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Decomposing Bent Functions

Anne Canteaut and Pascale Charpin

Abstract—in a recent paper [1], it is shown that the restrictions The paper is organized as follows. The main definitions and
of bent functions to subspaces of codimensioh and 2 are highly  pasic properties are given in Section 1. Most of these properties
nonlinear. Here, we present an extensive study of the restrictions are usually known: they are proven for clarity. In Section Ill, we

of bent functions to affine subspaces. We propose several methods. . . L .
which are mainly based on properties of the derivatives and of the investigate the links between the derivatives of a bent function

dual of a given bent function. We solve an open problem due to and those of its dual. This leads to a general property on the re-
Hou [2]. We especially describe the connection, for a bent function, strictions of the derivatives of a bent function to hyperplanes.
between the Fourier spectra of its restrictions and the decomposi- Section IV focuses on bent functions which have at least one
tions of its dual. Most notably, we show that the Fourier spectra  atfine derivative. We point out that this property is invariant by

of the restrictions of a bent function to the subspaces of codimen- duality. M | bl due to H ol
sion 2 can be explicitly derived from the Hamming weights of the uality. Moreover, we solve an open problem due to Hou [2]:

second derivatives of the dual function. The last part of the paper We prove that for any evem > 6, m # 8, there exist cubic
is devoted to some infinite classes of bent functions which cannot bent functions ofrn variables which have no affine derivatives.

be decomposed into four bent functions. Section V is devoted to the fundamental properties of the restric-
Index Terms—Bent functions, Boolean functions, derivatives tions of any bent functiorf and of its dualf to some subspaces.
of Boolean functions, Reed—Muller codes, restrictions of Boolean Our main resultis given by Theorem 6: we show that the Fourier
functions. spectra of the restrictions gfto a subspac& and to its cosets
are related to the derivative gfwith respect to the dual space
I. INTRODUCTION VL. Section VI is then dedicated to the previous relationship
_ _ when a subspacé of codimensior? is considered. We give an
B ENT functions are the most famous Boolean functions,picit expression of the Fourier spectra of the restrictions of
since they achieve the upper bound on nonlinearity. {§ 7 and to its cosets as a function of the weight of the second
other words, bent functions provide cosets of the Re?d_—Mu”Sérivative off with respect td/+. Most notably, we prove that
code of length2™ (m even) and order one whose miniMuMpe restrictions of to V and to its cosets are bent if and only if
Hamming weight corresponds to the covering radius of thie derivative off with respect to/* is constant and equal to
Reed-Muller code. As exceptional objects, bent functions afering|ly, Section VI focuses on the decompositions into four
related to combinatorial problems such difference setor f,nctions of some bent functions which belong to fanfily~
with cryptographic criteria such gserfect nonlinearity[3]. oy to classM. For both classes, we exhibit infinite families of
When effective constructions are considered, there are two mgith functions which cannot be decomposed into four bent func-
classes of bent functions, théaiorana—McFarlandclass and ions. Our constructions are related to other works concerning
thepartial spreadsclass (respectively denoted Byl andPS).  the weight enumerators of some cyclic codes and the so-called
In his thesis, Dillon [6] introduced the second class and he gaygnost benfunctions.
a lot of important properties characterizing bent functions. Two
new classes, which can be considered as derivatives of some Il. PRELIMINARIES
functions of M were later introduced by Carlet [4]. Dobbertin )
also gave a construction of bent functions which leads to sorfte Notation
elements ofM and of PS as extremal cases [5]. However, the We denote byF', the finite field withq elements. Theveight
problem of the classification of bent function remains open. of a binary vectorw = (ay, ..., a,) € F5 is the Hamming
In this paper, we present a set of properties and tools faeight
the study of the restrictions of any bent function to any sub- N
space. Dillon’s work [6] and recent papers of Carlet are here our wt (a) = Z a;.
main references. On the one hand, we want to consider the gen-
eral problem of iterative constructions of bent functions. On the
other hand, our interest is for other functions (of any number 6f Boolean function ofn variablesis a function fromFs" into

variables) which can be built by means of the exceptional profi2; and we denote bj,, the set of all Boolean functions of
erties of bent functions. m variables. Anyf € B,, can be expressed as a polynomial,

called itsalgebraic normal form

i=1
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Any Boolean function in3,,, can also be identified with the F3*, thederivative off with respect ta: is the functionD, f €
codeword of lengtR™ consisting of all valueg(z), = € F;'. B, defined by
This representation is unique only up to an orderingFgt.

The Reed—-Muller codef length2™ and order, 0 < 7 < m, D.f(z) = f(z +a) + f(z).

denoted byR(r, m), is then the linear code composed of the

vectors corresponding to all Boolean functionssip of degree gq instance, it is well known thaf is bent if and only if all
less than or equal to. its derivativesD,, f, a # 0 are balanced. Thinear spaceof

The usual dot product between two vecteandy is denoted 5 ggolean functiory is the subspace of thosesuch thatD, f
by = - y. We denote by the dual of a subspacdé C F3' s 4 constant function. Such a nonzerds said to be dinear
relatively to the usual scalar product structurefor f.

Let £ be any subset of;". We denote by)r the Boolean
function in3,,, whose value o is 1 ifand only ifz € E; itis
calledthe indicator of .

For any two functionsf andg in B,,, the functionfg cor-
gponds to the usual product®,: fg(x) = 1 if and only

f(z) = g(z) = 1. Foranyf € B,,, the functionf¢g
is calledthe restriction off to E. Note thatf¢g(z) = 1 if
and only if f(z) = 1 andz € E. WhenV is ak-dimensional
linear subspace df'y’, the restriction off to V, f¢y, can ob-
F(f) = Z (_l)f(z) = 2™ — 2wt (f) viously be identified with a function of variable_s. Similarly,

for any cosetn + V' of V, we identify f¢,+v with b € B
as follows:h(z) = f(z + a), z € V. Note that the function
wherewt (f) is the Hamming weight of, i.e., the number of h € B associated withf ¢, 1 is defined up to a translation
r € F3 suchthatf(z) = 1. Afunction f is said to bévalanced = — x + v, v € V. But all properties studied in the paper are
if Z(f) = 0. invariant under translations.

t={zeFy|\VyeV,z-y=0}

For anya € F7', ¢, is the linear function ir3,,: = — « - .
In some particular cases (Sections IV and VII-B) we will use
another dot product (and, thus, another representation for f
linear functions). !

For anyf € B,,, we denote byF(f) the following value
related to the Fourier (or Walsh) transform fof

a:EFSI

Definition 1: TheFourier spectrunof a functionf € B, is Note: For any subspac¥ of dimensionk, any basis oft”
the multiset can be completed providing a basislof'. SoV x W = F7';
the cosets o¥ are the flats: + V', a describingiV'.

o) FJ'}. _ .
{F(f + ¢a) a € Fy'} Definition 4: Let f € B,, and letV be a linear subspace of

Theextended Fourier spectruof £ is the multiset F7' of dimensionk. Thedecomposition of with respect td/
is the sequencgf ¢, v, a € W} whereV x W = F3' and all
{F(f 4+ ¢a+¢), a € Fy' e € Fy). fda+v are considered as Boolean functiong3in

The values of the extended Fourier spectrum are symmetric Wgh Main Formulas on the Restrictions

respect ) since7(f + ¢a +1) = =F(f + ¢a). The following formulas will be intensively used in this paper.

Note that we are not only interested in the values appearifigey are usually known but we give the proofs for clarity.

in these spectra, but also in the number of times they occur. Proposition 1: Let f € B,, and letV’ be a subspace ¥}’

Definition 2: Thenonlinearityof a functionf € B,, is the of dimensionk. Then
Hamming distance betweghand the set of affine functions. It

is given by S° F(fHn) =2 F (foy), (1)
veV L
2= L), L) = max F( 4 )l o
a€F3 where the functiompy is the indicator oft.
Moreover, for any: # 0, let f o 7, be the Boolean function
The nonlinearity off is then the minimum Hamming weightin 33,, defined byf o Ta(7) = f(x + a). Then
of the cosetf + R(1, m). Whenm is even, it is known that
the maximal value of this weight ™1 — 2m/2-1 and that
the extended Fourier spectrum of the functions having maximal

Z f(f 0Ty + ‘P'v) = 2m_k]:(f§ba+V)' 2

nonlinearity is unique [7]. vevs
Definition 3: A Boolean functionf € B,,, m even, is said to Proof: Recall thatp,(z) = z - v
bebentwhen its nonlinearity is equal "~ — 2/2-1, The
extended Fourier spectrum of such a function consists of two ™ 7(f+¢p,)= Y Y (—1)f+e@
Va|ueS,:|:2m/2 UGVL UGVL IGF_

The Fourier spectrum of a Boolean functign € B,, is S (=) ST (=
strongly related to the properties of its derivatives. For amy zeFy veVL
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But) oy (=1)*" =0unlessr € V; inthis case, the sum is

equal to2™*, So

S F(f ) =2 Y (-

veVL zeV
=2"" F(fov).
The second equation is obviously deduced, siifce,)dy is
exactly the restriction of to the coset, + V. O

