub-
spaces of .

Proof: This result comes from well-known properties of
Reed–Muller codes: is the extended
Hamming code and has minimum weight. The codewords of
weight have the form

with (20)

Their supports are two-dimensional affine subspaces (see [22,
Ch. 13, Theorems 4 and 5]). Since , then

, completing the proof.

We focus here on the weight enumerators of cosets of
whose minimum weights are near the optimal value.

Two values of are of most interest: for even and
for odd, corresponding to the following kinds of

cosets.

Definition IV.1: A coset of is said to bealmost-
optimal if its minimum weight is greater than or equal to ,
where for odd , and

for even . It is said to bethree-valuedwhen it has exactly
three nonzero weights.

Proposition IV.2: A coset of is three-valued almost-
optimal if and only if its weight distribution is

for odd and

for even .
Proof: Suppose that a coset has three weights

only. Clearly, these weights lie in . Com-
bining (18) and (16), we obtain

Thus, is a power of . Assume that
is almost-optimal. Then the only possibility for odd is

. When is even, the only possibility for the
coset to have exactly three weights is .

Consider the notation of Theorem IV.1. By replacingby
we obtain the following necessary condition on three-valued

almost-optimal cosets.

Corollary IV.1: If the coset is almost-optimal,
then we have

• if is odd, then ;

• if is even, then .

In both cases, equality holds if and only if is three-
valued almost-optimal.

Proof: We simply apply Theorem IV.1.

• If is odd, we set . As the coset is almost-
optimal, .
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• If is even, we set . As the coset is almost-op-
timal, (where is the minimum distance
of —i.e., the minimum weight of the coset).

Remark IV.1:

1) By taking with even, we obtain cosets
whose minimum weight is only. These cosets
have two weights, , and correspond to
the bent functions. Moreover,

2) It is quite easy to construct three-valued almost-optimal
cosets. Although these cosets are not yet classified, they
are completely known when (see [22, Ch.
14] and a short presentation in Appendix I). We will give
other examples in the next section.

3) Assume that is almost-optimal and that the
upper bound on is not reached. Very little is known
about these cosets and several hard open problems are
involved, as the covering radius of for odd, or
the covering radius of restricted to codewords of
weight for any . Examples of such cosets can be
found in [23] for and in [12] for .

Open Problem IV.1:The dual of the code is a subspace of
of codimension . How can a subspace containing

few codewords of weightbe constructed?

B. Computing

Let us denote by the set of all affine subspaces of of di-
mension and by the subset of of all linear subspacesof

. Recall that , ,
and that is the number of codewords of weightin . In
this subsection, we want to be more explicit about the compu-
tation of . We later apply our results to the cosets which are
contained in .

The codewords of weight in are of type (20). These
codewords have as support an elementof ; they belong to

(i.e., ). In this section, we will denote by
such a codeword. Let , , and

. Then

(21)

The next result is a direct application of Lemma III.1.

Proposition IV.3: For any we denote by ,
, the restrictions of to the cosets of . Then the number

of codewords of weight in can be expressed as follows:

where the codeword is defined by (21). Moreover,

is odd

Proof: Let . Since ,
if and only if is orthogonal to —i.e., the weight of the re-
striction of to is even.

In accordance with Lemma III.1, we have

is odd

where the ’s are the restrictions of to the cosets of . This
implies that the number of cosets such that
is equal to . The value of is obtained by
considering all .

When there are few possible values for , the expres-
sion of becomes simpler. It is especially the case whenis
in .

Corollary IV.2: Let be in . Let us define

•

• .

Then . We have when
.

Proof: As and , is
in —since

So belongs to . When ,
we have implying .

In accordance with Proposition IV.3, we obtain

Remark IV.2: Note that the weight enumerators of the cosets
with are known. For cosets which are

not contained in , the weight enumerators are generally
not known. The study of such cosets contained in is
the first open problem. In this paper, we point out that these
cosets have specific properties. However, it seems difficult to
strengthen any conjecture.

Corollary IV.3: Let with
. Let

and has been defined in the previous corollary. If is al-
most-optimal, we have

• if is odd, then .

• if is even, then .

In both cases, equality holds if and only if is three-valued
almost-optimal.

