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Cubic Boolean Functions With Highest Resiliency
Claude Carlet and Pascale Charpin

Abstract—We classify those cubic -variable Boolean functions
which are ( 4)-resilient. We prove that there are four types of
such functions, depending on the structure of the support of their
Walsh spectra. We are able to determine, for each type, the Walsh
spectrum and, then, the nonlinearity of the corresponding func-
tions. We also give the dimension of their linear space. This dimen-
sion equals where = 3 for the first type, = 4 for the
second type, = 5 for the third type, and 5 9 for the
fourth type.

Index Terms—Boolean function, cubic function, Hamming
weight, Reed–Muller code, resilient function, stream cipher,
symmetric cryptography.

I. INTRODUCTION

CONSTRUCTING good Boolean functions, with respect
to some cryptographic criteria, is still a crucial challenge

nowadays in symmetric cryptography. In particular, the Boolean
functions used in stream ciphers must have a high order of re-
siliency (and a high nonlinearity) to resist some divide-and-con-
quer attacks; see, e.g., [5]. In this context, a lot of works has cur-
rently been devoted to the characteristics of resilient functions
(see, for instance, [7], [8], [14]).

On the other hand, each Boolean function on variables can
be identified to some binary codeword of length . This repre-
sentation of codewords was intensively used by Kasami et al. to
show the simple structure of codewords of Reed–Muller codes
of low weights [9]–[11].

We present here the classification of cubic functions with
highest resiliency, i.e., cubic functions on variables
which are -resilient. (Note that quadratic functions with
highest resiliency were already classified in [1].) We show that
there are four types of such functions, by applying the results
of Kasami et al. to the supports of the Walsh spectra of the
functions (Corollary 2 and Lemma 4). We characterize precisely
these four types, describing for each of them the corresponding
Walsh spectrum (Section IV). Then we show that the rank of
the Walsh spectrum is generally small, and that for , any

-resilient cubic function has linear structures. More pre-
cisely, these functions can be expressed, up to the addition of
affine functions and to the composition by linear isomorphisms,
as polynomials of variables with except for the fourth
type where .
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We prove also that cubic -resilient functions have
derivatives with weights far from (see Lemma 3). Thus,
we finally conclude that, cryptographycally speaking, these
functions are bad unless .

Main notation.
— is the Hamming weight of the vector ;
— is the set of Boolean functions on variables;
— , , is defined by (3);
— is -resilient ;
— , are defined by (10) and (17).

II. PRELIMINARIES

Let us denote by the binary vector-space of dimension
. Recall that the Hamming weight of any vector is

(this sum being calculated in ). A Boolean
function is usually given by its algebraic normal form (ANF)

(1)

where the sum is calculated , is a Boolean function
too, and . The degree of , denoted by ,
is the maximal value of such that . The map-
ping which carries to is the binary Möbius transform of .

Lemma 1: For all and
in , define the partial order

Then, for any given by (1), we have

Then we can express as follows the degree of any Boolean
function.

Proposition 1: Let and let be an integer in the
range . Then

1) the degree of is at most if and only if, for any subspace
of , and of the form

the restriction of to has an even weight;
2) the degree of is exactly if and only if is of degree at

most and there is a subspace , with such
that the restriction of to has an odd weight.

0018-9448/$20.00 © 2005 IEEE



CARLET AND CHARPIN: CUBIC BOOLEAN FUNCTIONS WITH HIGHEST RESILIENCY 563

So we recall the definition of Reed–Muller codes in this con-
text.

Definition 1: Let us define as an ordered vector-
space

(2)

where is an -dimensional binary vector. The Reed–Muller
code of length and order , , denoted by ,
is the binary code of length composed of the codewords

where is a Boolean function on vari-
ables whose degree is less than or equal to .

For simplicity, and if there is no confusion, we will identify
any function with its corresponding codeword of length

; in particular, the weight of , denoted , is the Ham-
ming weight of this codeword.

A. Basic Terminology and Useful Properties

For any , we denote by the character sum

(3)

The function is said to be balanced if . For any
, define the linear function . The mapping

is called the Walsh transform of . The values
, and the number of times they occur, form the Walsh

spectrum of . The nonlinearity of , is related to the Walsh
transform via the following expression:

where

(4)
We shall need the following well-known property.

