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Decomposing Bent Functions
Anne Canteaut and Pascale Charpin

Abstract—In a recent paper [1], it is shown that the restrictions
of bent functions to subspaces of codimension1 and 2 are highly
nonlinear. Here, we present an extensive study of the restrictions
of bent functions to affine subspaces. We propose several methods
which are mainly based on properties of the derivatives and of the
dual of a given bent function. We solve an open problem due to
Hou [2]. We especially describe the connection, for a bent function,
between the Fourier spectra of its restrictions and the decomposi-
tions of its dual. Most notably, we show that the Fourier spectra
of the restrictions of a bent function to the subspaces of codimen-
sion2 can be explicitly derived from the Hamming weights of the
second derivatives of the dual function. The last part of the paper
is devoted to some infinite classes of bent functions which cannot
be decomposed into four bent functions.

Index Terms—Bent functions, Boolean functions, derivatives
of Boolean functions, Reed–Muller codes, restrictions of Boolean
functions.

I. INTRODUCTION

BENT functions are the most famous Boolean functions
since they achieve the upper bound on nonlinearity. In

other words, bent functions provide cosets of the Reed–Muller
code of length ( even) and order one whose minimum
Hamming weight corresponds to the covering radius of this
Reed–Muller code. As exceptional objects, bent functions are
related to combinatorial problems such asdifference setsor
with cryptographic criteria such asperfect nonlinearity[3].
When effective constructions are considered, there are two main
classes of bent functions, theMaiorana–McFarlandclass and
thepartial spreadsclass (respectively denoted by and ).
In his thesis, Dillon [6] introduced the second class and he gave
a lot of important properties characterizing bent functions. Two
new classes, which can be considered as derivatives of some
functions of were later introduced by Carlet [4]. Dobbertin
also gave a construction of bent functions which leads to some
elements of and of as extremal cases [5]. However, the
problem of the classification of bent function remains open.

In this paper, we present a set of properties and tools for
the study of the restrictions of any bent function to any sub-
space. Dillon’s work [6] and recent papers of Carlet are here our
main references. On the one hand, we want to consider the gen-
eral problem of iterative constructions of bent functions. On the
other hand, our interest is for other functions (of any number of
variables) which can be built by means of the exceptional prop-
erties of bent functions.
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The paper is organized as follows. The main definitions and
basic properties are given in Section II. Most of these properties
are usually known; they are proven for clarity. In Section III, we
investigate the links between the derivatives of a bent function
and those of its dual. This leads to a general property on the re-
strictions of the derivatives of a bent function to hyperplanes.
Section IV focuses on bent functions which have at least one
affine derivative. We point out that this property is invariant by
duality. Moreover, we solve an open problem due to Hou [2]:
we prove that for any even , , there exist cubic
bent functions of variables which have no affine derivatives.
Section V is devoted to the fundamental properties of the restric-
tions of any bent function and of its dual to some subspaces.
Our main result is given by Theorem 6: we show that the Fourier
spectra of the restrictions ofto a subspace and to its cosets
are related to the derivative ofwith respect to the dual space

. Section VI is then dedicated to the previous relationship
when a subspace of codimension is considered. We give an
explicit expression of the Fourier spectra of the restrictions of
to and to its cosets as a function of the weight of the second
derivative of with respect to . Most notably, we prove that
the restrictions of to and to its cosets are bent if and only if
the derivative of with respect to is constant and equal to
. Finally, Section VII focuses on the decompositions into four

functions of some bent functions which belong to family
or to class . For both classes, we exhibit infinite families of
bent functions which cannot be decomposed into four bent func-
tions. Our constructions are related to other works concerning
the weight enumerators of some cyclic codes and the so-called
almost bentfunctions.

II. PRELIMINARIES

A. Notation

We denote by the finite field with elements. Theweight
of a binary vector is the Hamming
weight

A Boolean function of variablesis a function from into
, and we denote by the set of all Boolean functions of
variables. Any can be expressed as a polynomial,

called itsalgebraic normal form

The degreeof , denoted by , is the maximal value of
such that .
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Any Boolean function in can also be identified with the
codeword of length consisting of all values .
This representation is unique only up to an ordering of.
TheReed–Muller codeof length and order , ,
denoted by , is then the linear code composed of the
vectors corresponding to all Boolean functions in of degree
less than or equal to.

The usual dot product between two vectorsand is denoted
by . We denote by the dual of a subspace
relatively to the usual scalar product

For any , is the linear function in : .
In some particular cases (Sections IV and VII-B) we will use
another dot product (and, thus, another representation for the
linear functions).

For any , we denote by the following value
related to the Fourier (or Walsh) transform of:

where is the Hamming weight of , i.e., the number of
such that . A function is said to bebalanced

if .

Definition 1: TheFourier spectrumof a function is
the multiset

Theextended Fourier spectrumof is the multiset

The values of the extended Fourier spectrum are symmetric with
respect to since .

Note that we are not only interested in the values appearing
in these spectra, but also in the number of times they occur.

Definition 2: Thenonlinearityof a function is the
Hamming distance betweenand the set of affine functions. It
is given by

The nonlinearity of is then the minimum Hamming weight
of the coset . When is even, it is known that
the maximal value of this weight is and that
the extended Fourier spectrum of the functions having maximal
nonlinearity is unique [7].