Formula (2) can be interpreted in several ways:

* it means that (1) holds up to any translatign(note that

Proof: The result is easily deduced from the definition.
Indeed

f((f + @a) + (,01,) = 2m/2(_1);‘(a+v)

for allv. Then,f + ¢, = f o7,. By applying this relation tdf,
we obtain that the dual of o 7, is f + 4. O

Therefore, there is a symmetry between two sets of bent func-
tions: the functiong o 7, obtained by translating are related
to the bent functiong + ¢, involved in the Fourier spectrum
of f. This correspondence will be investigated in the next sec-

many properties of a Boolean function are invariant unddPns: concerning the restrictions gfand of f. On the other

translation);

hand, there are some properties which are not satisfied by both
f andf. We will see such situations concerning the derivatives

« formula (2) also provides an explicit relation between thgf bent functions. There are also propertiesfafhich cannot
Fourier spectrum of and the weights of all its restrictions pe easily deduced from propertiesfofThe main open problem

fdarv:foranya € F3', we have
Y EDTFE(f + o0) = 2" F (Fpary ),
,Ue‘/J_

since

f(f 0 Tq + QOU) = Z (_1)f(z+a)+a:-'u
zeFY

=(=D)"F(f + o)

The weights of the restrictions gf to V' and to its cosets
are also related to the Fourier spectrumfdby the following
formula, which is proved in [1, Theorem V.1].

Proposition 2: Let f € B, and letV be a subspace df;"
of dimensionk. Let W be such that’ x W = F;". Then

Y P +e) =20 Ffarv).
vEVL aeW
Most notably, if f is a bent function

> F(fparv) =27

aceW

C. The Dual Function

is the exact degree of when the degree of is known. It is
easy to prove that both degrees are equal wheas degree
orm/2. Otherwise, there is only a bound on the degreg [&.

D. Restrictions of a Bent Function to a Subspace of Large
Dimension

The properties of the restrictions of a bent function to a sub-
space of codimensiohand2 (and to its cosets) have been in-
vestigated in [1]. This study points out the major role played by
the functions whose extended Fourier spectrum takes on exactly
three values. Such a function is callédlee valued

Definition 6: A Boolean functionf is said to behree valued
if its extended Fourier spectrum takes on exactly three values,
0, L(f), and—L(f).

Itis well known that the extended Fourier spectrum of a three-
valued function is completely determined by its nonlinearity
(see, e.g., [9, Theorem 2]). Here, we improve this result since we
give the Fourier spectrum of such a function (i.e., the signs of the
valuesF(f + ¢, ) are also considered). Note that the following
proposition includes both three-valued and bent functions.

Proposition 4: Let f be a Boolean function af: variables
such that its extended Fourier spectrum takes at most three

Since its Fourier transform takes two values only, any be¥@lues,0, £(f), and —L(f). Then, L(f) = 2° for some

function has aual.

Definition 5: Let f be a bent function ofn variables. The
dual functionof f, denoted byf, is the Boolean function af:
variables defined by

F(f+¢,) =2"2(-1))®), v e Fy.

The duality of bent functions was introduced by Dillon [6]. It

is easy to see that = f, implying that is bent as well.

The following proposition shows that the action of a transla-

s > m/2 andf has the following Fourier spectrum:

F(f + ou) number ofu € F3'
0 2m — g2m=2s
9s 92m—2s—1 4 (_1)f(0)2m—s—1
_9s 92m—2s—1 _ (_1)f(0)2m—s—1

tion on a bent function corresponds to the addition of a linedforeover,s = m/2 if and only if f is bent.

function to its dual.

Proposition 3: Let f be a bent function ofn variables. For
anya € Fy', f o7, denotes the bent function— f(z + a).
_Then, the dual off + ¢, is f o 7,. So the dual off o 7, is

[+ ¢a.

Proof: Set
L=#{ueFy, F(f+pu) # 0}
Parseval’s relation implies that
L-L2(f) = 2*™, with I < 2™.
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Thus, we havel(f) = 2° andL = 2" with 2s + » = 2m and valued almost optimal, or thé¢, - have the same extended
r < m. We then obtain thaf(f) = 2° with s = (2m — r)/2.  Fourier spectrum with five valugg +2(m~2)/2 £2m/2,
Note thats > m/2, sincer < m.

Let L4 (resp.,L_) denote the number af € F5" such that I1Il. LINKS BETWEEN THE DERIVATIVES OF A BENT FUNCTION
F(f 4+ ¢u) = +2° (resp.,—2*). Formula (1) leads to AND THE DERIVATIVES OF ITS DUAL
> F(f +pu) =2m(-1)/© By definition, a bent function and its dual are related by their
veFy Fourier spectra. But the duality actually provides a closer link
=25(Ly — L_) between a bent function and its dual. The next proposition shows

that, in a certain sense, the Fourier spectrum of any derivative
of a bent functionf is linked with the values of the Fourier
Hence, transforms of the derivatives ¢t This is deduced from a simple
observation. Note that for any fixedwe have for alk

. F(F + @ara) F(f + 0u) =27 (=) +47)
providing = 2’”(—1)D“J~C(“). 3
L_ = 22m—2s—1 _ (_1>f(0)2m—s—1.

— 25(2L+ _ 22m72s).

L+ — 22m—25—1 + (_1)f(0)2m—s—1

D' This shows that the functiod, f(u) = 1 as many times as

For our purpose, the three-valued functions which have the F(f + @atu) = =F(f + ¢u).
highest possible nonlinearity are of most interest. And this holds exactl™~! times, sinceD,, f(u) is balanced.

Definitiion 7: A three-valued Boolean function i,, is Proposition 6: Let f be a bent function ofn variables and
calledthree valued almost optimél £(f) = 2("*1)/2 when  f pe its dual. Then, for any, b € F2*, we have
m is odd, andZ(f) = 2™/2+! whenm is even. .
The partially bent functionsintroduced by Carlet [10], are F (D,,,f + ‘Pb) = F(Duf + #a).
notably studied in [1]. These functions are three valued and Proof: We simply check the formula, by using (3):
could be almost optimal. We will say that such a function is ﬁ’(Daf + ) is equal to
partially bent optimalfunction. In this paper, such a function, Do F(u) -
with an odd number of variables, will appear several times. SE (=1) (=1)
we recall the equivalent definitions (see [1, Proposition 11.6 af{§'

Corollary V.4)). =27 " F(f + Cara) F(f + 0u) (-1
Proposition 5: Letm be an odd integefn > 5, and letf € wers
B,.. Thenf is partially-bent optimalif and only if it satisfies =27 Y > (—1)f I+t () Wtuwy ()b
one of the following equivalent properties: ueFy z,yeFy
(i) thereisb # 0 such thatD, f is balanced unless € =2 m Z (=1)f @ +f)taw Z (—1)w(tuth)
{0, b} and D, f is constant; x, yEFD ueFy
(i)  f is three valued almost optimal and thergist 0 — Z (—1)F @)+ etb)ta
such thatD, f is constant. cCF
The degree of , when itis partially bent optimal, cannot exceed _ F(Duf + 0a). 0O

m—1

2

The links between bent functions and three-valued almost opMoreover, by applying Parseval’s relation fa, f and ac-
timal functions are described in [1, Theorems V.3 and V.4]; wh§Prding to Proposition 6, we obtain

we present here is in a slightly different form. Z F2(Dyf + o) = Z F2 (Daf-i- %) —922m_ (4)

Theorem 1:Letm be an even integer. > 4, and letf bea  0€F3" beFy
bent function ofm variables. Letf be any subspace &' of Actually we have more, as we explain now.
codimensiori, and letH denoteF;' \ H. Then,f¢u andfo
are three-valued almost optimal functions(ef — 1) variables
and for anyu € F3;'', we have

Corollary 1: Leta be any nonzero elementB%" and denote
by H, the hyperpland0, a}*. Then for any bent functiorf
with m variables, we have

.7:2 u f2 T u f m
(fou +ou) # F (fog + ¢u) Z~7:2(Dbf+<;0a):Zfz(Daf+<Pb):22 )
i.e, FX(fom + @u) = 2™ ifand only if F2(fdz + ¢u) = 0. beH, beH,
Theorem 2: Let m be an even integer. > 4, and letf be Moreover, forb ¢ H,
a bent function ofn variables. Letl” be any linear subspace F(Dof +¢a) =F (Daf-i- (pb) =0.

V c F7 of codimensior2 and let(f¢.+v, a € W) denote
the decomposition of with respect td/, with W x V = F".