Proof: Recall that

(22)

implying

Suppose that is almost-optimal. According to Corollary IV.1
we obtain the expected bounds.
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For even, it is easy to find cosets, defined as above, sat-
isfying (see the next example). In
the case where is odd it is not so easy to find cosets satisfying

. Actually, the existence of such cosets
is just proved by Canteaut in [24]; she exhibits almost-optimal
cosets with five weights which are contained in . These
weights are and . However, the determina-
tion of the minimum weights of such cosets remains an open
problem for (see the end of Section V-A for more ex-
planations).

Example IV.1: Let and

The weight distribution of the coset is

and

This coset is almost-optimal with five weights.

V. THE PROPAGATIONCRITERION AND THE NONLINEARITY

We come back to the terminology of Boolean functions but
we will always consider together a given functionof vari-
ables and its associated binary codeword. So we first fix the
terminology for functions which generate a coset
with a high minimum weight (see Definition IV.1 and the fol-
lowing proposition).

Definition V.1: The Boolean function is said to be almost-
optimal if its associated coset is almost-optimal
or equivalently if

• , when is even;

• , when is odd.

The function is said to be three-valued almost-optimal if
its associated coset is three-valued almost-optimal—i.e., its
Fourier spectrum is when is even and

when is odd.

Recall the definition of the so-called property.

Definition V.2: Let be a basis of .
Then satisfies thepropagation criterion of order (PC ,
with respect to if, for any vector in such
that

is balanced.

A. Bounds on the Sum-of-Squares Indicator

From now on, we focus on almost-optimal functions ,
, . Notation is the same as in Theorem IV.1

and its proof: we consider the code

with ; denotes the number of codewords of weight
in , and is defined by (13). Recall that the sum-of-

squares indicator allows to measure the global avalanche
criterion of (see Section II-A, (6)). The next propositions are

in fact corollaries of Theorem IV.1; our aim is to make explicit
the link between two points of view (in terms of codewords and
in terms of functions).

Lemma V.1:Let be any positive integer. Then

Thus, if and only if .
Proof: From (19), we have

According to (18) we obtain

(23)

since where is the weight of
, and

or

Moreover, .
It follows that

Using (7), we deduce that

completing the proof.

Proposition V.1: Let and . Let denote the
number of codewords of weight in . Then

Proof: We simply consider together the formula given in
the previous lemma and (14). So

Hence,

completing the proof.

Proposition V.2: Let be a positive integer, , and
. Assume that is almost-optimal. Then

• if is odd then with equality if and only
if is three-valued almost-optimal;

• if is even then with equality if and only
if is three-valued almost-optimal.

Proof: Since is almost-optimal, the minimum weight
of the coset satisfies
for odd and for even . According to
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Theorem IV.1, this implies for odd and
for even .

From Lemma V.1, replacing by either or
(depending on whether is odd or even), we immediately de-
duce the expected bounds on .

Example V.1:There are many three-valued almost-optimal
functions. Thealmost-bentfunctions provide such functions
(see, for instance, [25]–[28]). Any three-valued almost-optimal
partially bent function is linearly equivalent to (see Proposition
II.6)

where is bent and for odd and for even . For
these functions, and .

It is easy to find almost-optimal functions such that
and , where is defined as above.

These functions have a good (generally not the best) nonlin-
earity but are not three-valued (see Example IV.1, a number of
numerical results in [29], [12] and Proposition V.5).

It is not so easy to obtain almost-optimal functions such
that (implying according
to Proposition V.2). The class of bent functions seems to
be the only known large class. Numerical results are easily
obtained for even (see [30], [12]). When is odd, the only
known such functions are obtained from those given in [31] for

.
Note that there exist non-almost-optimal functionssuch

that .

Example V.2:For one finds in [23] the function

It generates a coset of with weight distribution

and

otherwise. Thus, . Using (7), we obtain
which is strictly less than .

Let be a function of degree. Set the notation

is balanced and

In [10, Proposition 14], we have stated the following relation
between the cardinality of , denoted by , and the value
of .

Proposition V.3: Let be a function of degree. Then

This is of most interest for functions of degree. We obvi-
ously obtain from the previous result and from Proposition V.2
the following corollary.

Corollary V.1: Let a function of degree. So the
following properties hold.

i) When is even then .
Thus, if then .

ii) When is odd then .
Thus, if then .

