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On Bent and Semi-Bent Quadratic Boolean Functions
Pascale Charpin, Enes Pasalic, and Cédric Tavernier

Abstract—The maximum-length sequences, also called m-se-
quences, have received a lot of attention since the late 1960s. In
terms of linear-feedback shift register (LFSR) synthesis they are
usually generated by certain power polynomials over a finite field
and in addition are characterized by a low cross correlation and
high nonlinearity. We say that such a sequence is generated by
a semi-bent function. Some new families of such function, repre-

sented by ( ) = =1 ( 2 +1), odd and 2, have
recently (2002) been introduced by Khoo et al. We first generalize
their results to even . We further investigate the conditions on
the choice of for explicit definitions of new infinite families
having three and four trace terms. Also, a class of nonpermutation
polynomials whose composition with a quadratic function yields
again a quadratic semi-bent function is specified. The treatment of
semi-bent functions is then presented in a much wider framework.
We show how bent and semi-bent functions are interlinked, that
is, the concatenation of two suitably chosen semi-bent functions
will yield a bent function and vice versa. Finally, this approach is
generalized so that the construction of both bent and semi-bent
functions of any degree in certain range for any 7 is pre-
sented, being the number of input variables.

Index Terms—Bent function, Boolean function, linear permu-
tation, m-sequence, nonlinearity, quadratic mapping, semi-bent
function.

I. INTRODUCTION

I N the late 1960s, the first family of m-sequences having low
cross correlation has been introduced by Gold [7]. This is a

family of ( odd) cyclically distinct sequences, each of
period , having a plateaued cross-correlation spectra. That
is, for two such -sequences and ,
where and have order in

with (1)

This family has the trace representation , where
and (see [12,

Sec. 5]). Such a family of maximum-length sequences, whose
cross-correlation spectra attain exactly the values above, have a
wide range of applications in cryptography and code-division
multiple-access (CDMA) communication systems. Such a
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sequence is represented by a Boolean function which we call a
semi-bent function, using the terminology of Khoo et al. [8].

After this pioneering work, a lot of research has been de-
voted to finding new families of semi-bent sequences. The main
contributions in this direction are due to Niho [15], Helleseth
[10], [11], Kumar and Helleseth [12], etc. However, almost all
families of semi-bent functions have been derived from power
polynomials, that is, for a suitably chosen .
Thus, there is a strong interplay between the concepts of Gold
sequences and certain power functions which are known as al-
most-bent mappings [4]. In other words, an almost-bent function

on ( odd) means that the cross correlation between a
binary m-sequence of length and a decimation of that
sequence by takes on the values , .

In a recent paper, Khoo et al. [8] have derived a new family
of sequences represented by semi-bent functions of the form

odd, where this sum has more than one term, being the
number of input variables. To such a function a cyclic code of
length was associated, spanned by

where

Then it was proved that is semi-bent if and only if
. This gives a very convenient

tool for determining whether a function having certain
number of trace terms is semi-bent or not. For certain primes ,
for instance the Sophie–Germain primes,1 it was shown that is
semi-bent for any choice of coefficients , .

The main intention of this paper is to expand these results
on quadratic functions in many directions. Concerning the class
of quadratic semi-bent functions, we introduce some infinite
classes of semi-bent functions having three and four trace terms.
Thus, we extend the size of this class by giving some explicit cri-
teria for the choice of the exponents in the trace sum

It should be noted that the properties of semi-bent sequences are
preserved when a linear permutation is applied to such a func-
tion. However, this is not the case when a composition with a
nonpermutation is considered. We also specify certain classes

1
n is said to be a Sophie–Germain prime if both n and 2n+ 1 are prime.
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of nonpermutation polynomials from which we derive new fam-
ilies of quadratic semi-bent sequences.

In other direction, we derive an efficient criterion to deter-
mine whether two semi-bent functions defined by the trace rep-
resentation have a nonintersecting spectra. Two functions ,

are said to have a nonintersecting spectra when a nonzero
value in the spectra of one function implies a zero value for the
other function, and vice versa. Our criterion gives a very con-
venient method for generating bent functions through a simple
concatenation of two semi-bent functions with nonintersecting
spectra. The bent functions constructed in such a manner are
cubic, and the concatenation of two suitably chosen such func-
tions will yield a semi-bent function of degree . This technique
is later further manipulated to provide a wider framework for
the construction of bent and semi-bent functions of any degree
in certain range.