Then, all thef ¢o417, a € W, have the same extended Fourier D (Daf'+ wb) — 92m
spectrum: either all th¢e, v are bent, all thgf ¢, are three beH,

Proof: Let us setz # 0 and note that we have
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because this holds for any functigne B5,,, which has a linear (i) = (i): Suppose thab is a linear structure of, i.e.,
structurea such thatD,g = 0. Indeed, for such a function, D,g = ¢. Sinceb € H,, we have
we obtain (see [1, Remark V.1]) (Dyf)ba, = Dpg = c.

> Fg+ ) =2 H(F(Dog) + F(Dag)) Moreover
beH, .
_92m F(Dof) = F((Dof)on,) + F(Dof)dg,) =0
. , ' i , — = 1. Thi
sinceF(D,g) = 2™. Thus, we have, according to (4) isg;:aegigz)i)?lin;etZhereforéDbfybHq et ThIDS
Z F? (Daf-i- @b) = Z FA(Dyf +¢a) =0 Hou proved in [2] that forn. = 8 any cubic bent function in
b¢H, bgHa B, has at least one derivative R(1, m). This property does
completing the proof. O not hold form = 6 [7]. This observation leads to the following

open question formulated by Hou [2]: for what valuesofio
there exist cubic bent functions af variables which has no
F(Dyf) + F(Dpf + ) = 2F(Dyf)pm,) derivative inR(1, m)?

where (D, f) — 0, for b £ 0, since is bent. According to The following lemma enables us to completely solve this
b - ’ L . B - - % . . . e .
Corollary 1, we obtain, for any arly¢ H, problem. In the remainder of this sectidn; is identified with

the finite field with2™/2 elementsF, - .
2F((Dyf)pm,) = F(Dof + ¢a) = 0. Lemma 1: Letm = 2t be an even integen. > 6, and leti
Thus, we have proved the following property of derivatives dfe an integer such that< i < t andged(2* +1, 2* — 1) = 1.

Note that, by applying Proposition 1, we have for any

bent functions. The cubic bent function af: variables defined by
Theorem 3: Let f be any bent function of: variables. Lef{ J: Fou x For — Fy
be any hyperplane dfy’. Then, for anyb ¢ H, the derivative (z, y) — Tr (zy® +1)

Dyfi h that its restriction n >\ H are balanced. . . L
vJ is such thatits restrictions # and toF;"\ Hf are balanced whereTr is the trace function fron¥'y: to F'5, has no derivative

in R(1, m).
Proof: The power function: — 2 *! is a permutation
The previous relationship between the derivatives of a besft Fy: sinceged(2! + 1, 28 — 1) = 1. Then, it is well known
function and the derivatives of its dual is of most interest for th@at f is bent; it belongs to the familyt and has degre®(see
bent functions which have at least one affine derivative. We n@®ection VII-B). We consider the derivative of such a functjon
prove that a bent function has an affine derivative if and only iy direction(a, b)

its dual has an affine derivative. ) i i
D(a,b)f = Tr(:ry2 +1) + Tr((z + a)(y + b)2 +1)
=Tr (ay2i+1 + (z + a)(byQi + bziy + b2i+1)) .

IV. BENT FUNCTIONS WITH AFFINE DERIVATIVES

Corollary 2: Let f be a bent function ofn variables. Let
andb be two nonzero elements ;" ande € F5. Then, the

following properties are equivalent. Whena # 0, it is clear thatD, ,)f is quadratic, since
(i) Duf = pq+e. Tr(ay?*') cannot be constant. On the other hand, we have for
(i)  Duf = +e. everyb # 0
(i)  Thefunctionf¢y, , considered as a function @fi—1) Do nf="Tr (x(byZi F6¥y+ b2i+1)) .

variables, is partially bent optimal with linear space . L . .
(0, b}, Whereila der?/otes thephyperplar{é. a}t. P Therefore,D g 4 f is affine if and only if the functiorny

Proof: by? +b2 y+b% +1is constant. This means that for apg F,
(i) < (ii): Applying Proposition 6, fob such thatD, f is by2i + b2iy + b2+ = b27'+17 (5)
affine (D, f = . + €), it appears that

~ or equivalently
F(Daf + 1) = FDof + 0a) = (-1)°2",

y2i71 —_p2L
This means thab, f = ¢} + ¢.

(i) = (iii): Note thatD, f = ¢, + ¢ implies thath € H,;
otherwise, Dy Dy f = a - b = 1, a contradiction. Ley = fom, .
Then, foranyx € H,, we haveD,g = (D, f)ém,. Fora = b,

It follows that yb~! belongs to the subfield aFy: of order
28cd(i.t) Therefore, the number of solutiopsof (5) is exactly
28cd(i. 1) < 9t pecause < t. So such a functiorf is a cubic

we obtain bent function which has no derivative R(1, m). d
Now, we use the previous infinite family of cubic bent func-
Dog = (pa +€)¢n, = tions for proving the following theorem.

i.e., b is alinear structure of. Sinceg is three valued almost Theorem 4:Let m be an even integern > 6. There exists
optimal (Theorem 1), we deduce thgis partially bent optimal. a cubic bent function ofn variables which has no derivative in
Moreover, its linear space is exacfl§, b} (see Proposition 5). R(1, ) if and only if m # 8.
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Proof: Since all cubic bent functions of eight variablesvloreover, for anys € F3'
have a derivative itR(1, 8) [2], we only need to exhibit a cubic

bent function ofn variables which has no derivative R(1, m) > F(f + Pape) =22 (- Fa+v)
for any evenmn > 6, m # 8. veEV veV

Letm = 2t. First, we prove that there exists an integsuch =2"F((f + @a)bvs)
thatl < i < t andged (2! + 1, 28 — 1) = 1if and only if ¢ —om/2F (fgzﬁ )
is not a power of. Recall thakged (2! + 1, 2 — 1) = 1 if and A

only if is odd. Then, ift is not a power o, we have . - . ; .
( t)
¢ — or s Rerer > 0 ands is an odd integes > 3. In that case, since the restriction of the function— f(z + a) to V is the

restriction of f to the coset + V. Note that whem: € V we
i = 2" satisfies the previous condition singe.-— = s is odd / + €

gcd(z, t)
andi < t. We then deduce from Lemma 1 that there eX|stsObtaln the first formula again. =

cubic bent function ofn variables which has no derivative in Remark 1: Let V' be a linear subspace &f;" of dimension

R(1, m) whenm is not a power o . k and letW be such that’ x W = F3". The Fourier spectrum
Suppose now that= 2" with > 3 sincet > 3 andt # 4. of the(m — k)-variable functionf¢y-. corresponds to the set
_ or—1 __or—1 H
Lett; =2 —1landty =2 + 1. Sincer > 3,ty > t1 > {F((f + ou)bys), u€ W1

2 and neithert; nor ¢, is a power of2. Then, there exist two

integersi; andi, such that This comes from the fact that, for afiy;, uz) € V x W and

foranyz € V+

1<iy <t;, ged(2' 41,2 —1)=1 Plur, ) () = P, (T) + Quy () = puy (2).
and Therefore,wu, u.)¢v: = @u,¢v 1. In this context, the pre-
1< iy < to, ged(2 41,22 — 1) =1. vious proposition means that the knowledge of the Fourier spec-

trum of f¢y . is equivalent to the knowledge of the weights of
the restrictionsf ¢, v, a € W, where(f¢, v, a € W)isthe

Therefore, the following cubic functiofiof m variables is bent: " _
decomposition off with respect to/.

foranyz = (z1, y1, T2, y2), © € Fory X For; X Foiy X Foi,
Many properties can be directly deduced from Theorem 5.

F(@) = Te) (22" 1) o Tr(t2) (9927 1) For instance, we have
« fis balanced oV if and only if f is balanced ofV;
where Tr(*) (resp.,Tr(tQ)) is the trace function from,., o F(fé.) = F(fov) for anyV of dimensionm, /2. Most
(resp., Fy:,) into F, (see [6, Remark 6.2.16]). Moreover, notably, the restriction of to V' is constant if and only if
Lemma 1 implies thaf has no derivative i(1, mn). U the restriction off to V' is constant too (and the constants
take the same value in both cases). This property is related
V. RESTRICTIONS OF ABENT FUNCTION AND OF ITS DUAL to the concept ohormality [5], [11], [12] [1, Corollary
TO SUBSPACES V.3].