Therefore, we point out that for almost-optimal functions of
degree , the rank of must behigh. Note that we callrankof

the dimension of the subspace generated by the elements of
(remark that is not, in general, a subspace).

Corollary V.2: An almost-optimal function of degree is
such that the rank of is at least for even and at
least for odd .

When is odd, such a function is PC , unless
is a subspace of codimension. In this case, is three-valued
almost-optimal.

Proof: If is a set of rank then its cardinality is at most
( does not contain). Assume that is almost-optimal.

Clearly, Corollary V.1 provides the lower bounds ( even)
and ( odd) for . When is odd, is either or

.
Assume that is odd. If then

(since is a subspace of codimension), implying
thanks to Corollary V.1 and Proposition V.2. In

accordance with Proposition V.2, is three-valued almost-op-
timal; note that it can be proved by another way, using Theorem
V.2 of Section V-C.

When , it means that there exists a basis of , say
, such that and is balanced, for

all ; so is PC , with respect to .

Note that it is very easy to construct almost-optimal func-
tions of degree , which are three-valued. It is more difficult
to construct such functions which are almost-optimal and not
three-valued, especially when is odd—as we indicated in
other terms at the end of Section IV-B. Moreover, the general
problem of the maximal nonlinearity of functions of degree
remains open for odd .

It is known that, for any odd , all almost-optimal
functions of degree satisfy [32]. It has
been recently proved by Canteaut that, for any odd ,
all almost-optimal functions of degreeare three-valued. For

, she has proved that there is only one weight polynomial
for almost-optimal non-three-valued cosets of which
are contained in ; moreover, she proves that such cosets
exist [24].

Open Problem V.1:For odd , , does there exist
of degree such that is almost-optimal and
?

B. Decompositions on Affine Subspaces of

We are going to study the restrictions of to any
subspace of . Lemma V.2 is derived from well-known
properties of the Fourier transform.

Lemma V.2:Let be a Boolean function of variables and
let be a subspace of of dimension . Then we have, for
any
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Proof: According to (3), we have for any

We deduce that, for any

Remark V.1:Note that for , Lemma V.2 provides
the well-known formula of Parseval. When , we
get the following relation:

for all

We need to define precisely the restrictions of any
to a subspace , of dimension , and to the cosets of . Let
such a coset , . The restriction of to

can be identified with such that .
This representation depends, in fact, on the choice of
since for , , we have

( is a translationof ). However, in the context of
our study, and have the same properties. So when we say
the decomposition of (as defined below) we mean that, for a
fixed , the restrictions are chosen up to translations.

Definition V.3: Let be a subspace of of dimension
. The decomposition of with respect to is the sequence

where is such that is the direct sum of
and and is the Boolean function of variables, from to

, defined by for any .

Theorem V.1:Let be a subspace of of dimension
and let be the decomposition of with respect to

. Then

Proof: Consider the associated codeword of. We
have

(24)

We obviously deduce

Note the extension of this property to , for any .
Indeed, we have for such a

Thus,

Set . According to Lemma V.2 and
to the above formula, we have

according to (4).

Corollary V.3: Let be the decomposition of
with respect to the -dimensional subspace . Then

Moreover, , for all .
Proof: According to Theorem V.1 and since

, we obviously deduce

implying for every . Moreover, this property
holds if we replace by , where is any linear function
of —considering the decomposition of , for some

, instead of . Hence, for all , completing
the proof.

Remark V.2:We have

since . This upper bound on
was already proved by Zhenget al. in [8]. The authors noticed
that when is odd, and is an affine function,
then .

Notice that, when is even, and affine, we find
again the covering radius of .

The previous results provide the exact connection between
the nonlinearity of and the nonlinearity of each element of any
decomposition of —“any” means “with respect to , for any

.” The well-known conjecture of Dobbertin has to be placed
in this context. In [30], he introduced the notion ofnormalfunc-
tion for even . A function is said to be normal if it is
constant on at least one -dimensional flat. He proposed the
next conjecture.

Conjecture. Any bent function is normal.

The link between the nonlinearity of a function and the non-
linearity of each element of its decomposition has several con-
sequences. For instance, whenis almost-optimal, any function

of any decomposition of is such that for
odd , and for even . This notably leads to
the following property.
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Proposition V.4: Assume that is odd. Suppose that has
codimension . For simplicity, we denote by the de-
composition of with respect to .