Proposition 2: Let be a Boolean function on such that,
for every , is divisible by for some integer

, then the degree of is upper-bounded by .

The derivative of , with respect to some , is the
function of

When is constant, is said to be a linear structure of .
The linear space of is the set of linear structures of . It is
clearly a linear space.

There is a set of classical tools for the study of Boolean func-
tions; we give here, without proof, some formulas which will be
used later (see, for instance, [2], [4]). The Parseval’s relation is
as follows:

(5)

We will need this inverse formula

(6)

For any subspace of of dimension , we have

(7)

(8)

where is the dual of with respect to the scalar product of
vectors written in the standard basis, and where the ’s are the
restrictions of to the cosets of .

Definition 2: A function is said to be -resilient if
for all satisfying ,

where is the Hamming weight of the vector .

Recall the well-known Siegenthaler’s bound for [15]

For every is resilient
(9)

B. Two Notions of Rank of a Subset of

In order to classify a class of cubic resilient functions, we will
study extensively the set of nonzeros of the spectrum of these
functions. Recall that a flat of is a subspace or an affine
subspace of .

Definition 3: Let . We call support of the spectrum
of , and we denote by , the subset of

(10)

The rank of will determine the dimension of the linear space
of .

Definition 4: Let be any subset of . The rank of is
the dimension of the subspace of generated by . The affine
rank of is the dimension of the smallest flat containing .

Note that rank and affine rank, say and , respectively, may
be different. However, it is easy to check that .
For instance, if is the complement of any linear hyperplane
then while . On the other hand, if contains

then .

Proposition 3: Let ; denote by and (respectively)
the rank and the affine rank of . Assume that .

Then the linear space of has dimension . More
precisely, contains a subspace of dimension such
that for all . If then for all

and is balanced.
Proof: We give an original proof of this essentially known

result. Consider the subspace of dimension the coset of
which is the smallest flat containing . Let , ,
and denote by the hyperplane . Clearly, contains

and we have, applying (7)

where either or . This is equivalent to
saying that the sum in the preceding equation on the left-hand
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side either equals , according to Parseval’s relation (5), or
equals . In other words, , i.e.,

. Conversely, if , then or
. We have proved that the linear space of contains and

only. We deduce that and that the dimension of
is therefore .

Now the equality , for some , does not
hold when , i.e., when . Otherwise, if ,

for a half of elements of . The proof is completed
since any function which has a derivative equal to is balanced.

C. The Maiorana–McFarland Construction of Resilient
Functions

A method for constructing resilient functions was first pro-
posed in [1, Proposition 4.2] and later precised in [6].

Proposition 4: Let and let be a mapping

(11)

Let . For any and any , define

Then is -resilient. Moreover

1) if, for every belonging to the image of , the restriction
of to is balanced, then is -resilient;

2) if is injective (resp., if for every ,
has size or —we shall call two-to-one such mapping),
then has a three-valued spectrum (resp.

).
can be chosen quadratic such that is cubic.

This construction will allow us to give examples of functions
belonging to the four types of -resilient functions. It can
be used, in its general setting with , or in the particular
setting of Alinea 1 with .

In the first case, we must choose : otherwise, the
function would be -resilient, and therefore quadratic.
Also we shall take , since leads to a
constant mapping ; we obtain in fact

We cannot take since would not then have degree
So .

In the second case, we must take and
. In this case, we do not take injective, since we want to

be in the case of Alinea 1. If we want to choose two-to-one,
then our interest is for the case . Indeed, if
then has a three-valued spectrum . We will see
later that this is impossible for cubic -resilient functions
(see Proposition 6).

III. THE CLASS OF CUBIC FUNCTIONS WITH HIGHEST

RESILIENCY ORDER

We consider, for , the class of those functions on
variables which are cubic and -resilient.
We first recall some properties on these functions.

• When is -resilient then , according to
(9). Note that a cubic function cannot be -resilient.