We mention the fact that the construction of nonquadratic
bent and semi-bent functions of varying degree is not unknown.
Both these classes are constructible from the Maiorana–McFar-
land class. This class can be viewed as a concatenation of affine
(linear) functions from a smaller variable space to generate a
function with larger number of input variables. Different de-
grees are then attained by choosing suitable linear subfunctions
in such a concatenation. Nevertheless, the technique we present
here is basically based on the concatenation of quadratic func-
tions and henceforth the classes are not equivalent. To the best
of our knowledge, a similar approach has only been considered
in [5] where the author mainly focused on the construction of re-
silient functions. Also, the necessary conditions for this method
are quite hard to satisfy leading to a rather cumbersome geo-
metric problems. The main difference, when comparing the two
approaches, is that we can easily and in a deterministic way se-
lect quadratic functions with nonintersecting spectra which is
not the case for the method in [5].

The class of Boolean functions generating the sequences (1)
only exists for odd . When is even, then there are two impor-
tant classes with plateaued spectra which are highly nonlinear.
The spectra of the first class, namely, the class of bent functions,
attains the value , the second class has the spectra whose
values belong to . We call the letter class semi-bent
functions, taking the same terminology as in the odd case. The
similar criterion, as discussed above for odd , is derived for
semi-bent functions in the even case. This means that for even

we are able to select two semi-bent functions such that their
concatenation gives a semi-bent function.

This paper is organized as follows. Section II serves as an
introductory part providing some necessary definitions and no-
tions. In Section III, the class of quadratic semi-bent functions
represented by , with , is discussed. This section
provides some theoretical results regarding the possibilities and
conditions of constructing the three classes of Boolean func-
tions, namely: bent ( even) and semi-bent functions ( even
and odd). We generalize a result of Khoo et al. [8] to the case

even (Theorem 2). The necessary and sufficient conditions
concerning the balancedness of the class of semi-bent func-
tions are also derived here. Section IV gives some new infinite
classes of quadratic semi-bent functions for odd . This goal
has been approached in two different ways. On the one hand we

specify the conditions on the coefficients in the expression
of the form

when there are three and four nonzero . In other direction, we
show that some infinite classes of quadratic semi-bent functions
may be derived by composing a quadratic semi-bent function
with certain nonpermutation linear polynomials.

Section V addresses the construction of nonquadratic semi-
bent and bent functions. A strong relationship between the three
classes mentioned above is exhibited. Using the concatenation
of two suitably chosen quadratic bent or semi-bent functions in

variables we are able to generate a cubic semi-bent function in
variables. The same technique can be then applied to two

(suitably chosen) semi-bent functions to obtain a bent function
of degree . In Section VI, we further take the advantage of the
approach developed in Section V. It is shown that, based on the
concatenation of quadratic functions, there exist bent functions
of any degree in the range and semi-bent functions
of any degree .

Notation.
— is the finite-field of order ;
— , is the cardinality of the set ;
— is the trace function on ;
— is the set of Boolean functions on ;
— , the linear functions of ;
— is the Hamming weight of the binary vector ;
— for any Boolean function on

;
— : see (6) and (7);
— is the linear space of (Definition 1).

II. BASIC PROPERTIES OF QUADRATIC BOOLEAN FUNCTIONS

Let denote the set of Boolean functions on . In this
paper, we mainly treat the functions in of the form

(2)

where and . The linear
Boolean functions on are

(3)

The Walsh transform of in point is

We are interested in the Walsh spectrum of , that is, the set of
values

(4)

and the number of times these values occur. The weight of is
the number of such that and is denoted by .
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Recall that is said to be balanced when or,
equivalently, .

The nonlinearity of is related to its Walsh transform via
the following expression:

where (5)

In this paper, we use some properties of derivatives of .

Definition 1: Let . The derivative of , with respect
to , , is the function defined by

When is constant, is said to be a linear structure of .
The set of those plus is called the linear space of .