If (or ) is partially bent and not bent then
.

Proof: If is partially bent then , where is
an integer such that , with equality if and only if

is bent.
If is not bent we have, in accordance with Corollary V.3

completing the proof.

Remark V.3:The function with five variables given in Ex-
ample V.6

is almost-optimal (not three-valued) of degree. It satisfies the
hypothesis of Proposition V.4, since one element of its decom-
position with respect to the hyperplane

is quadratic

This proves that the class of such functions is interesting.

Example V.3: It is very easy to construct a functionsatis-
fying the hypothesis of Proposition V.4, with algebraic normal
form equal, up to equivalence, to

(25)

where has degree.
Let . The functions

where is any function in , satisfy . Indeed,
it is well known that (see Appendix I and
[22, Ch. 15, Sec. 2]).

C. Derivatives on Subspaces of Large Dimensions

Now we are considering the cases where the derivatives
of a given function are balanced for any belonging
to a subspace of codimensionor . This allows us to obtain a
new characterization of bent functions and of some three-valued
almost-optimal functions. We first fix notation.

Recall that , , denotes the linear function
. We denote by the kernel of

We denote by the affine subspace . Clearly, is
the characteristic function of .

Lemma V.3:Let and the associated linear func-
tion with kernel . We have

(26)

(27)

(28)

(29)

(30)

Proof: Relations (3) and (4) can be rewritten

which is exactly (26), and

Formulas (27), (28), and (30) are obtained by combining the
above relations. Formula (28) obviously implies (29). Note that
(27) can be directly obtained from Lemma V.2 .

Lemma V.4:Let be a positive integer, , and
. Define, for any , the property : the function

is balanced for every nonzero elementof . If satis-
fies for some , then

for all .
Proof: Since is balanced if and only if ,
implies, in accordance with (27)

Moreover, this property holds for any , since any function
is constant, implying that is balanced as soon

as is balanced.

Theorem V.2:Let be an odd integer, , ,
and . Then the following properties are equivalent:

i) satisfies ( );

ii) is three-valued almost-optimal and

for all ;

iii) both restrictions of to and are bent.

Proof: i) ii). Lemma V.4 implies that

for all . If there exists such that

then we obtain where is not a square, a
contradiction.

Moreover, applying Lemma B.1 (in Appendix II), we deduce
that , for all . So is three-valued
almost-optimal.

ii) iii). Let us denote by the decomposition of
with respect to . From Theorem V.1, we have

(31)
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Since the Fourier spectrum of is and
, we obtain ,

implying (see Lemma B.1)

This property holds for , for any . Note that the decom-
position of with respect to , when ranges over ,
is where is any affine or constant function
and where is constant. This proves that the Fourier spec-
trum of each is ; thus is a bent function of
variables.

iii) i). Since is bent, then is balanced for any
nonzero ; but

for any such . So we obtain for all such . Hence
satisfies .

Remark V.4: It is important to notice that when is three-
valued almost-optimal ( odd) we have for any

according to Lemma B.1. Thus, the values occurring in the
Fourier spectrum of (resp., ) are always contained in

. This means that and are
both almost-optimal and this is true for any—then for any
corresponding decomposition of.

Theorem V.3:Let be an even integer, , and let
. Then the following properties are equivalent:

i) there is such that satisfies ;

ii) is bent;

iii) satisfies for all ;

iv) for any , the decomposition of with respect to
satisfies: and are three-valued almost-optimal

and for any linear Boolean functionof , we have

(i.e., if and only if ).

Proof: Recall that a Boolean functionis bent if and only
if is balanced for all . Hence: ii) iii) and ii) i).

Assume that satisfies ( ) for some . Then for all we
have from Lemma V.4

This implies, from Lemma B.1

completing the proof of i) ii).
Assuming that is bent, we fix and we denote by

the decomposition of with respect to . As in the
previous proof, we obtain (31) which implies here (by using
Lemma B.1), and . This
property holds if we consider instead of in (31)

where , is a linear function (which can be), and
is either or . Thus, and then

completing the proof of iv).

Conversely, if iv) is satisfied then

for all , implying that is bent, completing the proof of ii)
iv).

Remark V.5:Note that the previous theorem is of interest for
effective purpose. For checking that a functionis bent it is
sufficient to compute the for in some hyperplane.