• When then for any (see [14])

(12)

• When then the derivatives of satisfy

(13)

This last property is an improvement of [8, Theorem 5], in the
case where functions of are considered. We will prove this
divisibility in Lemma 3 later. Note that the derivatives of cubic
functions are of degree at most . So we know that the values
of Walsh coefficients of such a derivative are or of the form

, for .

A. Properties of the Class

The Boolean functions whose Walsh spectra take three values
only are called three-valued functions. When these three values
are and , such a function is also called plateaued in cryp-
tography. The following Lemma is known (see [3, Proposition
II.2] and [4, Proposition 4]). It comes straightforwardly from
(12), (6), and Parseval’s relation since, according to (12), we
have for any

Lemma 2: Let satisfying (12); let denote the sup-
port of the Walsh spectrum of and be the cardinality of

. Then with equality if and only if is plateaued,
its Walsh spectrum taking the three values , , and .
These values then occur, respectively, , ,
and times.

Now we can describe more precisely the ANF of the functions
of .

Proposition 5: Let , the ANF of which is expressed
by (1). Let such that and let

. Then for any such

where . Notably, the ANF of cannot have more than
16 terms of degree .

Proof: From Lemma 1, if and only if the in-
teger sum is odd. Since is -resilient,
applying (8) we obtain for

Since then with , from
(12). On the other hand, is odd if and only if
is equal either to or to . This is equivalent to .
As explained through Lemma 1 and Proposition 1, each term of
degree in the ANF of is determined by odd for some
such that . The proof is completed by using Lemma 2.
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We immediately deduce that if then there is at least
one such that with odd. Moreover,
this , if it is unique, must be of weight , because oth-
erwise, there would be no term of degree in the ANF of , a
contradiction.

Corollary 1: Let . Then there is at least one in
satisfying and such that

Remark 1: The previous properties hold in a more general
context, notably for -resilient functions of optimized degree

. In this general case, Corollary 1 becomes:
there is at least one satisfying such that

, for some odd . Note that, according to
Proposition 2, it is impossible that all values of Walsh spectrum
of are divisible by .

Now we are going to improve upon [8, Theorem 5] for the
divisibility properties of the derivatives of .

Lemma 3: Let . Then for any

More precisely

Proof: Let where and . Then
we have, applying (7)

which gives

(14)

for some nonnegative integer . Clearly, is greater than or
equal to . We get from (14)

(15)

Moreover, we have from (8)

which can be rewritten as

for some integer . It appears then that . Thus,
the number of such that ,
with odd, is an even number. We deduce that is an even
number as well.

Since is cubic, the degree of is less than or equal to .
Thus, either or is equal to a power of

, implying in (15)

B. The Structure of the Support

We begin by stating some notation. Let . Then we can
write its Walsh coefficients as follows:

where

(16)

Note that is in fact impossible, since would then be
affine. Recall that denotes the support of the Walsh spectrum
of (see (10)). Let us define the odd part of this support

(17)

We also consider the Boolean function defined by

(18)

which is called the indicator of .

Theorem 1: Let and let be defined by (17). Then
the indicator of is a Boolean function of degree
exactly.

Proof: From (8), we have for any subspace of dimen-
sion

Thus, we get

where the sum of the right-hand side is even. Then

In other words

Now we apply Proposition 1. Since the restriction of to any
vector-space of dimension is even, the degree of is
at most . On the other hand, we know, from Corollary 1,
that there is at least one such that and

odd

Thus, the degree of is exactly .

Kasami and Tokura determined in [9] the number of code-
words of weight , where , of any Reed–Muller
code of minimum weight . The ANF of those Boolean func-
tions corresponding to these codewords of low weights in any
Reed–Muller code were characterized. We are here interested in
the Reed–Muller codes of length and order , denoted

; its minimum distance equals . We proved that
the indicator of , , belongs to ; more-
over, since the weight of is in the range [ ].
Theorem 1 of [9] can be rewritten for as follows.

Theorem 2: [9] Let such that
Then, up to an affine nonsingular transformation, the ANF of
has one of the following forms:
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1)
; in this case ;

2)
, where ; in this case, if

then else .

Now, according to Theorem 2, we are able to classify the
functions of by means of the properties of .