The quadratic Boolean functions on are as follows:

(6)

Now, we present some basic properties on these functions which
can be found in [14, Ch. 15] and [3] (see also [1]). The associated
symplectic form of is the mapping from to

The kernel of is defined as follows:

The following properties are well known.

i) is the subspace of those such that , the
derivative of with respect to , is constant.
According to Definition 1, is the linear space of

.
ii) is balanced if and only if there is such

that . This is equivalent to say that is not
constant on . In this case, this holds for a half of
elements .

iii) Set , ; then the
spectrum of only depends on (cf. [14, p. 441]). It
is, since

value number it occurs

Note that the dimension of is even when is even and odd
when is odd. Now we define three kinds of functions which
have good nonlinearity and recall their Walsh spectrum. Since
nonquadratic functions with the same spectrum exist, we give a
general definition. The reader can find a general proof for the
computation of these kinds of spectrum in [2]. Note that for

odd, semi-bent functions have the best nonlinearity among
quadratic functions. For functions of higher degree, the best
nonlinearity is not known from . For even , the bent
functions are functions of best nonlinearity.

Definition 2: Let be even. Any , with , is
said to be bent if and only if its Walsh-spectrum is

value number it occurs

The quadratic function , defined by (6), is said to be bent if
and only if .

Definition 3: Let be odd. Any , with , is
said to be semi-bent if and only if its Walsh-spectrum is

value number it occurs

The quadratic function , defined by (6), is semi-bent if and
only if .

Definition 4: Let be even. Any , with , is
said to be semi-bent if and only its Walsh spectrum is

value number it occurs

The quadratic function , defined by (6), is semi-bent if and
only if .

III. BINARY CASE AND GOOD NONLINEARITY

From now on, we consider quadratic functions of of the
form

(7)

with , . Note that is equal to
for odd and to for even . For even ,

we have , since .
Since, for any

(8)

Then

(9)

Clearly, the set is included in . Thus, the dimension
of is at least . For odd , we can have providing

the functions of best nonlinearity, the so-called semi-bent
functions (Definition 3).

This cannot hold for even : cannot be bent because
cannot be equal to . Hence, for even , the best nonlinearity
for the functions is obtained when . In fact, it is easy
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to see that is included in . Indeed, for ,
we have

if is even
if is odd.

Thus, for any , ( is even) which implies that is in
. According to Definitions 3 and 4, we have the following

characterizations. Recall that for any linear polynomial of
one defines its associated polynomial as follows:

and (10)

Any linear polynomial divides if and only if its associated
polynomial divides [13, Theorem 3.62]. The function is
given by (7).

Lemma 1: Let be odd. The function given by (7) is semi-
bent if and only if the roots of the polynomial

(11)

are and only. Equivalently, is semi-bent if and only if the
associated polynomial of satisfies

In this case .
Proof: Note that . We

have seen that is included in or, equivalently, that the
polynomial divides . According to Definition 3,
the function is semi-bent if and only if . That is,

This can be rewritten in terms of the associated polynomials of
the linear polynomials and . We then obtain that

is semi-bent if and only if .

Lemma 2: Let be even. The function is semi-bent if and
only if the polynomial

(12)

is such that implies . Equivalently, is semi-
bent if and only if the associated polynomial of satisfies

In this case .
Proof: As in the preceding proof, we know that the poly-

nomial divides and is semi-bent if and only if
. This can be expressed with the associated polyno-

mials: .

Example 1: Let for some . Thus,

and

It is well known that for odd such a function is semi-bent
if and only if . When is even, , is
semi-bent if and only if or equivalently

We have

Thus, is semi-bent if and only if ,
that is,

A. Generalization of a Result of [9]

We denote by the order of modulo , that is, the
smallest such that divides .

Khoo, Gong, and Stinson characterized the set of odd such
that is semi-bent for all nonzero [9, Sec. 4]. We summarize
their results in the next theorem.

Theorem 1: Let us define the properties i) and ii) where is
any odd prime number:

i) ;
ii) , is odd and .

Let be odd. The functions on are defined by (7). Then,
is semi-bent, for any non zero , if and only if is an odd

prime number satisfying i) or ii).

By using Lemma 2 we are able to prove a similar result when
is even. However, according to the next lemma, the situation

is clearly different. We will prove that, unless , there is no
for which all are semi-bent. Notation is as in Lemma 2.

Lemma 3: Let be even, with . Let be any
function defined by (7). Then divides if and only
if for all , .

Proof: Recall that . Thus,

So divides if and only if for all

This is possible if and only if for all , .

Theorem 2: Let be even. The functions on , ,
are defined by (7). Then we have the following.

a) If then is semi-bent.
b) Assume that , , and consider the functions

such that for some . Then, is semi-bent,
for any such , if and only if is an odd prime satisfying
part i) or part ii) of Theorem 1.
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Proof: With notation of Lemma 2 and , we have
for any

and we know that divides . If , there is only one
function . That is, providing
and we have obviously . Now we
are going to prove part b) of the theorem. We consider functions

such that for some . From Lemma 3, this means
that does not divide .