Definition 3: A Boolean function , even, is said to
bebentwhen its nonlinearity is equal to . The
extended Fourier spectrum of such a function consists of two
values, .

The Fourier spectrum of a Boolean function is
strongly related to the properties of its derivatives. For any

, thederivative of with respect to is the function
defined by

For instance, it is well known that is bent if and only if all
its derivatives , are balanced. Thelinear spaceof
a Boolean function is the subspace of thosesuch that
is a constant function. Such a nonzerois said to be alinear
structurefor .

Let be any subset of . We denote by the Boolean
function in whose value on is if and only if ; it is
calledthe indicator of .

For any two functions and in , the function cor-
responds to the usual product in : if and only
if . For any , the function
is called the restriction of to . Note that if
and only if and . When is a -dimensional
linear subspace of , the restriction of to , , can ob-
viously be identified with a function of variables. Similarly,
for any coset of , we identify with
as follows: , . Note that the function

associated with is defined up to a translation
. But all properties studied in the paper are

invariant under translations.

Note: For any subspace of dimension , any basis of
can be completed providing a basis of . So ;
the cosets of are the flats , describing .

Definition 4: Let and let be a linear subspace of
of dimension . Thedecomposition of with respect to

is the sequence where and all
are considered as Boolean functions in.

B. Main Formulas on the Restrictions

The following formulas will be intensively used in this paper.
They are usually known but we give the proofs for clarity.

Proposition 1: Let and let be a subspace of
of dimension . Then

(1)

where the function is the indicator of .
Moreover, for any , let be the Boolean function

in defined by . Then

(2)

Proof: Recall that
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But unless ; in this case, the sum is
equal to . So

The second equation is obviously deduced, since is
exactly the restriction of to the coset .

Formula (2) can be interpreted in several ways:

• it means that (1) holds up to any translation(note that
many properties of a Boolean function are invariant under
translation);

• formula (2) also provides an explicit relation between the
Fourier spectrum of and the weights of all its restrictions

: for any , we have

since

The weights of the restrictions of to and to its cosets
are also related to the Fourier spectrum ofby the following
formula, which is proved in [1, Theorem V.1].

Proposition 2: Let and let be a subspace of
of dimension . Let be such that . Then

Most notably, if is a bent function

C. The Dual Function

Since its Fourier transform takes two values only, any bent
function has adual.

Definition 5: Let be a bent function of variables. The
dual functionof , denoted by , is the Boolean function of
variables defined by

The duality of bent functions was introduced by Dillon [6]. It
is easy to see that , implying that is bent as well.

The following proposition shows that the action of a transla-
tion on a bent function corresponds to the addition of a linear
function to its dual.

Proposition 3: Let be a bent function of variables. For
any , denotes the bent function .

Then, the dual of is . So the dual of is
.

Proof: The result is easily deduced from the definition.
Indeed

for all . Then, . By applying this relation to ,
we obtain that the dual of is .

Therefore, there is a symmetry between two sets of bent func-
tions: the functions obtained by translating are related
to the bent functions involved in the Fourier spectrum
of . This correspondence will be investigated in the next sec-
tions, concerning the restrictions ofand of . On the other
hand, there are some properties which are not satisfied by both

and . We will see such situations concerning the derivatives
of bent functions. There are also properties ofwhich cannot
be easily deduced from properties of. The main open problem
is the exact degree of when the degree of is known. It is
easy to prove that both degrees are equal whenhas degree
or . Otherwise, there is only a bound on the degree of[8].

D. Restrictions of a Bent Function to a Subspace of Large
Dimension

The properties of the restrictions of a bent function to a sub-
space of codimensionand (and to its cosets) have been in-
vestigated in [1]. This study points out the major role played by
the functions whose extended Fourier spectrum takes on exactly
three values. Such a function is calledthree valued.

Definition 6: A Boolean function is said to bethree valued
if its extended Fourier spectrum takes on exactly three values,
, , and .

It is well known that the extended Fourier spectrum of a three-
valued function is completely determined by its nonlinearity
(see, e.g., [9, Theorem 2]). Here, we improve this result since we
give the Fourier spectrum of such a function (i.e., the signs of the
values are also considered). Note that the following
proposition includes both three-valued and bent functions.

Proposition 4: Let be a Boolean function of variables
such that its extended Fourier spectrum takes at most three
values, , , and . Then, for some

and has the following Fourier spectrum:

number of

Moreover, if and only if is bent.
Proof: Set

Parseval’s relation implies that

with
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Thus, we have and with and
. We then obtain that with .

Note that , since .
Let (resp., ) denote the number of such that

(resp., ). Formula (1) leads to

Hence,

providing

For our purpose, the three-valued functions which have the
highest possible nonlinearity are of most interest.

Definitiion 7: A three-valued Boolean function in is
called three valued almost optimalif when

is odd, and when is even.
The partially bent functions, introduced by Carlet [10], are

notably studied in [1]. These functions are three valued and
could be almost optimal. We will say that such a function is a
partially bent optimalfunction. In this paper, such a function,
with an odd number of variables, will appear several times. So
we recall the equivalent definitions (see [1, Proposition II.6 and
Corollary V.4]).

Proposition 5: Let be an odd integer, , and let
. Then is partially-bent optimalif and only if it satisfies

one of the following equivalent properties:

(i) there is such that is balanced unless
and is constant;

(ii) is three valued almost optimal and there is
such that is constant.