We now focus on the links between the restriction of a Corollary 3: Let f be a bent function ofn variables. Let
bent function to a subspace and the restrictions of its dugl.pe a linear subspace #%," of dimensionk > m/2 and let

Throughout this sectionf is a bent function with dualf. fbaty, a € W) denote the decomposition gfwith respect
The next theorem is a generalization of a remark of Dillon [§g V whereV x W = F3'. Thenf is constant o/~ if and

Remark 6.2.14] and was proved by Carletin [4, Lemma 1]. only if

Theorem 5:Let f be a bent function of» variables and let F (fqg‘) —F (f)
V be any subspace @ of dimensionk. Then and '
F(fpvs) =2"F (fov) ®) F(foev) =0 YaeW\OL @
Proof: “ f is constant onV/1” means thatF(f¢y 1) =
More generally, we have for anye F7' +2™~*_ From Theorem 5f is constant o+ if and only if

f(fqﬁv) gpmhmm/2k = gom/2,

FUf + ¢a)pye) =272 F ( fpasv ) . 7 :
(£ a)bvs) (qu H) @ By applying Proposition 2 tgf, we deduce that

Proof: In accordance with Definition 5 and Proposition 1, Z F? (f¢>a+v> =2+ Z F? (f¢a+v)

we have a€EW aeW\{0}
=2,
Yo F(f e =2 (- 1)/ Therefore F(f¢a,v) = 0 for all nonzeraz in . This implies
vev vev that
=2"F(fpy2)

Cnrti) F(1) = 5 (i) = ().

aceW



2010

Conversely, if (8) is satisfied theﬁ(quv) = +2™/2 (sincef
is bent) completing the proof. O

Now, we deduce some connections between congtdmt

derivatives off and the divisibility of the values occurring in
the Fourier spectra of the restrictions fof

Definition 8: LetV be ak-dimensional subspace BY,". The
kth derivative off € B,, with respect td/ is the function
Dy f=Dy Dy, - Dg,f

where(aq, ..., ai) is any basis oV

Notation Dy, f is used for simplicity since theth derivative
of f € B,, with respect td/ does not depend on the choice o
the basis of/. The following lemma, which corresponds to [1
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Therefore, we hav@®y f = 1 if and only if F(f¢.1v) =
+2), where), is an odd integer andl, isin [1, 2k~ — 1], for
all a € W. According to (7), we obtain for every e W

FUf + @a)pyr) = £2m/27F1),

This provides the complete Fourier spectrum fafy-. ac-
cording to Remark 1. .

Similarly, Dy f = 0 if and only if F(fda+v) = L4\, for
all a € W, where), is an integer if0, 2¥=2]. Hence,

F(f + @a)bys) = £27/275F2), m
Suppose thaf is of degreek. Then there is at least orié

bf dimensionk such thatDy- f = 1. This is a consequence of

the definition of Reed—Muller codes (see [1, Proposition I11.1]).

Lemma llI.1] with a different formulation, provides a relation-Consider the functio = f¢y-. of m — k variables. From
ship between the decomposition of a function with respect toreorem 6 is such that its Fourier spectrum does not contain

k-dimensional subspace and the corresponédihglerivative.

Lemma 2: Let f be a Boolean function withn variables.
Let V be a linear subspace df;' of dimensionk and let
(fpatv, a € W) denote the decomposition gfwith respect
to V, whereV x W = F3'. Then

wt(Dy f) = 28#{a € W|wt(fpayv) is 0dd}.
Proof: By definition, we have for any. € F7'
Dy fe) =Y flz+w)
veV
where the preceding sum is an addition modul@his relation

implies that, forany; € F5" andforanyw € V, Dy f(x+v) =
Dy f(z). Moreover, for anyu € W, we have

Dy f(a) =Y fla+v)=wt(fasv) mod 2.
’UE"’
Therefore, we deduce
wt(Dy f) =2"#{a € W, Dy f(a) = 1}

=2"4{a € W, wt(farv) is 0dd. O

Theorem 6: Let f be a bent function ofn variables and let
V be alinear subspace &%, of dimensionk < m/2. Then

() Dyf = 1 if and only if the values occurring in
the Fourier spectrum off¢y.. are of the form
+2m/2=k+1) where \ is an odd integer which be-
longs to the intervall, 2= — 1];

(i) Dyvf = 0 if and only if the values occurring in

the Fourier spectrum off¢y. are of the form
+2m/2-k+2 ) where) is some integer which belongs
to the interval0, 2%2].

_ Proof: Let(fgbﬁv? a € W) denote the decomposition of
f with respect td/, whereV x W = F3". The previous lemma
implies that

« Dy f=1ifand only if wt(f$.4v) is odd for anya € W;

* Dy f=0ifandonly if wt(f¢.+v ) is evenforany.e W.
SinceF(fharv) = 28 — 2wt(fasv), wt(fasv) is odd if
and only if the valueF (f¢,+v)/2 is odd. Note thaf ¢, v is
a function inBy; thus, the valugZ ( f ¢, .1 )| lies in the interval
[0, 2%].

0—i.e., there is no balanced function in the spectrum.dote
that such a subspadé can be easily determined by using, for
instance, the algebraic normal form pf We have proved the
following property.

Proposition 7: Let f € B,, be a bent function such that
its dual f has degreé. Then there is a subspageof F5' of
dimensionk such that the functioy = f¢y ., viewed as a
Boolean function in3,,_,, satisfies the following: for all: in
F3 ¥ the functiong + ¢, is not balanced.

Example 1: Let f be a bent function withn variablesm >
6, such thatf is of degree3 and letV = (e1, e2, e3) such
thatD., D., D, f = 1. ThenV+ has codimensiot and the
functiong = f¢y . is a function ofim — 3 variables. According
to Theorem 6, the values occurring in the Fourier spectrug of
are of the form

+2m/272) 0 Ae {1, 3}

Moreover, both values ok appear, since the only functions
whose extended Fourier spectrum takes two values are the
bent functions ¢ cannot be bent because it depends on an odd
number of variables). The extended Fourier spectrum f

then completely determined. Indeed, setting

Ny =#{u, |F(g+ pu)| =2"/*7%}
and
N3 =#{u, |F(g+ pu)| = 3-27/>7%}
we have
Y Fg+u) =277 (N1 + 9Ns)
ueFy =3
=2m"4(2m73 4 8N3)

— 22(m—3) .

Therefore, we have

|F(g+¢u)| | numberofu € Fy'~?
om/2-2 gm—3 _ gm—6
3- Zm/2—2 2m—6
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VI. DECOMPOSITIONS OF ABENT FUNCTION INTO 4-decomposition of with respecttd’. Then, allf;, 1 <i <4
FOUR FUNCTIONS have the following Fourier spectrum:
Now, we focus on the restrictions of a bent function to sub- [F(fi + ©u)l number ofu € Fy'~>
spaces of codimensiod. We first observe what Theorem 1
means when subspaces of codimengiane considered. Lei 0 3(2m=1 —274))
be such a subspacga bent function ir3,,,, andH+ = {0, a}. o(m=2)/2 2/4
Then, we have for any € FY'
2m/2 om—4 _ 9—4}

F(f +ea)dm) =277 (1)) 4 (-7 - (9) i
where = wt(D,Dyf).

Moreover, we know from Theorem 1 that the restrictiong ¢td Most notably,(fy, . .. ’.f‘*) '§ ] . _
H and toF}"\ H, say(f1, f»), are three valued almost optimal  * @ benti-decomposition if and only iD, Dy f = 1;

and satisfyF2(f, + €) = 2 if and only if F2(f + £) = 0 * athree-valued almost optiméldecomposition if and only
where¢ is any linear function ir,,_1. if Do Dyf = 0.

Let W be of codimensior such thatFy' = {0, a} x W. Proof: We know from Theorem 2 that all thg have the
According to Remark 1, the values of the Fourier spectrum 8&M€ Fourier spectrum. So we only consider= f¢y. Let
f1 are (fPu+(a, by, u € W) be the decomposition ¢f with respect to

(a, b), where(a, b) x W = F3'. The Fourier spectrum of;
consists of allF(f; + ¢u¢v), u € W. We denote by, the

F((f+eu)pn), uveWw restriction ofy, to V.
N By applying Theorem 5 fok = 2, we obtain for al, € W
and the decomposition g¢f with respect to[0, a} is b ~
Flfi+ &) =2""F (fbury).  (10)
(.f¢q,+{o,a}7 u € W) : Then, the right-hand term of (10) involves the weight of the re-
striction of f on a coset ofa, b). Sincef ¢, (4,4 is a function
By applying (9), it appears that for amye W of two variables, its Welght is
(i)  f(u) # f(u+a)ifand only if F(f1 + p.) = 0—so0 + either2 implying 7(f1 + &u) = 0;
F(fo +¢u) = (1) W2m/2; » orin {0, 4} implying F(f1 + &,) = £2™/%;
(i)  f(u) = f(u+ a)if and only if F(fi + ¢.) = « orin {1, 3} implying F(fi + £,) = £2(m=2)/2,
(—1)f(W2m/2—in this caseF(f2 + pu) = 0. We denote by.; the number of cosets @f, b) which corre-

Note that the first case corresponds to the cosets{0, a} ~spond to the values2(™~2)/2 and byL, the number of cosets
on which f has weightl. This situation occurs exact®/™2  of (a, b) which correspond to the valug2™/2, Lemma 2 im-
times becaus®,, f is balanced (see Lemma 2). plies that