Let , where is an odd prime number. If satisfies
part i) of Theorem 1 then has only two irreducible factors.
More precisely

If divides , then divides ,
which is impossible by hypothesis.

If satisfies part ii) of Theorem 1, then has only three
irreducible factors

where each has degree , odd. Note that
. Indeed, if for , ,

then since belongs to the cyclic subgroup of
of order . Assume that is a root of . If is a root of
as well, then this property holds for any root (for some ) of

. This is impossible since is odd.
Suppose that there is such that . Then

Clearly, both and are roots of . Consequently, if
divides then divides as well. But, in this case
divides . We have proved that when satisfies part i) or ii)
of Theorem 1, then for any such
that for some .

Conversely, suppose that any function , for suitable , is
semi-bent. By suitable , we mean that for some .
Then where is an odd prime, since we know that
otherwise there is such that is not semi-bent
(see Example 1). Let with and

. We have

where the are irreducible polynomials. By definition is
the splitting field of . Hence, each polynomial has a
degree dividing . Assume that, for some , is of degree with

. So there is such that
implying . Since is prime, this is possible if divides

only, which contradicts . Note that is
impossible since does not divide .

Thus, the have the same degree and , .
Set where and let
be the degree of . Note that for even, we can have . In

this case, we take and . In any case,
. Set and consider

Note that is suitable since while . Thus,
must be semi-bent. Let , , such that .
Then which implies

We have proved that the polynomial , which divides
also divides . Then which

implies that is not semi-bent, a contradiction. Thus, cannot
satisfy the hypothesis, completing the proof.

B. Balanced Quadratic Functions

In this subsection, we study the balancedness of functions
of type (7) which are semi-bent. Our results will be used

later for some constructions. Recall that ,
, and . We denote by the Hamming

weight of , that is the number of such that .
For odd , when is semi-bent one can easily determine

those such that is balanced.

Lemma 4: Let be odd. Let us consider defined by (7)
which is semi-bent. Let . Then the function is
balanced if and only if

— either is odd and ;
— or is even and .
Proof: We know that is balanced if and only if

is not constant on (see Section II). Since is
semi-bent, . Thus, is balanced if and
only if . We have

Then is balanced if and only if equals
modulo , completing the proof.

The problem is a little more complicated for even when
. We denote by the dual of , that is, the sub-

space of those such that for all .

Lemma 5: Let be even with . Let us consider
defined by (7) which is semi-bent. Set

and even

Consider the function . We have the following.

• If is even then is balanced if and only if .
• When is odd there are two cases:

— if is even then is balanced if and only if
;

— if is odd; then is balanced if and only if
or .

Proof: Let us denote by any nonzero element of .
Since is semi-bent then . For any , the
function is balanced if and only if for some such
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. When , as in the previous proof (odd case), we
get the condition

But since . Thus, if then is
balanced. We then get elements such that is balanced.
Note that we know that there are elements such
that is balanced.

Now, suppose that and take . We have

Since , then

for odd
for even .

Moreover, with

when is even
when is odd.

Thus, if is even we get the condition .
Finally, is not balanced if and only if belongs to the dual
of . Note that we have proved that for even , is never
balanced.

Now assume that is odd. So we must have

If is even then we get the previous condition. When is
odd we get the condition . Finally, is balanced if
and only if either or is included in the kernel of

, that is, .

Some properties that could be of interest in some context ap-
peared in the previous proof. We summarize them in the next
proposition.

Proposition 1: ; , .
Recall that and even .

i) If then is balanced.
ii) If is even then is not balanced, for any .
iii) If is odd then is balanced if and only if the cardi-

nality of is odd.

Open Problem 1: Let be defined by (7). What is the sign
of each nonzero when runs through ?

IV. NEW FAMILIES OF SEMI-BENT SEQUENCES

In this section, is odd. The main result in [8], [9] on the
semi-bent functions of the form (7), having more than one trace
term , was given in Theorem 1. Also, a class of
functions containing exactly two trace terms has been specified.

Theorem 3 [8]: Let be odd. Then the function

is semi-bent for all , , if and only
if is prime.

In the subsection that follows we specify some infinite classes
of semi-bent sequences having three and four trace terms. We
later study some compositions with linear mappings.