The degree of , when it is partially bent optimal, cannot exceed
.

The links between bent functions and three-valued almost op-
timal functions are described in [1, Theorems V.3 and V.4]; what
we present here is in a slightly different form.

Theorem 1: Let be an even integer , and let be a
bent function of variables. Let be any subspace of of
codimension , and let denote . Then, and
are three-valued almost optimal functions of variables
and for any , we have

i.e., if and only if .

Theorem 2: Let be an even integer , and let be
a bent function of variables. Let be any linear subspace

of codimension and let denote
the decomposition of with respect to , with .

Then, all the , , have the same extended Fourier
spectrum: either all the are bent, all the are three

valued almost optimal, or the have the same extended
Fourier spectrum with five values .

III. L INKS BETWEEN THEDERIVATIVES OF A BENT FUNCTION

AND THE DERIVATIVES OF ITS DUAL

By definition, a bent function and its dual are related by their
Fourier spectra. But the duality actually provides a closer link
between a bent function and its dual. The next proposition shows
that, in a certain sense, the Fourier spectrum of any derivative
of a bent function is linked with the values of the Fourier
transforms of the derivatives of. This is deduced from a simple
observation. Note that for any fixedwe have for all

(3)

This shows that the function as many times as

And this holds exactly times, since is balanced.

Proposition 6: Let be a bent function of variables and
be its dual. Then, for any , we have

Proof: We simply check the formula, by using (3):
is equal to

Moreover, by applying Parseval’s relation to and ac-
cording to Proposition 6, we obtain

(4)

Actually we have more, as we explain now.

Corollary 1: Let be any nonzero element of and denote
by the hyperplane . Then for any bent function
with variables, we have

Moreover, for

Proof: Let us set and note that we have
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because this holds for any function which has a linear
structure such that . Indeed, for such a function,
we obtain (see [1, Remark V.1])

since . Thus, we have, according to (4)

completing the proof.

Note that, by applying Proposition 1, we have for any

where , for , since is bent. According to
Corollary 1, we obtain, for any any

Thus, we have proved the following property of derivatives of
bent functions.

Theorem 3: Let be any bent function of variables. Let
be any hyperplane of . Then, for any , the derivative

is such that its restrictions to and to are balanced.

IV. BENT FUNCTIONS WITH AFFINE DERIVATIVES

The previous relationship between the derivatives of a bent
function and the derivatives of its dual is of most interest for the
bent functions which have at least one affine derivative. We now
prove that a bent function has an affine derivative if and only if
its dual has an affine derivative.

Corollary 2: Let be a bent function of variables. Let
and be two nonzero elements in and . Then, the
following properties are equivalent.

(i) .

(ii) .

(iii) The function , considered as a function of
variables, is partially bent optimal with linear space

, where denotes the hyperplane .
Proof:

(i) (ii) : Applying Proposition 6, for such that is
affine , it appears that

This means that .
(i) (iii) : Note that implies that ;

otherwise, , a contradiction. Let .
Then, for any , we have . For ,
we obtain

i.e., is a linear structure of . Since is three valued almost
optimal (Theorem 1), we deduce thatis partially bent optimal.
Moreover, its linear space is exactly (see Proposition 5).

(iii) (i): Suppose that is a linear structure of , i.e.,
. Since , we have

Moreover

since is balanced. Therefore, . This
implies that .

Hou proved in [2] that for any cubic bent function in
has at least one derivative in . This property does

not hold for [7]. This observation leads to the following
open question formulated by Hou [2]: for what values ofdo
there exist cubic bent functions of variables which has no
derivative in ?

The following lemma enables us to completely solve this
problem. In the remainder of this section, is identified with
the finite field with elements .

Lemma 1: Let be an even integer , and let
be an integer such that and .
The cubic bent function of variables defined by

where is the trace function from to , has no derivative
in .

Proof: The power function is a permutation
of since . Then, it is well known
that is bent; it belongs to the family and has degree(see
Section VII-B). We consider the derivative of such a function
in direction

When , it is clear that is quadratic, since
cannot be constant. On the other hand, we have for

every

Therefore, is affine if and only if the function
is constant. This means that for any

(5)

or equivalently

It follows that belongs to the subfield of of order
. Therefore, the number of solutionsof (5) is exactly

because . So such a function is a cubic
bent function which has no derivative in .

Now, we use the previous infinite family of cubic bent func-
tions for proving the following theorem.

Theorem 4: Let be an even integer . There exists
a cubic bent function of variables which has no derivative in

if and only if .
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Proof: Since all cubic bent functions of eight variables
have a derivative in [2], we only need to exhibit a cubic
bent function of variables which has no derivative in
for any even , .

Let . First, we prove that there exists an integersuch
that and if and only if
is not a power of . Recall that if and
only if is odd. Then, if is not a power of , we have

where and is an odd integer . In that case,
satisfies the previous condition since is odd

and . We then deduce from Lemma 1 that there exists a
cubic bent function of variables which has no derivative in

when is not a power of .
Suppose now that with since and .

Let and . Since ,
and neither nor is a power of . Then, there exist two

integers and such that

and

Therefore, the following cubic functionof variables is bent:
for any ,

where (resp., ) is the trace function from
(resp., ) into (see [6, Remark 6.2.16]). Moreover,
Lemma 1 implies that has no derivative in .