Corollary 2: Let and let be defined by (17). Then
we have the following.

i) The cardinality of is divisible by ; it is equal at least
to .

ii) if and only if is a three-dimensional flat.
iii) When , the indicator of is given by The-

orem 2, item 2), with and . Moreover the
affine rank of is exactly and the rank of is equal
to if and to otherwise.

iv) If , then cannot be a four-dimensional flat.
In this case, and the affine rank of is at least .

Proof: In addition to the definition of Reed–Muller codes
(Definition 1), recall that the code has minimum dis-
tance and that its set of minimum-weight codewords is
the set of indicators of flats of dimension (see, for in-
stance, [12, Ch. 13, Sec. 4]). Recall that denotes the indicator
of . Let us denote by and the rank and the affine rank of

.

i) From Theorem 1, .
According to Lemma 2, we then deduce that

. Let us denote by the set of such that is even.
Using Parseval’s relation, we get

This indicates that the cardinality of is divisible by .
ii) We have if and only if is the indicator of

some minimum-weight codeword of , some
three-dimensional flat. In this case .

iii) If then, from Theorem 2, we have, up to affine
equivalence

Set and let
, be the two subsets of defined, respectively, by

and . We have

where and are two three-dimensional flats whose
intersection has cardinality . Thus, . Indeed, let

, where is the vector-space
generated by three linearly independent vectors , , and
. Assume, without loss of generality, that

, then , where , , and
are linearly independent. It is a simple matter to check
that the smallest flat containing is .
Hence, . If then is obviously the max-
imum possible value for (and we shall show below that
this case actually occurs). Otherwise, the first

coordinates of being equal to and the first
coordinates of , of , of , of , and of being null,
is linearly independent of , , , , and , and we have

.
iv) If then when we get ,

according to Lemma 2, implying . In this case,
cannot be the indicator of a minimum-weight codeword

of , that is, of a four-dimensional flat. Thus,
the affine rank of is at least , completing the proof.

Remark 2: Theorem 1 could be written in a more general
context for any Boolean function as soon as the coefficients
of the Walsh spectrum of satisfy good divisibility properties.
It is of most interest in our context, since the degree of is small
and the divisibility is high.

IV. TO CLASSIFY THE CLASS

Now we are looking at the different types of functions of ;
first, we distinguish the suitable values of Walsh coefficients for

. According to (12), we have
for any , where is defined by (16). The following nonzero
values of can appear:

According to Corollary 1, we have first the following proposi-
tion.

Proposition 6: Let be in . Then the values of the Walsh
spectrum of cannot be .

We are going to classify the functions of by means of
their spectrum. We differentiate four main cases which appear
by using Parseval’s relation. The possible values of
are in . Parseval’s relation gives here

where, for

Thus, and .

We fully apply Corollary 2. It appears first that .
If the only possibility is , since , and

; this will be our first type. Now we assume that .
Note that , from Proposition 6. Hence, with

, that is, .
This results in four cases only.

Lemma 4: With the previous notation, there are four types of
functions of , characterized by the :

I) , , and implying
II) , , and implying ;
III) , , and implying ;
IV) and implying
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These cases will be called, respectively, type I, II, III, and IV
and will be studied in Sections IV-A–C. Note that the two first
cases are strongly related; they correspond to the case where

is a flat of dimension . So they will be treated together in
Section IV-A.

A. Cases I and II

In accordance with Corollary 2, we first examine the two
cases where contains a flat of dimension . This happens
when and, from Lemma 4, there are two such cases,
namely, type I and type II. Assume that is a three-dimen-
sional flat; since is -resilient, we must have

According to Corollary 1, at least one , say , is
such that . For clarity we suppose that

(this does not restrict the generality, up
to permutation of the variables). Thus, where is
some subspace of of dimension . Let be the generator
matrix of . We can assume that

(19)

where is a binary matrix. Indeed, assume that
cannot be arranged in such a manner. Thus, modulo some

linear combination of rows, could have one row of the form
, where is some nonzero vector.

This would imply , a contradiction.
Moreover, for any vector generated by , we must have

. Obviously this is possible if and only if
each row of is a vector with Hamming weight at most .
Thus, we have proved the following.