A. Quadratic Semi-Bent Functions With Three and Four Trace
Terms

Theorem 4: For odd let be defined by

(13)

Then is semi-bent if and only if

Proof: Let .
According to Lemma 1, we only need to express the condition

. Rearranging and setting
we get

Thus,

which is equal to if and only if

A similar result may be derived for .

Theorem 5: For odd let

(14)

Then is semi-bent if and only if .
Proof: Like in the above, set

Then by setting and rearranging we get

Since is odd then and we have for any
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So, is impossible for any .
Hence, is a root of if and only if . Moreover

.

Finally, for functions having three trace terms we consider the
relationship of the exponents of the form .

Theorem 6: For odd with , , , let

(15)

Then is semi-bent if and only if .
Proof: The polynomial is as in the previous proof.

We set as follows:

since and . Thus,
with

Now look at the condition . Let be
a root of , with and . If

then, multiplying by

which is impossible since does not hold for
with odd. So the only possibility is , completing

the proof.

Regarding the functions having four trace terms we give the
condition for the choice of the coefficients such that is semi-
bent. There might be some other relationships between the ex-
ponent values but we do not investigate this problem further.

Theorem 7: For odd and , , , , let

(16)

(with ). Then is semi-bent if and only if

Proof: It is easily verified that

and we have a similar equality for instead of . Thus,
with as in the previous proofs

since . So

This is equal to (i.e., is semi-bent) if and only if the
conditions claimed in the statement are satisfied.

As a consequence, we have the following corollary.

Corollary 1: For odd , the functions defined by (13), (14),
and (15) (resp., (16)) are semi-bent for any suitable choice of

(resp., of ) if and only if is a prime integer.

B. Linear Polynomials and Semi-Bent Functions

We now try to derive new classes of semi-bent functions by
considering the composition of nonpermutation linear polyno-
mials on with a semi-bent function of the same form as
before. It is well known that the composition of any linear per-
mutation polynomial with a quadratic semi-bent function
will give again a semi-bent function , that is, the function

. We will now consider such with coefficients
in . We first recall a well-known result.

Lemma 6: Let be any linear polyno-
mial in . Then is a permutation polynomial of if
and only if

where is called the associated polynomial of .

In general, this calculation can be done fast but for some spe-
cial classes of prime numbers , such as Mersenne primes,2 we
obtain a simple result as a consequence of a known factorization
of . Thus, for Mersenne primes of the form
we may choose any providing that its associated polynomial
is irreducible of degree not equal to .

Example 2: For instance is a Mersenne
prime. Take any irreducible polynomial of degree such
that and . Set . Then we
are sure that has no root in , which implies

Now can be seen as the associated polynomial of
. According to Lemma 6, is a linear permutation

on . For any semi-bent function , the function is
again semi-bent. This is also true if is chosen to be a product
of irreducible polynomials of degree different from , with

.
However, it is not necessary for to be a permutation poly-

nomial in order for to be semi-bent. One may choose a
linear mapping which is not a permutation of

but is still semi-bent.

2When n = 2 � 1 is prime, for some integer u, n is said to be a Mersenne
prime.
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Example 3: Set , a linear polynomial on
, where is a prime. Then is obviously not a permutation

of , as . Still, for a semi-bent function
, the function is semi-bent for suitably chosen

and , and . This is verified as follows:

where and . By Theorem 3,
is semi-bent for any . Obviously,
it is easy to choose , satisfying this condition. Recall that

is semi-bent if and only if
(see Example 1).

Next we specify certain nonpermutation linear polynomials
that preserve the semi-bent property when composed to a semi-
bent function of type .

Proposition 2: Let be a semi-bent
function on , odd, and . Let

be a linear polynomial on , where
is an ordered set of indices such

that is even and . Then

where for any , , the exponent values , are
computed as

(17)

(18)

Proof: A formal expansion of is as follows:

Note that for any . Then the
terms will vanish as is even. Obviously, the terms
above are symmetric meaning that whenever
is present so is . We will treat each such pair
of terms, with .

Assuming that are such that , we
have

and

(19)

This case corresponds to the selection of .
Now if then we rewrite

On the other hand, (19) holds in this case which corresponds
to the selection of . Summarizing the pre-
ceding equalities a compact expression for is as stated.