V. RESTRICTIONS OF ABENT FUNCTION AND OF ITS DUAL

TO SUBSPACES

We now focus on the links between the restriction of a
bent function to a subspace and the restrictions of its dual.
Throughout this section, is a bent function with dual .
The next theorem is a generalization of a remark of Dillon [6,
Remark 6.2.14] and was proved by Carlet in [4, Lemma 1].

Theorem 5: Let be a bent function of variables and let
be any subspace of of dimension . Then

(6)

More generally, we have for any

(7)

Proof: In accordance with Definition 5 and Proposition 1,
we have

Moreover, for any

since the restriction of the function to is the
restriction of to the coset . Note that when we
obtain the first formula again.

Remark 1: Let be a linear subspace of of dimension
and let be such that . The Fourier spectrum

of the -variable function corresponds to the set

This comes from the fact that, for any and
for any

Therefore, . In this context, the pre-
vious proposition means that the knowledge of the Fourier spec-
trum of is equivalent to the knowledge of the weights of
the restrictions , , where is the
decomposition of with respect to .

Many properties can be directly deduced from Theorem 5.
For instance, we have

• is balanced on if and only if is balanced on ;

• for any of dimension . Most
notably, the restriction of to is constant if and only if
the restriction of to is constant too (and the constants
take the same value in both cases). This property is related
to the concept ofnormality [5], [11], [12] [1, Corollary
V.3].

Corollary 3: Let be a bent function of variables. Let
be a linear subspace of of dimension and let

denote the decomposition ofwith respect
to where . Then is constant on if and
only if

and

(8)

Proof: “ is constant on ” means that
. From Theorem 5, is constant on if and only if

By applying Proposition 2 to , we deduce that

Therefore, for all nonzero in . This implies
that
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Conversely, if (8) is satisfied then (since
is bent) completing the proof.

Now, we deduce some connections between constantth
derivatives of and the divisibility of the values occurring in
the Fourier spectra of the restrictions of.

Definition 8: Let be a -dimensional subspace of . The
th derivative of with respect to is the function

where is any basis of .

Notation is used for simplicity since theth derivative
of with respect to does not depend on the choice of
the basis of . The following lemma, which corresponds to [1,
Lemma III.1] with a different formulation, provides a relation-
ship between the decomposition of a function with respect to a

-dimensional subspace and the correspondingth derivative.

Lemma 2: Let be a Boolean function with variables.
Let be a linear subspace of of dimension and let

denote the decomposition ofwith respect
to , where . Then

is odd

Proof: By definition, we have for any

where the preceding sum is an addition modulo. This relation
implies that, for any and for any ,

. Moreover, for any , we have

Therefore, we deduce

is odd

Theorem 6: Let be a bent function of variables and let
be a linear subspace of of dimension . Then

(i) if and only if the values occurring in
the Fourier spectrum of are of the form

where is an odd integer which be-
longs to the interval ;

(ii) if and only if the values occurring in
the Fourier spectrum of are of the form

where is some integer which belongs
to the interval .

Proof: Let denote the decomposition of
with respect to , where . The previous lemma

implies that

• if and only if is odd for any ;
• if and only if is even for any .

Since , is odd if
and only if the value is odd. Note that is
a function in ; thus, the value lies in the interval

.

Therefore, we have if and only if
where is an odd integer and is in , for

all . According to (7), we obtain for every

This provides the complete Fourier spectrum of ac-
cording to Remark 1.

Similarly, if and only if , for
all , where is an integer in . Hence,

Suppose that is of degree . Then there is at least one
of dimension such that . This is a consequence of
the definition of Reed–Muller codes (see [1, Proposition III.1]).
Consider the function of variables. From
Theorem 6, is such that its Fourier spectrum does not contain
—i.e., there is no balanced function in the spectrum of. Note

that such a subspace can be easily determined by using, for
instance, the algebraic normal form of. We have proved the
following property.

Proposition 7: Let be a bent function such that
its dual has degree . Then there is a subspaceof of
dimension such that the function , viewed as a
Boolean function in , satisfies the following: for all in

the function is not balanced.

Example 1: Let be a bent function with variables
, such that is of degree and let such

that . Then has codimension and the
function is a function of variables. According
to Theorem 6, the values occurring in the Fourier spectrum of
are of the form

Moreover, both values of appear, since the only functions
whose extended Fourier spectrum takes two values are the
bent functions ( cannot be bent because it depends on an odd
number of variables). The extended Fourier spectrum ofis
then completely determined. Indeed, setting

and

we have

Therefore, we have

number of
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VI. DECOMPOSITIONS OF ABENT FUNCTION INTO

FOUR FUNCTIONS

Now, we focus on the restrictions of a bent function to sub-
spaces of codimension. We first observe what Theorem 1
means when subspaces of codimensionare considered. Let
be such a subspace,a bent function in , and .
Then, we have for any

(9)

Moreover, we know from Theorem 1 that the restrictions ofto
and to , say , are three valued almost optimal

and satisfy: if and only if ,
where is any linear function in .

Let be of codimension such that .
According to Remark 1, the values of the Fourier spectrum of

are

and the decomposition of with respect to is

By applying (9), it appears that for any

(i) if and only if —so
;

(ii) if and only if
—in this case, .

Note that the first case corresponds to the cosets
on which has weight . This situation occurs exactly
times because is balanced (see Lemma 2).