Remark 2: The bent functiory is such thatD, f is affine if ALy = wt(Dy Dy f).
and only if the union of the cosetis+-{0, a} corresponding t@)
is an affine hyperplane. The result of Hou [2] can be expressidw, by using Parseval’s formula, we get
as follows: whenn = 8 and f is cubic then this property holds )  o2(m=2) _ om S
for someH . We have proved that it is not true for other(see Z Ffi+ &) =2 =212+ 2"y
Theorem 4). uew
roviding L, = 2™~% — 272 L. Thereby, the number of cosets
f (a, b) on which f is balanced is equal @"~2 — L; — L,
at is,

Now, for the study of the decompositions into four functiong
we need to fix the terminology. Recall that the four function
involved in the decomposition of a bent function with respect
to a subspace of codimensi2mave the same extended Fourier 3-2m7 —Li(1—272) =3(2m* —27%L,).

spectrum (cf. Theorem 2). Therefore, the Fourier spectrum qf, only depends on

Definition 9: Let f € B,,. We call4-decompositiorof f a wt(Danf). In particular, we obtain thaf; is bent if and only
decomposition with respect to some subspace of codimefsioiif wt(Danf') = 2™, i.e.,Danf = 1. Similarly, f; is three

Let(f1, ..., fa) be such a decomposition. We say that it is @alued almost optimal if and only ifvt(Danf) =0, ie,
bent4-decompositionvhen all f; are bent; when alf; are three Danf =0. O
valued almost optimal, we say that it iglaree-valued almost

optimal 4-decompositionf f. The previous theorem implies that for any bent functfoa

B,, and any nonzera andb, a # b, the weight ofD, D, f

Theorem 7: Let f be a bent function of: variablesyn > 4, is divisible by2%. This property can be directly deduced from
and f its dual. Leta andb be two nonzero distinct elementsthe fact that the degree gf does not exceed/2. It can be
of FI', V. = (a, b)* and let us denote byfi, ..., f1) the generalized as follows.
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Proposition 8: Let f € B,, be such thatleg(f) < m/2. Now, we prove thatf has at least one null second deriva-

Then, the weight of anyth derivative off is divisible by2*+2. tive. We denote by/ the set of all subspacés, b) of dimen-
Proof: LetV € F3' be alinear subspace of dimensibn sion 2 such thatD,,Daf = 1. Sincea describesF?’, then

k> 1,andlet be suchthat’ x W = F3'. Then, foranys €  F3y' = (J;;¢,, U and the cardinality of/ is minimal when any
F7' and any € V, we haveDy f(z + v) = Dy f(z). There- pair (U, U’) of distinct elements a¥/ satisfiesU N U’ = {0}.
fore, wt(Dy f) = 2Fwt(g) whereg denotes the restriction of Suppose first that this situation occurs. In this case, the sets
Dy ftoW.Then, is aBoolean function of.—k variablesand U \ {0}, U € U, form a partition ofF5* \ {0}. Therefore//
its degree cannot exceed the degre®eff, which is at most contains exactly2™ — 1)/3 elements. According to Lemma 2,
deg(f) — k <m/2 — k. Using thaty € R(m/2 — k, m — k), the weight of the functiorfg{)U is odd, for anyU € U (itis ei-

we deduce that its weight is divisible Ry with ther1 or 3). Assuming thatf (0) = 0, we obtain
ZZ{m_k_lJZQ wi(f) = (1+2w), ev€{0,1}
5= k veu
[13, p. 447], because, — k — 1 > 2(2 — k). m  Which implies
So2m 1 .
When f is quadratic, its dual is quadratic as well. More- ~ Wt(f) = 5 t24 L<AL (2™ =1)/3.

over, all second derivatives gf are constant. Saf f is bent ] ) . o ]
and quadratic, anyt-decomposition of is either bent or three This means that the weight gfis odd, which is impossible. We
valued almost optimalThis property becomes more Comp“_then deduce that there exists two distinct elements ofhose

cated for higher degrees. The following corollaries are devotdtersection differs fron{0}. In other wordsi/ contains(a, b)

to thosef which have a cubic dual. and(a, e) with e # b. Then
Corollary 4: Let f be a bent function with variablesyn > DyDof + DeDof =0
4, such thatf has degre8. Leta andb be two nonzero distinct .. . .
which implies
elements of'y', V = (a, b)* and letus denote byf, ..., f1) . : }
the 4-decomposition off with respect tol. Then, one of the D,f(x+b)+ Dof(z+e)=0

following three situations occurs: . . . .
9 for all z. This is equivalent to saying théd, .. D, f is the null

* (f1, .-, f4)' is a bent4-decomposition if and only if fnction. We then deduce that there is at least one subspace
DaDyf = 1; (a, c) of codimensior2 such thatD.D,, f = 0. O
* (f1, ..., fa) is a three-valued almost optim&idecom-

L : N Remark 3: Corollary 5 can be generalized to the bent func-
position if and only ifD, D, f = 0; tions f which are such that all derivatives ¢f are partially

+ all f; have the following Fourier spectrum: bent. However, we do not know if such functions exist when

deg(f)> 3. Thisis mentioned as an open problemin [1, Sec. II].

|F(fi+ ¢u)| | numberofu € F5'~° Finally, we point out that the weights of the second deriva-
0 3. gm—5 tives of the dual of a bent functiof € B,,, also provide some
information on the weight distribution of + R(2, m). Most
2(m=2)/2 2m=3 notably, any three-valued almost optiratiecomposition off
om/2 om-—>5 leads to another bent function, lying frt+ R(2, m).

Theorem 8: Let f be a bent function o variablesn > 4,
and f its dual. Leta andb be two nonzero distinct elements

o of F3', V = {(a, b)*. Then, them-variable Boolean function
Proof: The result is directly deduced from Theorem 7f + ¢v is such that its Fourier spectrum satisfies

since any second derivative, D;, f is either constant or bal-
anced, wherf has degre8.

if and only if D, D, f is not constant.

|f(f + (/)V + <P1:,)| 0 2m/2 2m/2+1
A

Moreover, we can prove that all the three situations which are

described in the previous corollary occur. number ofu € Fy' 2m — A

Bl
>
=

Corollary 5: Let f € B,, be a bent function such thgtis R
of degrees. Then f has more thaii2™ — 1)/3 bent4-decom- whereX = wt(D, D f). Most notably, we have

position and at least one three-valued almost optitrdgcom- [+ ¢y is bentif and only ifDanf =0;
position. 5 _ « f + ¢y is three-valued almost optimal if and only if
Proof: Sincef is cubic, it satisfies for any # 0: D, f is D.Dyf = 1.

balanced if and only if there is € F such thatD, D, f = 1

o N al ~ Proof: Let W be such thal” x W = FJ'. For anyu €
see [1, Proposition A.1]). Sincg is bent, each derivative of m . 2 .
(f'is b[alanceF()j Thus for]zmy 75% there ish # a % 0 such FJ', the4-decomposition off + ¢v + ¢,, with respect td/ is

" . . related to thel-decomposition o . as follows:
that the decomposition of with respect to{a, b)* is a bent post Fre W
4-decomposition (from Theorem 7). (f + v + ou)parv = (f + ©u)Patv
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foralla € W\ {0}, and Note thatk’ < k£ means thak coversk’ but is not equal td:'.
(f+ v +ou)dv = (f +ou)dpv + 1. Recall that, when we compute mod@pwe have
Therefore, we deduce that (@ +a)*=>" ala*. (12)
F(f+¢v+eu) =Y F(f +6v +¢u)barv) =
a€W

A. Some Partial Spreads
= F(f + o) = 2F((f + 0u)dv). P

From (7) in Theorem 5, we obtain Here, we identify any function i8,,, with a function from

R the finite field F5~ into F'5. In this subsection, we focus on the
Ff+ov +ou)=F(f +ou)—271F (fqﬁuﬂu) class of Boolean functions of the forn 2 — Tr(Az"), where
m . . A € Fy: andTr is the trace function fron¥'y~ to F,
=23 [(—z)f(“> _F (f¢>u+vl)] .