Theorem 8: For odd , let , where
and ,

even. Let be the associated polynomial of . Assume that
is of the form

with

where , , and furthermore . Let
with . Assume that and are such that

can be chosen such that for any . Then
the function is a semi-bent function.

Proof: Since is even, , implying that
is not a permutation polynomial. Then by Proposition 2 we

may write

where due to the assumption that
for all . Hence,

(20)

Now we apply Lemma 1. We use notation instead of and
instead of . Here we have

and

Now is semi-bent if and only if .
Since , setting

this is equivalent to . Note that the
associated polynomial of is given by

. Then the main trick is that
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which is easily verified by developing the product .
On the other hand, by assumption, ,
where , . Hence, we get

Since , we obtain
which concludes the proof.

Example 4: Let and let ,
which is semi-bent since . Then, since

we may, for instance, take

which satisfies the conditions of Theorem 8. Then is the
associated polynomial of , which
is not a permutation. Note that for any ,
where .

Hence, using (20), we compute (canceling out the terms ap-
pearing even number of times)

which is a semi-bent function with 4 trace terms.
It should be noticed that Theorem 8 always generates func-

tions of even weight.

V. CONSTRUCTION OF NONQUADRATIC BENT AND

SEMI-BENT FUNCTIONS

Now we utilize the results derived in Section III to prove
the existence of nonquadratic bent and semi-bent functions. We
simply concatenate suitably chosen quadratic semi-bent func-
tions for this purpose. Even though we restrict ourselves here
only to bent functions of degree and semi-bent functions of
degree , we will later use these functions recursively to obtain
a much larger class with a broad degree range.

A. Bent Functions of Degree

The next proposition is a simpler form of [1, Theorem V.3].
Notation is defined in Section II.

Proposition 3: Let be odd. Let and be two Boolean
functions on . Let be the Boolean function on

Then is bent if and only if the following two conditions are
satisfied:

i) and are semi-bent;

ii) for any : if and only if
.

Thus, using our semi-bent quadratic functions, it is very easy
to construct bent functions of degree and of variables.

Theorem 9: Let be odd such that there exist two semi-bent
functions and , defined by (7), with even and
odd. Let us define the Boolean function on

Then is a bent function of degree .
Proof: We apply Proposition 3. Condition i) of Proposi-

tion 3 is satisfied by hypothesis. Using Lemma 4 we have, for
any :

• if , then is not balanced and
is balanced, since, respectively, is even and
is odd;

• if then is balanced and is not
balanced.

Thus, if and only if , for any
; so part ii) of Proposition 3 is satisfied. We conclude that is

bent.
Moreover . Since and

do not have the same number of terms, ; so is of
degree .

Example 5: Let ; thus, . These functions

are both semi-bent (see Theorem 3). Now set

The function is bent, from Theorem 9. Moreover is clearly
of degree .

To generalize the construction of bent functions of degree
for any we have to prove the existence of at least one semi-bent
function of odd and one of even weight. To estimate the size of
this class is a hard combinatorial problem. For larger there will
obviously be more choices to select the exponents such that the
component functions are semi-bent. Note that the exponents in
the trace terms must lie in the range .

We first consider the existence of quadratic semi-bent func-
tions of odd weight. This case is easy since we always can take
one of the following two functions ,

, which are obviously semi-bent for any odd
due to the fact that . For the even
weight we rely on the class of semi-bent functions having two
trace terms given by Lemma 7.

Lemma 7 [9]: For odd , let .
Then is a semi-bent function for if
and only if .

For the existence of semi-bent functions with two terms we
need the following results.
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Lemma 8: Let be coprime to where is odd. For any ,
, we define

odd

even

Then .
Proof: We simply have

in both cases. Also, for odd ,
whereas for even .

For the proof of the next lemma, we use the Euler function ,
defined as follows:

(21)
Recall that for , where are distinct primes, and

, , then

(22)

Lemma 9: For any odd , there exist at least two distinct
quadratic semi-bent functions of the form

Furthermore, for any odd there exist at least one quadratic
semi-bent function of even number of terms.

Proof: We use the result of Lemma 7 to prove the state-
ment. Assume there exist two coprimes to , say , ,

. Then we may define

and

where exponents , and , correspond, respectively, to
and by means of Lemma 8. Then, both and are semi-
bent functions from Lemma 8 and Lemma 7.

Now we utilize the Euler function (see (21) and (22)). Let

Then . Thus, to assure that for any
, we must have . When is prime, this condition is

satisfied for since . Now if is composite
we first consider the case in (22). Since each we
have

It remains to consider the case and . In this case,
, which implies .