Remark 2: The bent function is such that is affine if
and only if the union of the cosets corresponding to(i)
is an affine hyperplane. The result of Hou [2] can be expressed
as follows: when and is cubic then this property holds
for some . We have proved that it is not true for other(see
Theorem 4).

Now, for the study of the decompositions into four functions
we need to fix the terminology. Recall that the four functions
involved in the decomposition of a bent function with respect
to a subspace of codimensionhave the same extended Fourier
spectrum (cf. Theorem 2).

Definition 9: Let . We call -decompositionof a
decomposition with respect to some subspace of codimension.

Let be such a decomposition. We say that it is a
bent -decompositionwhen all are bent; when all are three
valued almost optimal, we say that it is athree-valued almost
optimal -decompositionof .

Theorem 7: Let be a bent function of variables, ,
and its dual. Let and be two nonzero distinct elements
of , and let us denote by the

-decomposition of with respect to . Then, all
have the following Fourier spectrum:

number of

where .
Most notably, is

• a bent -decomposition if and only if ;
• a three-valued almost optimal-decomposition if and only

if .
Proof: We know from Theorem 2 that all the have the

same Fourier spectrum. So we only consider . Let
be the decomposition of with respect to

, where . The Fourier spectrum of
consists of all , . We denote by the
restriction of to .

By applying Theorem 5 for , we obtain for all

(10)

Then, the right-hand term of (10) involves the weight of the re-
striction of on a coset of . Since is a function
of two variables, its weight is

• either implying ;

• or in implying ;

• or in implying .

We denote by the number of cosets of which corre-
spond to the values and by the number of cosets
of which correspond to the values . Lemma 2 im-
plies that

Now, by using Parseval’s formula, we get

providing . Thereby, the number of cosets
of on which is balanced is equal to ,
that is,

Therefore, the Fourier spectrum of only depends on
. In particular, we obtain that is bent if and only

if , i.e., . Similarly, is three
valued almost optimal if and only if , i.e.,

.

The previous theorem implies that for any bent function
and any nonzero and , , the weight of

is divisible by . This property can be directly deduced from
the fact that the degree of does not exceed . It can be
generalized as follows.
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Proposition 8: Let be such that .
Then, the weight of anyth derivative of is divisible by .

Proof: Let be a linear subspace of dimension,
, and let be such that . Then, for any

and any , we have . There-
fore, where denotes the restriction of

to . Then, is a Boolean function of variables and
its degree cannot exceed the degree of , which is at most

. Using that ,
we deduce that its weight is divisible by with

[13, p. 447], because .

When is quadratic, its dual is quadratic as well. More-
over, all second derivatives of are constant. So,if is bent
and quadratic, any -decomposition of is either bent or three
valued almost optimal. This property becomes more compli-
cated for higher degrees. The following corollaries are devoted
to those which have a cubic dual.

Corollary 4: Let be a bent function with variables,
, such that has degree. Let and be two nonzero distinct

elements of , and let us denote by
the -decomposition of with respect to . Then, one of the
following three situations occurs:

• is a bent -decomposition if and only if
;

• is a three-valued almost optimal-decom-
position if and only if ;

• all have the following Fourier spectrum:

number of

if and only if is not constant.

Proof: The result is directly deduced from Theorem 7,
since any second derivative is either constant or bal-
anced, when has degree.

Moreover, we can prove that all the three situations which are
described in the previous corollary occur.

Corollary 5: Let be a bent function such thatis
of degree . Then has more than bent -decom-
position and at least one three-valued almost optimal-decom-
position.

Proof: Since is cubic, it satisfies for any : is
balanced if and only if there is such that
(see [1, Proposition A.1]). Since is bent, each derivative of

is balanced. Thus, for any , there is such
that the decomposition of with respect to is a bent
-decomposition (from Theorem 7).

Now, we prove that has at least one null second deriva-
tive. We denote by the set of all subspaces of dimen-
sion such that . Since describes , then

and the cardinality of is minimal when any
pair of distinct elements of satisfies .
Suppose first that this situation occurs. In this case, the sets

, , form a partition of . Therefore,
contains exactly elements. According to Lemma 2,
the weight of the function is odd, for any (it is ei-
ther or ). Assuming that , we obtain

which implies

This means that the weight ofis odd, which is impossible. We
then deduce that there exists two distinct elements ofwhose
intersection differs from . In other words, contains
and with . Then

which implies

for all . This is equivalent to saying that is the null
function. We then deduce that there is at least one subspace

of codimension such that .

Remark 3: Corollary 5 can be generalized to the bent func-
tions which are such that all derivatives of are partially
bent. However, we do not know if such functions exist when

. This is mentioned as an open problem in [1, Sec. II].

Finally, we point out that the weights of the second deriva-
tives of the dual of a bent function also provide some
information on the weight distribution of . Most
notably, any three-valued almost optimal-decomposition of
leads to another bent function, lying in .

Theorem 8: Let be a bent function of variables ,
and its dual. Let and be two nonzero distinct elements
of , . Then, the -variable Boolean function

is such that its Fourier spectrum satisfies

number of

where . Most notably, we have

• is bent if and only if ;
• is three-valued almost optimal if and only if

.