Lemma 5: Let such that is a three-dimensional
flat. Then, up to a permutation of the coordinates

where

and is a linear binary code of length and dimension .
The generator matrix of is defined by (19) where is
a binary matrix whose rows have weight at most .

1) Functions of of Type I: Recall that case I is the only
one for which ; that is, there exists such that

. Then, the function , equal to
if and to if

, satisfies , and therefore corresponds
to an element of (minimum) weight
in the Reed–Muller code of order . Hence, this function is the
indicator of an -dimensional flat. Replacing by

where permits to ensure that and
in the same time. So, we shall be able to

move case I to the following situation.

Proposition 7: Let be a function on variables of degree
such that and . Then we have the

following.

i) Function is the indicator (i.e., the characteristic func-
tion) of a vector-subspace of of codimension . So
the ANF of has the form

(20)

where , , and are linearly independent, and are such
that equals (whatever is the choice of , ,
and satisfying these two conditions); the linear space of

equals .
ii) The function is balanced if and only if the four

vectors are linearly independent, and equals
the vector-space (generated by , , and ).

iii) The values of the Walsh coefficients are

values
number

In particular .
Proof: As recalled earlier, the minimum codewords of the

Reed–Muller code of order are those codewords which sup-
port is an affine subspace (a flat) of dimension ; then the
statement i) is obvious, since this flat containing , it is a
vector-space and, hence, it equals the intersection of three inde-
pendent linear hyperplanes containing .

ii), iii): Consider the functions , , where is
defined by (20). Since is the indicator of , a vector-space of
codimension , there are two possible weigths for :

— either the kernel of contains , that is ,
providing

— or contains a half of implying that is balanced.

Corollary 3: Let be a function of type I. Let be the
unique vector such that . Let be the
function or , composed with some translation,
so that and . Then satisfies i), ii),
and iii) of Proposition 7, and is a three-dimensional
flat. The rank and the affine rank of are, respectively, and

. Denoting and , the
values of the Walsh coefficients of are

values

number

values

number

In particular, ; so . Moreover, up
to a permutation of the variables, the ANF of has the form

(21)

where , ,
, and where, denoting by the th vector of the canonical

basis of , the vector is any element of
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the vector-space generated by , ,
and .

Proof: The first part of the proof is directly deduced from
Lemma 4 and from Proposition 7, applied to the function ,
equal to if and to if

, and composed with some translation.
The Walsh coefficient at of a function being equal to

times the Walsh coefficient at of , the values of the
Walsh coefficients of are equal to , , and ,
according to Proposition 7; Relation (6) gives the enumeration.

We are going to study now the ANF of . Suppose that the
ANF of is as in (21), which can be expressed

(22)

It is easy to check that, for any , ,
the vectors , , , and are linearly independent, implying
that is balanced, according to Proposition 7.

Conversely, we consider of type I. We can assume
that and , replacing by

for some and . This
proves, according to Proposition 7, that has the form (22),
where , , and are any linearly independent vectors of the
vector-space such that . According to Lemma 5,

has, up to permutation of the coordinates, the generator matrix
defined by (19), where each row of has weight at most .

Hence, we can take , , and
. According to Lemma 5 again,

is any element of the vector-space generated by , , and .

2) Functions of of Type II: The functions of type II differ
from the previous type by the fact that their support is the union
of a three-dimensional flat, which is , with two other ele-
ments.

Proposition 8: Let of type II. Then

— ; so ;
— , and (i.e., the value

appears two times in the spectrum of ); is
a three-dimensional flat and is a line which is parallel
to .

Assuming that , the spectrum of has one of these two
forms:

form 1

values

number

form 2

values

number

The affine rank of is equal to . The rank of is equal
to or . For , has a linear space of dimension .

Moreover, let and be the two complementary hyper-
planes, the directions of which are orthogonal to the direction
of the line , then one of the restrictions of to and is
affine and the other one is quadratic.

Proof: In accordance with Lemma 4, we know
that the Walsh spectrum of is contained in the set

where appears eight times
and appears two times. Recall that the Walsh coeffi-
cients have the form , , where is defined
by (16). Now, since , we deduce from (6)

where and . First, let us show that it is
impossible to have : in this case, we have
implying and ; let be the direction of , which is
a three-dimensional flat; set ; then we get, applying
(8) to the function

this is impossible since has size . If then
implies . If then

implies . Then we get the forms 1 and 2 of the
Walsh spectrum.