SinceV ' = (a, b), the weight off ¢, 1. is

2171—1

Tr(u)=u+u?+---+u
For any%’ in the 2-cyclotomic coset of: modulo(2™ — 1),

+ either2, implying that7(f + ¢v + vu) = £2%; e,k = 2k mod (2™ — 1), z — Tr(Az*") obviously cor-
» or in {1, 3}, implying that 7(f + ¢v + ¢.) lies in responds tgy composed with a linear automorphism B .
{0, £2%F1}; Therefore, we will assume thatis the smallest element of its

« orin {0, 4}, implying thatf¢, . is constant and, thus, cyclotomic coset. Note that such a functipoould be constant
equal tof(u). In this case]—"(fgbwvl) _ 4(_1)}(u)_ only when there is somedividing . such that
Therefore, we havéF (f + ¢y + @) = £2% . 22k = gk, V€ Fom

Let L; denote the number af € F'5" such that or equivalently

\F(f + pv + pu)| = 272 } (2" — 1)k =0 mod (2™ —1).
with 7 € {0, 1, 2}. In accordance with Lemma &it(D, Dy f),

which is the cardinality of the set From well-known properties of the Reed—Muller codes, the

degree of such a function is equalde(k), the weight of the

{u e Fy' wt (fgzsu_i_v¢) is odd} 2-ary expansion ok. Note that for any: in F'5» we have
is equal toLg+Lo. Thus,L; =2™—\, whereh = wt(D, D, f). Dog(x) =TrAa® + Mz + )]
By applying Parseval's relation tb+ ¢y, we obtain = Z Tr(Aziak ).
22" = L4127 4 Lp2™ % = 22™ — 2™\ 4 L[,2" 12 i<k
implying L» = A/4. Finally, we have We(kl)(nov;/ that the degree ab,g is less than or equal to
w2 — 1.
Lo=2" L1 — Ly = %)\. O Now, we are interested in the values of the second derivatives

of the functionsy: = — Tr(\z*). Leta andb in Fy- be such
By the previous theorem, we point out thiat- ¢y is bentif thata # b # 0. Then, we have to study the polynomial
and only if Dy, f = 0. This result is related to the theorem of Tr[/\(xk ¥ (o4 a)k 4 (o + b)k t(s+a+ b)k)]

[4, p. 94].
which is in fact

VII. ON BENT FUNCTIONS WHICH DO NOT ADMIT A 4-BENT P(z) =Y Tr[A@" " + 6" + (a+ b)),
DECOMPOSITION i<k

When a bent function ir8,,, admits of a4-bent decompo- Wheneveri = k — 27, for somer, we have

sition, then it is related to some bent functionsAp_». It is A" (e + )T =0
not the case for bent functions which do not admitlaent de-

composition. In this section, we give two examples of infinit
classes of bent functions for which such a decomposition is no

as we expected since the degredQfD, g is at mostvs (k) — 2.

possible. We first define some notation. P(z) = Z Te[Ma* =+ 057" + (a +0)* )2 (12)
We will use the2-ary expansiorof any positive integek i€l
which is wherel = {i|i < k andwa(k — i) # 1}.
4
(ko, ..., ke), ki € {0, 1}, wherek = Z k2%, ke = 1. Lemma 3:Let m > 8, m even, and consider the Boolean
= functions inB3,,, of the form
The Hamming weight of the-ary expansion of is denoted by g: & — Tr(Az"), 5<k<2m/?2 1

wo (k). Two integersk andk’ can be related by a partial order,
denoted by, which is, in fact, a relation on the-ary expan-
sions

A € F3.., where the weight of satisfiesws(k) > 4 andTr is
the trace function fron#'y» to F's.
If the 2-ary expansion of, say (ko, ..., k¢), is such that
<k < K<k, Vi k, = k;, = 1 for somer ands, 0 < r < s < /£, with
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ged(s —r, m) = 1then the functiory is such that all its second methods. It seems complicated to treat the general problem; the
derivatives are not constant. next example illustrates this fact.

Proof: We consider the polynomiaP(z) given by (12)
and we are going to prove that this polynomial cannot be cog
stant. Sincelr(u?) = Tr(u), then P(z) can be expressed as

_Example 2: Let m be even andn > 8. Let us consider the
oolean function in3,,

follows: g(x) = Tr(z),  with k=14+224+2442°  (13)
P(z) = Tr (Z uixi) 7 s € Fon Leta € F,4. By using (12) and the form of, we ol?ta|h
i€l D.Dig(x) = Z Tr[(a* =" + 1+ (a + 1)* )2
whereu; only depends om\, a, andb and I consists of the ieJ

smallest elements of th&cyclotomic cosets modul®™ — 1 with .J = {i < k, 2 < wy(k —1i) < 4}. We first observe that
of all 4 which appear as exponents:ofn (12). . L o
This polynomial is of degree strictly less thaft — 1. More- i€J = k-i=uwy(k-1) (mod3)
over, we are sure that for any nonzeroc I, the function using thaR?‘ = 1 mod 3,V /. Letu; = a** + 14 (a +1)**
Tr(u;z) cannot be constant whem # 0. Indeed; < 2™/2—1 (i € .J). Sincea® = 1, we have
implies that the cyclotomic coset ohas cardinalityn. itis im- o if wo(k —i) = 2thenu; = a® + 1 + (a + 1)2 = 0;
possible to havé2” — 1)i = 0 mod (2™ — 1) for somer di-
vidingm, r > 1. _ _
Hence,P(z) = 0, for all z, if and only ifu; = O foralli € I. o if wy(k — 1) = 3thenu; = 1.
On the other handP(z) = 1 if and only if P(z) + 1 = 0 for Therefore,
all 2. This is equivalent tai; = 0 for all i # 0 andTr(ug) = 1. DuDig(x) = Te[z + 2% + 2% + 2] =0.
In order to prove that at least ong, : > 0, is not zero, we
will choose ani € I suchthat’s > kforall j,1 < j <m—1. We have proved thahe Boolean functions defined by (13) have
By hypothesis, the-ary expansion of;, (ko, ..., k¢), is such at least one constant second derivative.

that:ky = k¢ = 1, and there is a paifr, 5), 0 < < s < ¢ Now, we will point out that there is an infinite class of bent

with ged(s —r, m) = 1, such thak, = k, = 1. We take functions which satisfy the hypothesis of Lemma 3. These func-
p="k—2°-2" tions belong to the partial spread family, introduced by Dillon as

the classPS [6, pp. 95-100]. We first recall the result of Dillon.

o if wo(k—i)=4thenu; =a*+1+ (a+1)* =0;

Forinstance, if: = 2™/2 —1 thenp could be chosen as follows:

p=1(1,...,1,0,0,1,0,...,0) Theorem 9:Let f € B, with m = 2¢. Let
m/2 m/2 Ep ={x € Fyr|f(z) = 1}.
with Letusdenote byE;, i = 1, 2--- N} aset of subspaces Bh
k=(1,....1,0,...,0) of dimensiont satisfying
T i#j = EnE;=/{0}.

B . . . The functionf is bent when it satisfies eithé) or (ii). The bent
Wefaveflﬁarlwﬁgp) _fw2(lﬁ2 - 20andp < k. Moreover, since ¢ tions which satisfy conditioti) (resp.,(ii)) are said to be
pe = po = 1, we have for allj # Gmod in the classPS™ (resp.,PS™).
7 m 7 j+¢) modm
2/pmod (2™ —1) > 27 42V 2k () Ef=UY, Eiwith N =271 4 1;

becausé: < 2¢ — 1 and eitherj or (j + ) mod m exceedd " N * ongi _ ot—1

(sincel < m/2). Thenp is the leader of its cyclotomic coset (i) _Ef = Ui B W_Ith N=27 o
(p € I) and, therefore, it is the only one element of its cyclo- Notation of Theorem 9 is preserved. Letlenote a primitive
tomic coset appearing as a powengh (12). This implies root of Fo» with m = 2t; by shifting the cyclic subgroup of

e e e F,. we obtain the set&} = o' F7,, providing the partition
u,=a"" " +b0"""+ (a+b)"""

2t

:a2:+2: + b2:+2: + ((1 + b)25+2’" F;m _ U EZ‘
:a2 b2 + b2 a2 i=0
=(ab)? (a® 7% + 0777 Now, for allz € E, = = o' with § € F},, we have for any
— (ab)Qr (a2‘<77‘—1 + b2‘<7T—1)2T. v E IT'2777
By hypothesisg # b # 0. The equalitya?” —! = 2 "~! Tr(va® ~1) =Tr(va'® ~Dp2 1)
would imply (a/b)>"~! = 1 which is possible when = b = Tr(va'®' D).

Theretore s cannol 5o & consian paynomil, complaing U5 (he BOOIean fntione 5, () = Tr(v* ), i con-
proof ' Stant on anyer for any: (and |s_such thag(0) =0). This func-

' tion is bent and belongs BS ™ if there are exactlp!~! expo-
Note that other specific classes of functidhg Az*), corre- nentsi in the interval[0, 2] such thatTr(va‘? D) = 1. This

sponding to particular values &f can be studied with similar type of bent functions was introduced by Dillon who stated the
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sufficient condition onv which we explain now. Let/:azt—l; Remark 4: The equalityg,, = g,, can be seen by using the
then~ is a generator of the cyclic subgroup of ordé1. Con- description of codewords,, of the concerned irreducible code,
sider the set of binary codewords of lengtht-1 given in [14, Proposition 6.5].

w, = (Tr(w), (), oo, Tr(y?)) B. On Bent Functions of Family

wherev e F22tt- These codewords form ameducible cyclic  Thjs subsection is devoted to tivelecompositions of the bent

podeof Iength2' +1land dmgnsmdt. It appears th?gﬁ |slbent functions which belong téamily M [6, pp. 89-95]. Here, we

if and 0”'2’ if this codte contains a codeword of weight™. consider forM the completed version of the class introduced
Since2’ + 1 and2’ — 1 are relatively prime them = Ay’ by Mmajorana and McFarland [15]. In others words, we consider

for some;j and some\ € F:. Hence,w, is a shift ofwx, gl functions which are affinely equivalent to the functions in the
providing the same weight. The existence\af F'5:, such that original family.

wt(wy) = 2¢71, for anyt, was established by Lachaud and Now, we identifyF2 with F x F', i.e., any element oF 2
Wolfmann [14, Theorem 6.6]. is denoted byz, y) with =, y € F5.