Finally, the second part of the statement follows from the first
part and the fact that for , the function
is a semi-bent function. This concludes the proof.

As a consequence, we may state the following result without
proof.

Theorem 10: For any even , one can construct bent
functions of degree by means of Theorem 9.

Remark 1: The bent functions, defined by Theorem 9, are
interesting since they are simply defined. Moreover, for large

, a lot of constructions are possible. Note that they are normal
(i.e., constant on some flat of dimension ) since any
quadratic semi-bent function is normal when it is not balanced;
more precisely, they are of the form where or
is not balanced and both are semi-bent (see [6, Theorem 4 and
Proposition 7]).

B. Semi-Bent Functions of Degree

Similarly as above, we are going to prove the existence of
semi-bent functions of degree of variables for any odd

Proposition 4: Let be odd such that there exist four semi-
bent functions defined by (7)

with even, and odd

such that . Let us define the Boolean
function on

Then is a semi-bent function of degree .
Proof: This is simply because is the concatenation of

two bent functions

where and
are bent, by Theorem 9. Clearly, such a function is semi-bent
(see [1]).

Notation. The function defined above is actually the con-
catenation of the functions . We sometimes, instead
of the algebraic expression given above, use a shorter notation

.

Now we prove that this construction is always possible. No-
tation is as in the previous proposition.

Theorem 11: Let be odd with . Set and
. Then there exist at least two distinct quadratic

semi-bent functions of even number of terms, say and ,
satisfying . Furthermore, for any odd

one can construct semi-bent functions of degree and of
variables by means of Proposition 4.

Proof: By Lemma 9, for any odd there exist two
distinct quadratic semi-bent functions with
two trace terms. By construction, these functions are such that

.
Then by Proposition 4, the function is a

semi-bent function on of degree .
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C. Bent and Semi-Bent Functions Through Semi-Bent
Functions

When is even, is a subspace of as well as its dual
. Precisely

for all (23)

Throughout this subsection, and are subspaces of .
On the other hand, the functions we construct here are defined
on a space of dimension greater than . A coset of is any
subset of of the form , .

It is easy to state an equivalent of Proposition 3 for con-
structing semi-bent functions from two semi-bent functions.

Proposition 5: Let be even. Let and be two semi-bent
functions on . Let be the Boolean function on

Then is semi-bent if and only if for any

(24)

Proof: For any and

If (24) is satisfied, then the spectrum of is clearly
. Hence, is semi-bent. If (24) is not sat-

isfied, then the value appears in the spectrum of .

Theorem 12: Let . Let and , defined by (7), be
two semi-bent functions on . Let . Let us define the
Boolean function on

Set

and even

and

and even

Then we have the following.

i) Assume that is even or and are even .
Then, for any , the function is semi-bent. More-
over, is balanced if and only if .

ii) Assume that is odd, is odd, is even, and
. Then , which is equal to , is semi-bent.

Moreover, is of degree if and only if .
Proof: We apply the previous proposition together with

Lemma 5.
i) The function is not balanced, for some , if

and only if . Note that implies that
. Thus, is balanced. Such satisfies (24), thus, it is

semi-bent.
Moreover, is balanced when , that

is, and are not in the same coset of . Taking

we get element which are neither in nor in its coset
containing . Thus, for such , and are both
balanced. These are the cases where is balanced.

ii) Set . Since is odd, the function is not
balanced if and only if and . Hence,
is balanced, since is even. Then , which satisfies (24),
is semi-bent.

Remark 2: For odd , we gave some constructions which
are suitable only if some semi-bent functions exist. When is
even, we have this situation for ii) only. However, for odd there
exist functions with odd and which are semi-bent (see
Example 1).

Note that the functions obtained by the previous construction
are not really interesting, because they have a linear structure.
Indeed, where and have both as kernel in
their symplectic form. Thus, there is a nonzero element of
such that , with . Recall that the
best nonlinearity for cubic functions of variables, odd, is an
important open problem. It was proved that it is
for .

Next we are going to use an argument which we used in The-
orem 12, that is to consider instead of .

Theorem 13: Let , even. Let four semi-bent func-
tions defined by (7)

with

Let denotes the dual of in (see (23)). Let
, defining three distinct cosets of in . Let us define the

Boolean function as

Then is a bent function of degree .
Proof: Note that the functions are in . From hypoth-

esis, and applying Lemma 5, we have for :

• is not balanced if and only if ;
• is not balanced if and only if ;
• is not balanced if and only if ;
• is not balanced if and only if .