The affine rank of equals at most the affine rank of
plus , that is at most . Assume that . Then and
we can define a hyperplane such that its coset contains

and only one such that . Thus, applying
(8) again

where . Since equals either or and the sum on
equals either or , this is impossible. Thus, and

the rank is equal to or , since the rank of equals . From
Proposition 3, has a linear space of dimension .

Let us denote by and the two elements of .
According to (7) applied to and to the function

, we get

where and are the restrictions of to the hyper-
plane and to its coset. On the other hand, the sum above
is equal to . It is well known that the only possibility is
then and (or vice versa) (see the
Annex of [3]).

Thus, assuming that is constant, we claim that is affine
on . Now we look at , the restriction of to the coset of

. For any , we have
where denote the restrictions of and is
balanced unless or ; in this case, it is constant.
Thus, we get

— if is balanced then is balanced;
— if then or implying

balanced;
— if then .
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Finally, assuming that is of degree , it appears that the
Walsh spectrum of is divisible by . Hence, according
to Proposition 2, the -variable function is quadratic.

We have proved that the functions of type II are of interest
for only; indeed, they have a nonzero linear structure for

. For we get cubic balanced functions.

Example 1: For , the following functions are of form
1 and of form 2, respectively (according to the previous propo-
sition)

Note that . So can be obtained
by Maiorana–McFarland construction (11), with

and .
Now consider for . That

is,

Then is in of type II; it is cubic, -resilient and of form
1. Moreover, has a linear structure with

.

B. Functions of of Type III

Considering functions of type III, a number of properties are
easily stated.

Proposition 9: Let of type III. Then

— , so ;
— , , and (i.e., the value

appears only one time in the spectrum of ).

Assuming that , the spectrum of has one of these two
forms

form 1

values

number

form 2

values

number

The affine rank of is equal to . The rank of is equal
to if and to otherwise. For , has a linear
space of dimension .

Proof: In accordance with Lemma 4, we know
that the Walsh spectrum of is contained in the set

where appears 12 times and
(say ) only once. Recall that the Walsh

coefficients have the form , , where is
defined by (16). Now, denoting

and , we have from (6) and since

with

Then which implies

and

In accordance with Corollary 2, iii, we know that where
is exactly the affine rank of ; moreover, the rank of is

when . Since contains only one element, say which
is not in , then . So we have only to treat the case

(with ) where is not in the five-dimensional
flat containing . We can define an hyperplane such that its
coset , , contains and does not contain . We
have then, applying (8)

Hence, since has two elements, belongs to the set
. But we have proved that equals either or ,

a contradiction. This completes the proof.

Remark: Let us denote again by the element of . Let
be any element of . According to (7) applied to
and to the function , we have

where and are the restrictions of to the two cosets
of . Since

and since the only possibility for being
equal to the sum of two squares is

(this can easily be shown, by methods similar to those of the
appendix in [3]), we deduce that or (say ) is such that

. By replacing by if
, we may assume that . Since the

-variable function has degree at most , this implies
that it is the indicator of a flat of codimension .

Since the affine rank of their support is always , the functions
of of type III are of most interest when . They are
cubic functions of five variables which are -resilient and have
no linear structure. Note that for it is very easy to produce
all the functions of by using a computer. As an illustration,
we give one example for each form of functions of type III.

Example 2: Let and . The
function
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is -resilient and has spectrum of the first form, i.e.,
with previous notation. The function

is of the second form— .

Actually, these two functions can be obtained by Maio-
rana–McFarland construction. Let us denote by the first one.
We have

providing

and ; is -resilient thanks to Alinea 1 of
Proposition 4, since is balanced on each of the sets

We obtain a similar construction for the second function.

C. Functions of of Type IV

In this section we treat the functions of type IV as defined by
Lemma 4. We first summarize some properties, according to our
previous results.

Proposition 10: Let of type IV. Then

— and ;
— and .