Proof: Let be such that . For any
, the -decomposition of with respect to is

related to the -decomposition of as follows:



CANTEAUT AND CHARPIN: DECOMPOSING BENT FUNCTIONS 2013

for all , and

Therefore, we deduce that

From (7) in Theorem 5, we obtain

Since , the weight of is

• either , implying that ;

• or in , implying that lies in
;

• or in , implying that is constant and, thus,
equal to . In this case, .
Therefore, we have .

Let denote the number of such that

with . In accordance with Lemma 2, ,
which is the cardinality of the set

is odd

is equal to . Thus, , where .
By applying Parseval’s relation to , we obtain

implying . Finally, we have

By the previous theorem, we point out that is bent if
and only if . This result is related to the theorem of
[4, p. 94].

VII. ON BENT FUNCTIONS WHICH DO NOT ADMIT A -BENT

DECOMPOSITION

When a bent function in admits of a -bent decompo-
sition, then it is related to some bent functions in . It is
not the case for bent functions which do not admit a-bent de-
composition. In this section, we give two examples of infinite
classes of bent functions for which such a decomposition is not
possible. We first define some notation.

We will use the -ary expansionof any positive integer
which is

where

The Hamming weight of the-ary expansion of is denoted by
. Two integers and can be related by a partial order,

denoted by , which is, in fact, a relation on their-ary expan-
sions

Note that means that covers but is not equal to .
Recall that, when we compute modulo, we have

(11)

A. Some Partial Spreads

Here, we identify any function in with a function from
the finite field into . In this subsection, we focus on the
class of Boolean functions of the form , where

and is the trace function from to

For any in the -cyclotomic coset of modulo ,
i.e., , obviously cor-
responds to composed with a linear automorphism of .
Therefore, we will assume thatis the smallest element of its
cyclotomic coset. Note that such a functioncould be constant
only when there is somedividing such that

or equivalently

From well-known properties of the Reed–Muller codes, the
degree of such a function is equal to , the weight of the
-ary expansion of . Note that for any in we have

We know that the degree of is less than or equal to
.

Now, we are interested in the values of the second derivatives
of the functions . Let and in be such
that . Then, we have to study the polynomial

which is in fact

Whenever , for some , we have

as we expected since the degree of is at most .
So

(12)

where and .

Lemma 3: Let , even, and consider the Boolean
functions in of the form

, where the weight of satisfies and is
the trace function from to .

If the -ary expansion of , say , is such that
for some and , , with
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then the function is such that all its second
derivatives are not constant.

Proof: We consider the polynomial given by (12)
and we are going to prove that this polynomial cannot be con-
stant. Since , then can be expressed as
follows:

where only depends on , , and and consists of the
smallest elements of the-cyclotomic cosets modulo
of all which appear as exponents ofin (12).

This polynomial is of degree strictly less than . More-
over, we are sure that for any nonzero , the function

cannot be constant when . Indeed,
implies that the cyclotomic coset ofhas cardinality : it is im-
possible to have for some di-
viding , .

Hence, , for all , if and only if for all .
On the other hand, if and only if for
all . This is equivalent to for all and .

In order to prove that at least one, , is not zero, we
will choose an such that for all , .
By hypothesis, the-ary expansion of , , is such
that: , and there is a pair ,
with , such that . We take

For instance, if then could be chosen as follows:

with

We have clearly and . Moreover, since
, we have for all

because and either or exceeds
(since ). Then is the leader of its cyclotomic coset

and, therefore, it is the only one element of its cyclo-
tomic coset appearing as a power ofin (12). This implies

By hypothesis, . The equality
would imply which is possible when
only, since . We conclude that .
Therefore, cannot be a constant polynomial, completing the
proof.

Note that other specific classes of functions , corre-
sponding to particular values of, can be studied with similar

methods. It seems complicated to treat the general problem; the
next example illustrates this fact.

Example 2: Let be even and . Let us consider the
Boolean function in

with (13)

Let . By using (12) and the form of, we obtain

with . We first observe that

using that , . Let
. Since , we have

• if then ;

• if then ;

• if then .

Therefore,

We have proved thatthe Boolean functions defined by (13) have
at least one constant second derivative.

Now, we will point out that there is an infinite class of bent
functions which satisfy the hypothesis of Lemma 3. These func-
tions belong to the partial spread family, introduced by Dillon as
the class [6, pp. 95–100]. We first recall the result of Dillon.

Theorem 9: Let with . Let

Let us denote by a set of subspaces of
of dimension satisfying

The function is bent when it satisfies either(i) or (ii) . The bent
functions which satisfy condition(i) (resp.,(ii) ) are said to be
in the class (resp., ).

(i) with ;

(ii) with .

Notation of Theorem 9 is preserved. Letdenote a primitive
root of with ; by shifting the cyclic subgroup of

we obtain the sets , providing the partition

Now, for all , with , we have for any

Thus, the Boolean function , , is con-
stant on any for any (and is such that ). This func-
tion is bent and belongs to if there are exactly expo-
nents in the interval such that . This
type of bent functions was introduced by Dillon who stated the
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sufficient condition on which we explain now. Let ;
then is a generator of the cyclic subgroup of order . Con-
sider the set of binary codewords of length

where . These codewords form anirreducible cyclic
codeof length and dimension . It appears that is bent
if and only if this code contains a codeword of weight .

Since and are relatively prime then
for some and some . Hence, is a shift of ,
providing the same weight. The existence of , such that

, for any , was established by Lachaud and
Wolfmann [14, Theorem 6.6].