Example V.4:On the other hand, Property iv) provides some
constructions: for every bent functionand every ,

, both restrictions of to and are three-valued
almost-optimal. For instance, choosein class (cf. [33]):

is identified, as a vector space, with (i.e., the
elements of are considered as ordered pairs where

and belong to the finite field ) and is defined as
, with , where is any balanced Boolean

function on . We do not know how to prove directly (i.e.,
without using Theorem V.3) that the restrictions of such a func-
tion to any hyperplane are three-valued almost-optimal.

We study now the more general case where a functionhas
balanced derivatives for all nonzero of , a subspace of

of codimension . First note that, with the notation of Sec-
tion V-B, we obtain, by applying Lemma V.2 and Theorem V.1

(32)

where is the decomposition of with respect to
as described at the beginning of Section V-B. These formulas

hold when is replaced by , for any .

Theorem V.4:Let be any positive integer, , and
. Assume that there exists a linear subspace

of codimension such that is balanced for any nonzero
. Let be the decomposition ofwith respect

to .

• If is odd then is three-valued almost-optimal and
every is three-valued almost-optimal.

• If is even, then either is bent or
and the values occurring in the Fourier spectrum of
belong to . Moreover, all the

have the same Fourier spectrum: either all theare
bent, either all the are three-valued almost-optimal,
or the have the same Fourier spectrum with values

. If all the are three-valued
almost-optimal then is bent.

Proof: Since for any nonzero in , we
have from (32), for any

Since has cardinality , we deduce from Lemma B.2 (in
Appendix II) that the Fourier spectrum ofis
when is odd; the values occurring in this Fourier spectrum
belong to when is even. Hence, is
either three-valued almost-optimal (odd), either bent or such
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that , and the values of its Fourier transform
belong to .

Consider now the decomposition of, say , with
respect to . We have from (32) again

(33)

and this property holds for any and its decomposition,
which implies that the values occurring in the Fourier spectrum
of each are (by applying Lemma B.2)

• if is odd, —i.e., is three-valued al-
most-optimal;

• if is even, either (i.e., is bent) or con-
tained in —with .

According to Lemma B.2, the sum in (33) for evenis either
or . If one is bent this sum is always
implying that all are bent too.

Similarly, if one is three-valued almost-optimal, the values
of its Fourier transform are in . Since the value

never appears, the sum in (33) is always im-
plying that this property holds for all . Moreover, for any

for some ; so is bent. Now suppose that the are neither
bent nor three-valued almost-optimal; then the values appearing
in their Fourier spectra are, , and . We know
that the number of times value occurs is the same for
each (by using (33) and Lemma B.2 as above), and Parseval’s
relation settles the case of the two other magnitudes.

Note that there exist some functionssuch that all are
three-valued almost-optimal andis not.

Example V.5:For , we consider

where

Although all functions are three-valued almost-optimal,is
not: the coefficients belong to

Moreover, is balanced for 23 values of .

Remark V.6:Take any bent function on ( even), any
-dimensional subspace of and any .

Then the Boolean function , where de-
notes the indicator of the flat , satisfies the hypothesis of

Theorem V.4. Indeed, we have for every :
since is invariant under the translation by vector.

It is clear that the set of functions which satisfy the hypothesis
of Theorem V.4 ( even) contains all bent functions and also
some functions whose Fourier spectrum is . But
we have also the following.

Proposition V.5: For every even , there exists
satisfying the hypothesis of Theorem V.4, whose Fourier

transform takes on exactly the three magnitudes, ,
and .

Proof: Let ; we identify the elements of with
the ordered pairs where and

. Choose in Maiorana–McFarland class
of bent functions in the form

where is some function in . Set
and

As remarked above, for any we have . Since
is bent then is balanced. Now remark that

Thus, is linearly equivalent to the function

We see by exchanging and that is linearly equivalent to
the function

It is a simple matter to check that, if , there exists a
function such that takes at least
once each value of —where and

in . Take for instance . Then

Since

if and only if for every , we deduce:

If , then we obtain ; if , , and , we
obtain ; and if , , or we obtain . The
proof is complete.
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Remark V.7:There exist three-valued almost-optimal func-
tions with variables, odd, which do not satisfy the hy-
potheses of Theorem V.4. For example, for , the function

is three-valued almost-optimal. It has exactly 14 nonbalanced
derivatives, which are all for

Open Problem V.2:Find some general property for a func-
tion such that is balanced when , , where

has codimension.