Theorem 10:When a functiory, defined as in Lemma 3,is  pefinition 10: Family M consists of all functions i,
bent then its duaj admits neither a bent-decomposition nor \yhich are affinely equivalent to

a three-valued almost optimé&decomposition.

In particular, this property holds for the infinite class of bent Fy x Fy —F,
functions ofB,,,, m = 2t (z, y) — - 7w(y) + h(y)
g (2): ¢ € Fam +— Tr(Az® 1) wherer is any permutation o#';, 4 is any Boolean function in
where) € F.,. satisfies B,, and “” denotes any scalar product d,. Any function in
M is bent.

21

Z Tr(\y%) = 2071 This class of bent function is characterized by the following

i=0 property.

(wherey is a (2’ + 1)th root of unity). Moreover, each,, is  Proposition 9 [6, p. 102]: A bent functionf € B, belongs
equal to its dual. Sg., (as well asy,,) admits neither a bent to family M if and only if there exists &dimensional subspace
4-decomposition nor a three-valued almost-optifh@ecom- Vv th such that the derivative of with respect to every

position. two-dimensional subspace bfis identically zero.
Proof: In accordance with Theorem 7, the first part of the

theorem is immediately deduced from Lemma 3. The bent func-NOW. We focus on the pairgx, 3) such that the derivative
tions g,.., especially, satisfy Lemma 3. of the dual off € M with respect to the two-dimensional sub-

Now, we focus ory,,. We haver, = (J spacg«, () is constant. Note that the following result holds for

E} where !
any choice of the scalar product ani

el

_f - t i(20—1)\ _
I'={i, 0 <i < 2" such thailr(Aa ) =1} Proposition 10: Letm = 2t and letf be a bent function of
Here, we use another scalar product, defining the linear fune-variables in familyM

tions as follows: fFL X FY — F,
Yo: © € Fam +— Tr(az), a € Fym. (z,y) —z-7(y) + h(y)

Then, the dual of,, is defined in eacla by wherer is a permutation o, and is a Boolean function

F(Gm + %a) = zt(_l)ém(ax in B;. We denote by the inverse ofr and byV c F3' the
t-dimensional subspace defined by= {(0, y), y € F5}.

We know thatF,,, = U, B} givesEy, = U,e, (E;)* Leta = (i, ) andf = (B1, B2) be two nonzero distinct
(from [6, Remark 6.3.10] or by applying Theorem 5). Moreoveg|ements o7, We have

have h . .
Wwe have here o if (a, B) C V,thenD,Dgf = 0;

i 2414 _ 2t 41 _ .

Tr ((a IC ﬂ')) = Tr(a” T°4A") =0 . if (@, BNV = {0, (0, 7)} with~ # 0, thenD, Dsf = ¢
for any 3 and’ in Fy (sincea® *! € Fy:). This shows that :‘,:/12?:;5; = {0, 1} if and only if the+-variable Boolean
Ef = By 'Tthuts,ng = Uier P31~ Now, taking
in account thatv’? 2~V (2 -1 = 1 we computey,, on 0y w7y o)

E21+1—1‘,
has a nonzero linear structukesatisfyingDyo., = ¢;

« if (a, BNV = {0}, thenD, Dy f = ¢ wheres = {0, 1}
implies that

Tr(/\a(2i+1—7:)(2f—1)) :Tr()\a_”"@t_l))
:Tr()\ai(?*l)).
Thus,i € I if and only if (2¢ + 1 — 4) € I, providing that

E,. = Ej; . Therefore, the Boolean functigp, is exactly the
functiong,,, completing the proof. O for all z € F%.

olz+ar+p)+to(z+ar)+o(z+01)+o(z)=0
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Proof: The dualf of f is defined by [6, p. 91]

fla,y) = o(x) -y + h(o(@)).
Therefore, the functiodDaDﬁf(a;? y) is equal to

fla+ a1+ i, y+az+ o) + fa + 1, y+ B2)
+ fla+ a1, y+ az) + f(x, y)
=o(r+ai+ ) (y+ax+ o) +a(z+ 1) (y+Po)
+o(x+a1) (y+a2) +o(x) -y + Dy, Dg, h(o(x))
=y -(oc(z+ar+ 1) +o(z+ 1) +o(x+ ar)+ o(x))
+ag-(o(z+ a1+ 01)+o(z+ ar))
+ B2 (o(z+ a1+ B1) +o(z+ 51))

+D01Dﬁ1h(a($))' (14)

It clearly appears that

D(o,a) D0, ) f = 0-
The condition{«, 8) NV = {0, (0,
the following three cases:
« oy = 0: Do Dsf(x,y) = ag - (o(x + 1) + o(x));
« f1=0:DaDsf(z, y) = Pa- (o(x + 1) + o(z));
« o1 = f1:DaDsf(z, y) = (a4 Fa)-(0(x401)+0(z)).
Therefore, we obtain that

DoDpsf(x,y) =7 (o(z +A) +o(x))

where(0, ) is the unique nonzero elementiinn («, §) and
)\ is a nonzero element df,. We have proved that, for such

andg, DaDﬂf = e ifand only if A is a linear structure for the

t-variable functioro, with Dyo., = €.
We now assume that; # (3, and bothn; andg; differ from

0. The first term in (14) is the only one which dependsi;on

Hence, ifDaDygf is constant, then this term vanishes, i.e.,
olx+ar+p1)+oz+p1)+o(z+ar)+o(z)=0

forall z € F5.

We now exhibit an infinite class of bent functions in family

M which admits no bent-decomposition. Recall thgtadmits

~)} corresponds to one of
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Lemma 4: Let z — x4 be a power function oveF,: with
wo(d) > 2. Then, there exist two nonzero distinct elemants
andb in F5: such that for alke € F:

(z4+a+b)+(z+a)+(@+b)+21=0 (15)

if and only if d = 2¢ + 27 with i < j andged(j — i, t) > 1.
Proof: We consider two nonzero distinct elemeatsndb
in F5: and set

Piz) = (z+a+b)"+ (z+a) + (z +b)* + ¢

Without loss of generality, we can assume tthé the smallest
element in its2-cyclotomic coset modulg2t! — 1). Indeed,
Py(x) satisfiesPyq(z) = (Py(x))?.

By expanding the terms d?;(z), we obtain

_ d—
—E Uz,

p=d

u, = (a+b)" +a” +b°.

If we setc = ab~—! we obtain a simpler expression

u, = bfv, with v, =(c+1)+c"+1

The mapping: — z? satisfies (15) if and only if there is €
Fy., c ¢ F, such that, = 0 for all p < d. We are going to
prove that this is generally impossible.

If wo(d) > 3, thereisp = 14 2° 4+ 27,0 < i < j, such that
p = d. Then

)2i+1 +C2i+1 +1

'U27 (
c” +ec.

2!

Thus,v,: 11 =0 ifand only ifc€ Fy:. Similarly, vy, 1 = e +e.
If 95 41 =v9i 11 =0 thenct+? +2" =¢3 and we obtain

v, =(c+ 1)+ +1=c(c+1)

which vanishes for € F', only, a contradiction. Thus, we have
proved thatl does not satisfy (15) when,(d) > 3

Whenws (d) = 2,i.e.,d = 1427, there isc such thab,: , =
0 if and only if ged(4, ) > 1, completing the proof. O

Open Problem: Characterize all nonquadratic permutations
o over F', for which there exist two distinct nonzero elements
a andb such that for al: € F?,

olz+a+b)+o(z+a)+o(x+b)+o(z)=0.

a bent4-decomposition if and only if there exist two nonzero Now, we focus on some permutatiomsvhich do not satisfy

distinct elements andg in F3" such thatDaD@f = 1. From

the previous property, and we determine whethet(y) + h(y)

the previous proposition, it implies that satisfies one of the has a bentl-decomposition, i.e., whether satisfies Property

following properties.

(P1) There exist two nonzero distinct elementand~y in
F, such that for all: € F

o+ A+y)+o(z+ ) +o(z+7v)+o(x)=0.

(P2) There exist two nonzero elementsaandy in F such
that

y-(o(z+A)+o(z) =1 on F.

First, we show that Proper{i?1)is usually not satisfied when

o is a power permutation, i.er{z) = x? whereF' is identified
with the finite field with2? elementsF's:.

(P2). Here, we choose far analmost perfect nonlinear permu-
tation on F [16], [17]. A functiono over F} is called almost
perfect nonlinear (APN) if all equations

o(x) 4+ o(z+a) =0, a€Fy beFy a0
have zero or two solutions |Ft Note that the inverse of an
APN permutation is APN.