Theorem 10:When a function , defined as in Lemma 3, is
bent then its dual admits neither a bent-decomposition nor
a three-valued almost optimal-decomposition.

In particular, this property holds for the infinite class of bent
functions of ,

where satisfies

(where is a th root of unity). Moreover, each is
equal to its dual. So (as well as ) admits neither a bent
-decomposition nor a three-valued almost-optimal-decom-

position.
Proof: In accordance with Theorem 7, the first part of the

theorem is immediately deduced from Lemma 3. The bent func-
tions , especially, satisfy Lemma 3.

Now, we focus on . We have where

such that

Here, we use another scalar product, defining the linear func-
tions as follows:

Then, the dual of is defined in each by

We know that gives
(from [6, Remark 6.3.10] or by applying Theorem 5). Moreover,
we have here

for any and in (since ). This shows that
. Thus, . Now, taking

in account that we compute on

Thus, if and only if , providing that
. Therefore, the Boolean function is exactly the

function , completing the proof.

Remark 4: The equality can be seen by using the
description of codewords of the concerned irreducible code,
given in [14, Proposition 6.5].

B. On Bent Functions of Family

This subsection is devoted to the-decompositions of the bent
functions which belong tofamily [6, pp. 89–95]. Here, we
consider for the completed version of the class introduced
by Maiorana and McFarland [15]. In others words, we consider
all functions which are affinely equivalent to the functions in the
original family.

Now, we identify with , i.e., any element of
is denoted by with .

Definition 10: Family consists of all functions in
which are affinely equivalent to

where is any permutation on , is any Boolean function in
, and “ ” denotes any scalar product on . Any function in
is bent.

This class of bent function is characterized by the following
property.

Proposition 9 [6, p. 102]: A bent function belongs
to family if and only if there exists a-dimensional subspace

such that the derivative of with respect to every
two-dimensional subspace of is identically zero.

Now, we focus on the pairs such that the derivative
of the dual of with respect to the two-dimensional sub-
space is constant. Note that the following result holds for
any choice of the scalar product on .

Proposition 10: Let and let be a bent function of
variables in family

where is a permutation on and is a Boolean function
in . We denote by the inverse of and by the
-dimensional subspace defined by .

Let and be two nonzero distinct
elements of . We have

• if , then ;

• if with , then
where if and only if the -variable Boolean
function

has a nonzero linear structuresatisfying ;

• if , then where
implies that

for all .
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Proof: The dual of is defined by [6, p. 91]

Therefore, the function is equal to

(14)

It clearly appears that

The condition corresponds to one of
the following three cases:

• : ;

• : ;

• : .

Therefore, we obtain that

where is the unique nonzero element in and
is a nonzero element of . We have proved that, for such

and , if and only if is a linear structure for the
-variable function with .

We now assume that and both and differ from
. The first term in (14) is the only one which depends on.

Hence, if is constant, then this term vanishes, i.e.,

for all .

We now exhibit an infinite class of bent functions in family
which admits no bent-decomposition. Recall thatadmits

a bent -decomposition if and only if there exist two nonzero
distinct elements and in such that . From
the previous proposition, it implies that satisfies one of the
following properties.

(P1) There exist two nonzero distinct elementsand in
such that for all

(P2) There exist two nonzero elementsand in such
that

on

First, we show that Property(P1) is usually not satisfied when
is a power permutation, i.e., where is identified

with the finite field with elements .

Lemma 4: Let be a power function over with
. Then, there exist two nonzero distinct elements

and in such that for all

(15)

if and only if with and .
Proof: We consider two nonzero distinct elementsand

in and set

Without loss of generality, we can assume thatis the smallest
element in its -cyclotomic coset modulo . Indeed,

satisfies .
By expanding the terms of , we obtain

If we set we obtain a simpler expression

The mapping satisfies (15) if and only if there is
, , such that for all . We are going to

prove that this is generally impossible.
If , there is , , such that

. Then

Thus, if and only if . Similarly, .
If then and we obtain

which vanishes for only, a contradiction. Thus, we have
proved that does not satisfy (15) when .

When , i.e., , there is such that
if and only if , completing the proof.

Open Problem:Characterize all nonquadratic permutations
over for which there exist two distinct nonzero elements
and such that for all

Now, we focus on some permutationswhich do not satisfy
the previous property, and we determine whether
has a bent -decomposition, i.e., whether satisfies Property
(P2). Here, we choose for analmost perfect nonlinear permu-
tation on [16], [17]. A function over is called almost
perfect nonlinear (APN) if all equations

have zero or two solutions in . Note that the inverse of an
APN permutation is APN.

Proposition 11: Let be an even integer such thatis
odd. Let be an APN permutation on , and let denote the
inverse permutation. Then, the-variable bent function
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where is any Boolean function in , admits a decomposition
into four bent functions if and only if there exists ,

, such that the set is an
affine hyperplane.

Proof: The bent function admits a decomposition into
four bent functions if and only if its dual has at least one
second derivative which is constant and equal to. We now
apply Proposition 10 with notation .
If with , then there exist two
distinct elements and in such that for all

This situation cannot occur since is APN. Therefore, if
then has cardinality . Moreover,

we know from Proposition 10 that there exist two nonzero
elements and in such that

for all

Note that is an APN permutation if and only if the set

has exactly elements for any . This comes from the
definition: it is clear that has at most a cardinality , since

and give the same values; the cardinality ofis exactly
if and only if each equation has

or two solutions, i.e., is APN. Therefore, we have proved that
if admits a bent -decomposition, then there exists ,

, such that is an affine hyperplane.
Conversely, if there exist two nonzero elementsand such

that the set is equal to the set
then we have

Thus, admits a bent -decomposition.