D. The Nonbalanced Derivatives

On the other hand, we consider the set of nonbal-
anced derivatives. Recall that, for , is the set

and is the complementary set
. In this section, we consider the rank of . For

clarity, we first indicate an obvious property.

Lemma V.5:Let be the rank of . Then means
that there is a subspace of dimension such that is
contained in for all .

It is natural to first consider the small values of. As a direct
application of our previous results, we are able to characterize
the functions which correspond to the cases .

Corollary V.4: Let be an odd integer, , ,
and . Then the following properties are equivalent:

• is almost-optimal and is a linear structure of ;

• is three-valued almost-optimal andis a linear structure
of ;

• .

Proof: If has a linear structure then (see
Lemma II.1). Suppose that, moreover,is almost-optimal. In
accordance with Proposition V.2, the only possibility is

which means (when is almost-optimal) that is three-
valued almost-optimal. Since ,
we deduce

providing for , according to (6).
Assume now that . Clearly, the set

contains a subspace of codimension. So we apply Theorem
V.2 and deduce that is three-valued almost-optimal. Since

then , completing the proof.

Corollary V.5: Let be an even integer, , and .
Let be some linear space of dimension. Then the following
properties are equivalent:

• is almost-optimal and any is a linear structure
of ;

• is three-valued almost-optimal and any is a linear
structure of ;

• .

Proof: We proceed as in the previous proof. Ifis a linear
space for , then . If, moreover, is almost-
optimal then which means that is three-valued
almost-optimal. Now compute the sum-of-squares indicator

providing .
Conversely, assume that . Thus, contains

a subspace of codimension, say . In accordance with The-
orem V.4, and the values of the Fourier trans-
form of lie in ( cannot be bent).
We can assume that . By using (27), taking

with , , we obtain

(34)

where . Then . Note that
this property holds for any . So we have proved that
is almost-optimal and that it has any as linear structure,
completing the proof.

Remark V.8:Note that we are not able to give the Fourier
spectrum of any almost-optimal function which has a linear
space of dimension when is even. Actually, this problem
is equivalent to the determination of Fourier spectrum of al-
most-optimal functions of (see the next example).

Example V.6:There exist almost-optimal (non-three-valued)
functions of degree for odd . For instance, for ,
the function

is given in [23]. Its Fourier transform takes all the values in
. Note that in the decomposition ofwith respect

to the subspace defined by is , a quadratic compo-
nent of (see Proposition V.4). Moreover, one can check that

is a subspace of dimension.
Now consider the function of six variables

It is clear that is a linear structure of and it is
easy to check that the set of values appearing in the Fourier
spectrum of is .

The previous corollaries were partially proved in [34] where
the authors study the cases . Generally, it
seems difficult to characterizesuch that is a linear space
of dimension for some (see [10]). When the rank of is
, we can give the next property but cannot describe the case

—examples are easily obtained (see Example V.6).

Corollary V.6: Let and assume that the rank of
is .
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If then contains all nonzero elements of some
subspace of codimension. So Theorem V.4 can be applied.

Proof: Set . Assume that the cardinality
of is strictly less than . Let be linearly inde-
pendent in ; by completing, we have a basis of

such that is contained in . But there
is some , a linear combination of which is in .
So the subspace , of codimension is contained
in .

Note that, for any , there exist some functions such that
has rank (such functions can be constructed recursively,

by taking partially bent functions). Hence, this property does
not seem to be significant. It nevertheless induces some simpli-
fications on the decompositions of the function, as shown in the
next theorem.

Theorem V.5:Suppose that is contained in , a subspace
of dimension , . Considering notation of Theorem
V.1, let be the decomposition of with respect to

, then we have

i) . Moreover,

ii) for any and the Fourier
spectrum of cannot have more than magnitudes.

Proof: Let . Any does not belong to ,
since . It follows that is balanced for all .
We deduce from Lemma V.3 that . Thus,
applying Theorem V.1, we obtain

It follows that

This property holds for any , , since
is balanced as soon as is balanced. The upper bound on

is obviously deduced. Take any ; then we obtain,
as above

for all . This implies that the Fourier spectrum of
cannot have more than magnitudes.