Proposition 11: Letm = 2t be an even integer such thas
odd. Letr be an APN permutation of's, and lets denote the
inverse permutation. Then, the-variable bent function

f: FLx Ft — F,
(z,y) —z - m(y) + h(y)
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whereh is any Boolean function i#8;, admits a decomposition distinct: otherwise, there existsanda’ such thatS, = S, =
into four bent functions if and only if there exists € F,, M, for someb. Then, for any: € F5, o(z 4+ a + a') + o(x) is
A # 0, such that the sefo(z + \) + o(z), = € F3} is an equal to

affine hyperplane. , ]

Proof: The bent functionf admits a decomposition into (0@ +ata)+o(zta))+(o(z+a)+olr)
four bent functions if and only if its duaf has at least one and belongs td{, since it can be expressed as the sum of two
second derivative which is constant and equal t&We now elements inf;. Then, S, .., cannot be an affine hyperplane
apply Proposition 10 with notatioll = {(0, y), y € Fb}. sinceS,,. C Hy. Therefore, for anp € F5, b # 0, there
If DoDsf = 1 with (o, B) NV = {0}, then there exist two exists a unique # 0 such thatS, = Hy,.
distinct elements andb in F \ {0} such that for alk: € F We now consider the linear combinations of the Boolean

components of, i.e., the Boolean functions
o(z)+o(x+a)+o(x+b)+o(x+a+b)=0. P

L . . . ) op: x+—b-o(x).
This situation cannot occur since is APN. Therefore, if

D.Dsf = 1then(a, #) NV has cardinality2. Moreover, Foranya € F5, we have [10]
we know from Proposition 10 that there exist two nonzero 2 a-a

. F o) = ) *F(D
elements\ and~ in F such that (76 + ¢a) Z (=1) (Do)

aGF;
t
v-(o(@+A) +o(z) =1,  forallz e Fy. Since S, is an affine hyperplane for # 0, D,o, is either
Note thats is an APN permutation if and only if the set balanced or equal to. It is equal tol for the uniquea # 0

such thatS, = H,. Therefore,
F2op + o) =28 £ 2 € {0, 211}

i.e., all functionssy, b # 0, are three valued almost optimal (or
equivalentlyo is an almost-bent permutation). Moreover,&ll
have a nonzero linear structure. We know that any three-valued
Imost-optimal function of variables (witht odd andt > 5)
aving a linear structure igartially bentwith degree less than

or equal to% (see Proposition 5). O

Se ={o(z +e)+o(x), z € Fa}

has exactl2!~* elements for any # 0. This comes from the
definition: it is clear thaS. has at most a cardinaligf—, since
x andx + e give the same values; the cardinality$fis exactly
2t-1 if and only if each equation(z) + o(z + ¢) = b has0
or two solutions, i.e.g is APN. Therefore, we have proved thaﬁ
if f admits a bent-decomposition, then there existse F5,
A # 0, such thatS,, is an affine hyperplane.

Conversely, if there exist two nonzero elemekh&nd~y such Now, we apply Proposition 11 in the case wheris an APN
that the set{o(z + \) + o(z), = € F3} is equal to the set power permutatiom(z) = z*. Note that APN power permuta-
{z € F}, o, () = 1} then we have tions overFy: orgly exist for odd (see [21], [22, Proposition 4]).

; . . W In the sequelF, is identified with the finite field of ordeg?,

Do, Do) f(#, y) =7 (0w +A) + o)) = L. F5:, and the linear functions are the mappings: Tr(by) on
Thus, f admits a bend-decomposition. O F5, whereb describesF's: andTr is the trace function from

F,. to F,. The scalar product of two elementsandy then

Almost bent functionferm a particular subclass of APN map- corresponds @ (xy)

pings overF", for oddt. A functiono over F, is called almost
bent if any nonzero linear combination of its Boolean compo- Proposition 12: Let m = 2t be an even integer such that
nents,z — b - o(z) for b # 0, is three-valued almost optimalis odd and leflr denote the trace function froffi,: to F5. Let

[17], [18]. x — x° be an APN power permutation ovE%: and letr — ¢
denote the inverse mapping. Then, the following properties are
equivalent.

(i)  Them-variable bent function

f(z, y) = Tr(zy®) + h(y)

whereh is any Boolean function i5;, admits a de-
composition into four bent functions.
(i)  Thet-variable Boolean function

Remark 5: The permutations over F'; such that all sets, for
a € Fy (a #0)

So = {o(x +a) + o(z), v € F3}

are affine hyperplanes have been introduced in [19] and they are
calledcrooked functionsA part of the proof of the next lemma

can be found in [20] (using another terminology). The only ex-
amples of crooked functions known at present have degree

[19, p. 8]. g: © +— Tr(z?)
Lemma 5: Let ¢t be an odd integer > 5. Leto be an APN has a nonzero linear structuwresuch thatD,g = 1.
function overF", such that, for any nonzewe F', the set (i)  For any nonzera € F:, the set
Sa = {o(x +a) + o(), z € Fy} Sa={(z+a)! + 2%, 2 € Fou}
is an affine hyperplane. Then, is almost bent and its degree is an affine hyperplane.
cannot exceedg—l. Moreover, each of these properties implies that- =7 is
t—1

Proof: We denote byH, the hyperplang0, b}+ and by almost bent and that it has degree at n#gét, i.e.,ws(d) <
H, its complement. We first prove that all sefs, a # 0 are fort > 5

2
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Proof: Let us denote by, the functions which are not almost bent. Some examplesiare 2 overFs.

ford = 2t=1 —1[14],[16], and ford = 2% 4231 4221 1. 21 ]

: & — Tr(ba? be Fo, b#0. o 100 '
go: ¥ (b2, €Fo b7 wheret = 5i [24], [25]. Therefore, form = 2t, ¢ odd, and

According to Proposition 11, we know thftadmits a decom- ¢ > 5, the followingm-variable bent functions itM admit no
position into four bent functions if and only if there existand  bent4-decomposition:

Ain Fy: \ {0} such that the sef(x + \)¢ + 2%, z € Fy} is .

equal to the sefz € Fy:, Tr(yz) = 1} (i.e., Dag, = 1). So f(a, y) = Te(zy®) + h(y)

(ii) implies (i), and(iii) implies i). whereh is any Boolean function iB; ands = 2t"! — 1 0
Assume thafi) holds, i.e., that there exist two nonzero elez — 24i 1 witht = 5; (since(2% —1)(2% 42314221421 1) =

ments\ andy such thaiD , g, = 1. Actually, any functiory, can 2 1,04 (25 — 1)).

be obtained frony., by shifting the codeword Tr(yz?),z €

F,.). More precisely, ifb = cly with ¢ # 0, we have

gp=Tr(bz?) = Tr(y(cz)?). Then, we obtain for any € Fy:

=

VIIl. CONCLUSION

Dagy(z) =Tt (7(%)(1 +y(ez + ca)d) Our study points out that the bent functions may differ on
the properties of theit-decompositions. For instance, any bent
= Deagy(cz). function whose dual has degradedmits a decomposition into
Thus, foranyb € Foi, b # 0, D,g, = 1 fora = Ac™! = four bent functions, whereas both familié¢$ andPS™~ contain
A(vb~1)%. Moreover, the sets some bent functions which do not satisfy this property. In this

_ d d context, it appears that the structure of a bent function highly
Sa={(z+a)7+a% v €Fp} depends on some properties of its dual, such as its degree and
are affine hyperplanes (sincg, has cardinality2’~' because the Hamming weights of its second derivatives. Moreover, we
z — z is APN). We have proved th&f) implies (i) and(iii). have proved that the bent functions whose duals have a constant
Therefore, all three properties are equivalent. Moreover, it fadecond derivative present some specificities. From any such bent
lows from Lemma 5 thafii) implies thatz — = is almostbent function #, it is possible to derive some other bent functions.
and has degree at mosy®. U  WhenD,Dyf = 1, the restriction off to V' = (a, b)* is a

Proposition 12 enables us to exhibit some bent functions l?ﬁnt function, and whe®, Dy f = 0, the functionf + ¢y is

family M which admit no bent-decomposition. We only have bent. However, determining the structures of the bent functions
to choose an APN power permutation— ov;erFQi which which are obtained this way from a known bent function remains

is not almost bent or whose degree exce?@%s As an example, an open problem.

the following corollary exhibits an infinite family of cubic bent
functions in family M which admit no bent-decompositions.
These functions are derived from the quadratic APN power per-The authors would like to thank Claude Carlet for helpful
mutations (defined by Gold exponents [23]). They exist for arguggestions all along this work. Actually, this paper is based on
m such thatm = 2 mod 4 andm > 10. Recall that we proved several discussions with him concerning bent functions and the
that, for anym < 8, anym-variable cubic bent function admitsproperties of their duals.

a decomposition into four bent functions (since its dual has de-
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