Almost bent functionsform a particular subclass of APN map-
pings over for odd . A function over is called almost
bent if any nonzero linear combination of its Boolean compo-
nents, for , is three-valued almost optimal
[17], [18].

Remark 5: The permutations over such that all sets, for

are affine hyperplanes have been introduced in [19] and they are
calledcrooked functions. A part of the proof of the next lemma
can be found in [20] (using another terminology). The only ex-
amples of crooked functions known at present have degree
[19, p. 8].

Lemma 5: Let be an odd integer . Let be an APN
function over such that, for any nonzero , the set

is an affine hyperplane. Then, is almost bent and its degree
cannot exceed .

Proof: We denote by the hyperplane and by
its complement. We first prove that all sets, are

distinct: otherwise, there existsand such that
for some . Then, for any , is

equal to

and belongs to since it can be expressed as the sum of two
elements in . Then, cannot be an affine hyperplane
since . Therefore, for any , , there
exists a unique such that .

We now consider the linear combinations of the Boolean
components of , i.e., the Boolean functions

For any , we have [10]

Since is an affine hyperplane for , is either
balanced or equal to. It is equal to for the unique
such that . Therefore,

i.e., all functions , , are three valued almost optimal (or
equivalently is an almost-bent permutation). Moreover, all
have a nonzero linear structure. We know that any three-valued
almost-optimal function of variables (with odd and )
having a linear structure ispartially bentwith degree less than
or equal to (see Proposition 5).

Now, we apply Proposition 11 in the case whereis an APN
power permutation . Note that APN power permuta-
tions over only exist for odd (see [21], [22, Proposition 4]).
In the sequel, is identified with the finite field of order ,

, and the linear functions are the mappings on
, where describes and is the trace function from
to . The scalar product of two elementsand then

corresponds to .

Proposition 12: Let be an even integer such that
is odd and let denote the trace function from to . Let

be an APN power permutation over and let
denote the inverse mapping. Then, the following properties are
equivalent.

(i) The -variable bent function

where is any Boolean function in , admits a de-
composition into four bent functions.

(ii) The -variable Boolean function

has a nonzero linear structuresuch that .
(iii) For any nonzero , the set

is an affine hyperplane.
Moreover, each of these properties implies that is

almost bent and that it has degree at most, i.e.,
for .
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Proof: Let us denote by the functions

According to Proposition 11, we know thatadmits a decom-
position into four bent functions if and only if there existsand

in such that the set is
equal to the set (i.e., ). So
(ii) implies (i), and(iii) implies (i).

Assume that(i) holds, i.e., that there exist two nonzero ele-
ments and such that . Actually, any function can
be obtained from by shifting the codeword

. More precisely, if with , we have
. Then, we obtain for any

Thus, for any , , for
. Moreover, the sets

are affine hyperplanes (since has cardinality because
is APN). We have proved that(i) implies (ii) and(iii) .

Therefore, all three properties are equivalent. Moreover, it fol-
lows from Lemma 5 that(iii) implies that is almost bent
and has degree at most .

Proposition 12 enables us to exhibit some bent functions in
family which admit no bent -decomposition. We only have
to choose an APN power permutation over which
is not almost bent or whose degree exceeds. As an example,
the following corollary exhibits an infinite family of cubic bent
functions in family which admit no bent -decompositions.
These functions are derived from the quadratic APN power per-
mutations (defined by Gold exponents [23]). They exist for any

such that and . Recall that we proved
that, for any , any -variable cubic bent function admits
a decomposition into four bent functions (since its dual has de-
gree ).

Corollary 6: Let be an even integer such thatis odd
and . Let be any Boolean function in . The -variable
bent function

where is any integer such that and ,
admits no decomposition into four bent functions.

Proof: The power function is an APN per-
mutation [16], [23]. The previous proposition implies that if
admits a decomposition into four bent functions, then the func-
tion corresponding to the inverse of has
degree at most . But, it is known that the inverse of
this power permutation has degree [16, Proposition 5]
because

Other examples of bent functions in which admit no bent
-decomposition can be derived from APN power permutations

which are not almost bent. Some examples are over
for [14], [16], and for ,
where [24], [25]. Therefore, for , odd, and

, the following -variable bent functions in admit no
bent -decomposition:

where is any Boolean function in and or
with (since

).

VIII. C ONCLUSION

Our study points out that the bent functions may differ on
the properties of their-decompositions. For instance, any bent
function whose dual has degreeadmits a decomposition into
four bent functions, whereas both families and contain
some bent functions which do not satisfy this property. In this
context, it appears that the structure of a bent function highly
depends on some properties of its dual, such as its degree and
the Hamming weights of its second derivatives. Moreover, we
have proved that the bent functions whose duals have a constant
second derivative present some specificities. From any such bent
function , it is possible to derive some other bent functions.
When , the restriction of to is a
bent function, and when , the function is
bent. However, determining the structures of the bent functions
which are obtained this way from a known bent function remains
an open problem.
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