Several corollaries can be deduced. We study, for instance,
the case where has codimension.

Corollary V.7: Assume that is such that ,
some subspace of codimension. Denote by the de-
composition of with respect to . Then we have

i) for any

where is the decomposition of ,
is a linear function in and is constant;

ii) for every linear function in , at least one term in
the pair is zero;

iii)

and

Proof: Since , we have, according
to Theorem V.5

Thus, providing either or
—where both can be zero. This property holds when

we consider for any and the decomposition
of which is actually of the form ,
where is linear and is constant. We obviously have that

. Then i) and ii) are clearly
proved and the values of and given in iii) are easily
deduced.

Now we compute , by using (7) and the previous proper-
ties. We denote by the set of all linear functions in .
We then deduce

completing the proof.

Example V.7:Let such that is a linear noncon-
stant function, for some. So it is clear that is constant
for any .

Set and recall that denotes the kernel of .
It is clear that if and only if . Thus, ac-
cording to Proposition II.5, is balanced for any .
This implies that . It is very easy to construct such a
function . For instance,

is such that , , is equal to .
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Remark V.9:For any bent function we have .
Hence, satisfies the hypothesis of Theorem V.5 for any.
For such a function, Theorem V.5 i), becomes

implying

Note that the property on the left holds for any and the
corresponding decomposition. Ifhas dimension or we can
apply Lemmas B.1 and B.2. So we obtain again some results
given by Theorem V.3 and V.4.

APPENDIX I

We briefly recall some properties of quadratic functions.
More can be found in [22, Ch. 15] and [15]. In this appendix,

denotes a Boolean function of degreeof variables. The
associated symplectic formof is the mapping from to

where . Thekernelof is defined as follows:

The set is a -subspace of of dimension , where
is therank of . This rank satisfies

• for even , and

• for odd .

Obviously, for any linear function . The
Fourier spectrum of (and thus the weight distribution
of the corresponding coset ) only depends
on (cf. [22, p. 441]). For such a coset, the weights are

and the corresponding numbers of
codewords .

So the quadratic functions are three-valued unless
for even . In this case, the function is bent and its Fourier
spectrum is .

Proposition A.1: An element is in if and only if the
function is constant. The subspace is the linear space
of .

Moreover, is balanced if and only if there is such
that .

Proof: Note that is constant if and only if

for all , where denotes a constant—eitheror . But
means

or, equivalently, , for all . This proves the
first sentence of the proposition.

If for some then is balanced (see Proposi-
tion II.5). Conversely, suppose thatis balanced. Denote by
the dimension of . Recall that and that the number
of ’s in the Fourier spectrum of is equal to .
Note that cannot be bent, so that the dimension ofis at least
. We assume that for any , , and we are

going to prove that this is impossible. Define the subspace

of the space of linear functions (where ).
The number of hyperplanes of containing is equal to

. Thus, the cardinality of is (by adding ). We
then have functions , , such that
for some . But for such , we have

implying that is balanced. Therefore, is
balanced too providing at all zero values in the
Fourier spectrum of . We have proved that any balanced func-
tion is such that (since ). This contradicts
that itself is balanced.

APPENDIX II

Lemma B.1:Let be an integer, , and let and
be two integers. Then the condition implies

• if is even then ;

• if is odd then and or vice versa.

Proof: This lemma can be proved by induction, as it is
shown in [34], but this result was first stated and proven by Ja-
cobi in 1828. His proof relies on the fact that the number of
solutions of the equation

(35)

is exactly the coefficient of in the expansion of , where

In 1828, Jacobi proved that (see [35] and [36])

which means that the number of solutions of (35) satisfies

• if there exists a divisor of , , which occurs
in to an odd power, then ;

• else

Then we have ; this means that for our case (
and for all ), the only solutions are the ones

presented in the lemma.

Lemma B.2:Let be an integer, , and let , ,
and be four integers. Then the condition

implies

• if is even, then either or
and ;

• if is odd, then and .

Proof: In the same way, this result can be obtained by in-
duction, but was stated by Jacobi in 1828, since we have
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where runs through all positive integers which are not multi-
ples of . Then we have ; Jacobi then proved that
for our case, the solutions presented in the lemma are the only
ones.
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