The spectrum of contains three values only ( is said to
be three-valued, or more precisely plateaued). Assuming that

, this spectrum is as follows:

value number it occurs

Let us denote, respectively, by and the affine rank and the
rank of , then .

Proof: The first part of the proof is deduced from Lemma
4. Particularly, the values of the Walsh coefficients of are
and . As we recalled at the beginning of Section III-A,
the Walsh spectrum of is well known.

From Corollary 2, iv), we know that (with ).
Recall the notation . Since ,
there are ten values and six values . Let

and denote by the rank of . Set
. Let be the -dimensional flat generated by

. Then we have

where is equal to the number of which are in (we
have ). The sum above (on the left-hand side) is less than
or equal to , since it is equal to where (see
(8)). Thus, we must have , implying and then

. So and we have proved that .

We now use the proof of Lemma 3 with the same notation.
Suppose that . Let us choose an element of . Since this
element is linearly independent of the nine others, there exists

such that the dual of , say the hyperplane ,
contains these nine linearly independent elements and not all
ten. Thus, we obtain

where is the number of those elements of which are in .
Since then and we have seen that in this case

implying . On the other hand, ;
so . From Lemma 3, this value is impossible.
So is impossible; since , we get
completing the proof.

Therefore, we have proved the next corollary.

Corollary 4: There are no functions of type IV for .
For every , these functions have optimal nonlinearity

. For , such a function has no linear
structure; it is such that the affine rank of is equal to .

Functions of of type IV exist. The main example is given
by the Maiorana–McFarland functions (see Proposition 4), in
which the mapping is injective: for , such

exists, since has at least four
elements. Let . For any and any ,
define

Then is -resilient; can be chosen quadratic such
that is cubic. Moreover, is three-valued with spectrum

. Such a function is the concatenation of the
four affine -resilient functions (
ranging over ). We are then able to construct functions of

of type IV, as we show for in the next example.

Example 3: Let ; thus, (from Proposition
10). The next function of is of type IV

(23)

Indeed, the four linear functions which appear in the expression
of , are , , where

and all of these vectors have weight at least . We have

for some

As expected, we obtain 16 nonzero values; moreover, it appears
clearly that

and for some



CARLET AND CHARPIN: CUBIC BOOLEAN FUNCTIONS WITH HIGHEST RESILIENCY 571

Thus, the rank of is equal to plus the rank of .
We get and obviously the rank is here equal to the affine
rank, providing .

Clearly, by using the previous construction, we will always
obtain when increases. We obtained easily functions
of type IV with for with a computer; it seems
that they are generally coming from Maiorana–McFarland con-
struction where is two-to-one (see the next example). Using
the same construction, we obtained for ; for
other constructions have to be found.

Example 4: The next function of is of type IV. It is three-
valued, with values , -resilient with nonlinearity

. This function has no linear structure

With Alinea 1 of Proposition 4, we have

and , where is balanced on the sets

V. CONCLUSION

Any Boolean function on variables which is -re-
silient has degree at most and nonlinearity less than or equal to

. We classified here such functions which are of de-
gree exactly . We mainly proved that these functions have gen-
erally poor cryptographic properties. First, they have small non-
linearity, except for type IV. They have derivatives of weights
very far from as soon as . Moreover, they have
linear structures, for . We distinguish four types of such
functions and, to be precise, the types I to III correspond to
functions which have linear structures for . The fourth
type is more interesting; for and , the corre-
sponding functions have no linear structure and a good non-
linearity. Moreover, even if there exist such functions without
linear structure for , , and their nonlinearity is de-
creasing. The problem of studying such functions has to be re-
placed in the general study of three-valued functions (see [2],
[3]). More precisely, we face the following research problem
and an open problem.

Research problem. Classify cubic Boolean functions which
are three-valued, with values of Walsh spectrum ,

. Characterize those functions which have no linear struc-
ture. Determine their order of resiliency.

Open problem. Does there exist functions of of type IV
which have no linear structure for , , and ?

We used here the work of Kasami et al. [9] for the descrip-
tion of when belongs to the three first types. When

, the form of the indicator of is studied in [11]
and, hopefully, some properties can be exploited for more con-
structions.
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