Now, we compute the Walsh spectrum of . Let and in
and . Set ; is
the concatenation

where equals respectively and
. Thus,

leads to
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Any element is in one and only one coset of . Suppose that
; then among the four terms above, only

is not zero, equal to for any value of the pair .
And we have the same result for , for instance: here
only is not balanced. So we can conclude that for any

, , and

That is, is bent. Moreover, the function is of degree since
.

Remark 3: The previous construction is of interest (not
trivial or known) since we can describe a large set of functions

semi-bent. We proved this by Theorem 2.

Note that, from Lemma 5, one can do the same construction
for odd and functions such that is even. Another construc-
tion is possible when is odd and functions such that is odd
are involved.

VI. A RECURSIVE CONSTRUCTION OF NONQUADRATIC BENT

AND SEMI-BENT FUNCTIONS

A natural question we may pose now is whether we can gen-
eralize this approach to obtain bent and semi-bent functions
of higher degree. We first note that a straightforward approach
of choosing two semi-bent functions, constructed by means of
Proposition 5 will not yield a bent function in general.

However, this problem has been investigated in [2] and the
derived result that we utilize here is as follows. Let ,
be two bent functions on , for odd . Then the function

is a bent function on . It is easily veri-
fied that . In particular, if and are
of different degree then .

Note that requiring is not necessary. For a bent func-
tion on , the function is also bent on

. Obviously, and are of the same degree.
We now utilize the construction method described above in

order to deduce similar results as in the preceding section but
with further increase of the degree. For this purpose, we con-
sider quadratic semi-bent functions on to obtain a semi-bent
function on and bent function on , where both functions
are of degree .

However, there are only three quadratic semi-bent functions
with the trace representation considered here when (note
that the power exponents of trace terms must lie in the range

). These are

Then, according to Theorem 9, , and
are two distinct bent functions of degree on . Furthermore,

is a semi-bent function on of degree as

Also, the function is a bent function on
of degree as . We now generalize this as

follows.

Theorem 14: For any , it is always possible to construct

and

where is a bent function of degree and is a semi-bent
function of degree .

Proof: The statement is obviously true for from the
preceding discussion. Hence, we simply use functions , of
different degree in the concatenation of the form .

Let us consider the case . Clearly, we can construct bent
functions on of degrees and , denoted by and , re-
spectively. Then using the concatenation of such two bent func-
tions we get a semi-bent function of degree on

. Also, the function is bent of degree
on .

To further clarify this technique we consider the case
From the above, is a bent function on of degree . Let be
another bent function on but of degree . Then the function

is a semi-bent function on of degree . Similarly,
is a bent function on of degree .

Then the iterative procedure is continued by using two bent
functions of different degree on to construct a semi-bent
function on of degree and the bent function
of degree on .

Hence, we easily deduce the following important result. Once
again we point out that the significance of the result below lies
in the fact that we concatenate quadratic functions which differs
from the Maiorana-McFarland method.

Theorem 15: For any even , there exist bent functions
in of arbitrary degree in the range .

Furthermore, for odd , there exists semi-bent functions
in of arbitrary degree in the range

Proof: Concerning the bent functions the case fol-
lows directly from Theorem 10. This also covers the case .
Then for any we proceed as follows.

Let be even, , and . Thus, for
some . If then we are done: applying Theorem 14, we
get a bent function on of degree .

On the other hand, when , with
, Theorem 14 provides the construction of bent functions

of degree . Repeatedly use ( times)
the concatenation of the type to get a bent function

on . By noticing that we complete
the proof regarding bent functions.

Quite similarly, the assertion on semi-bent functions is
proved. Here Theorem 12 is used instead of Theorem 10. Note
that for a semi-bent function on the function
is a semi-bent function on .

To conclude, we want to explain our purpose in this section.
Our aim is to show that one can construct bent and semi-bent
functions of any degree by concatenating quadratic functions
(bent or semi-bent). We have proved that for small degrees (
and ) we have a lot of possibilities (increasing with ). By
the two previous theorems, we expand our results to any degree
but using classical tools of concatenation. We claim that more
interesting constructions can be done by combining different
functions at each stage, since we dispose of a large corpus of
functions of small degree.
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