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Polynomials With Linear Structure and
Maiorana–McFarland Construction

Pascale Charpin and Sumanta Sarkar

Abstract—In this paper, we study permutation polynomials over
the finite fields that have linear structures. We present some re-
sults on such a permutation which transforms a hyperplane to an-
other hyperplane. We fully characterize the bilinear polynomial
with linear structure. The most important result of this paper is to
show the relation between a Maiorana–McFarland function with
an affine derivative and a polynomial with a linear structure.More-
over, we highlight this result in the context of resilient functions
which are based on Maiorana–McFarland construction.

Index Terms—Bent function, bilinear permutation, linear struc-
ture, linear space, Maiorana–McFarland function, permutation
polynomial, resilient function.

I. INTRODUCTION

L ET denote the -th order Reed-Muller code of
length , which is basically the set of all -variable

Boolean functions having degree at most . Bent functions with
affine derivatives, i.e., derivatives in , have been studied
in [13] and (extensively) in [6]. In [13], Hou proved that all the
8-variable cubic bent functions have at least one affine deriva-
tive. However, the existence of 6-variable cubic bent functions
which have no affine derivative was known [20]. So Hou raised
the following question: for which dimensions do there exist
cubic bent functions which have no affine derivative? This
question was resolved in [6] by Canteaut and Charpin. They
presented a class of cubic Maiorana–McFarland bent functions
which have no affine derivative. They actually proved that for
all , there exists an -variable bent function which has
no affine derivative if and only if . They also showed
that if a bent function has an affine derivative then its dual
also has an affine derivative. In this paper, we focus on the
characterization of Maiorana–McFarland Boolean functions
with affine derivatives. We show that such a function is defined
by the existence of a polynomial with a linear structure. This
result leads us to study permutation polynomials over finite
fields with linear structures. In a more general context, we
have in mind the characterization of permutations which have
derivatives with low degree, notably when they are involved in
some cryptosystems.
Linear structures have been studied in [16], [12], [8], [9].

In [16], Lai characterized the Boolean functions which admit
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linear structures. Dubuc [12] termed these functions as “weakly
degenerate functions”. Further Dubuc also characterized
linear structures in terms of the Fourier transform. In [8],
Charpin and Kyureghyan studied the polynomials of the form

, over , which are permutations.
They showed that the considered problem is related to finding
Boolean functions with linear structures and then presented
some classes of permutation polynomials, by using Boolean
functions which have linear structures. This was generalized in
[9], where is any prime number. In this paper
we contribute some interesting results on the permutations with
linear structure.
The paper is organized as follows. After some preliminaries,

our aim in Section III is to propose a representation of permuta-
tions which have linear structures. Notably we prove that such
a permutation provides a set of permutations which transform a
hyperplane to another hyperplane (Theorem 3). These permuta-
tions have at least one affine component.
The problem of the existence of linear structures is devel-

oped in Section IV. After basic results, we fully characterize
the so-called bilinear polynomials which have linear structures,
proving that they cannot be bijective (Corollary 2). Further, we
present a class of permutation polynomials which have linear
structures. We prove that such polynomial can be of any even
degree , with for odd (Proposition 5). We
study Maiorana–McFarland functions in Section V. By The-
orem 7, we explain the relation between affine derivatives of
such a function and a polynomial with linear structure. Later we
present some constructions of Maiorana–McFarland bent func-
tions for both cases: with affine derivatives and without affine
derivatives. In Section VI, we indicate that Theorem 7 holds (in
another form) when some resilient functions are considered.

II. PRELIMINARIES

Let be the finite field of elements. For any set ,
the subset of nonzero elements of is denoted by . Any
polynomial defines a function

which is called the associated function of . Recall that any
function of a finite field into itself is given by a polynomial.
Throughout the paper, we identify a polynomial with its associ-
ated function. In particular, a permutation polynomial over
defines a bijective function from to itself.
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On the other hand, a so-called linearized polynomial has the
following form:

(1)

where at least one is nonzero. Such a polynomial defines a
linear function over .
In this paper, the weight of an integer is the Hamming weight

of the 2-adic expression of the integer. The degree of a polyno-
mial defined over is the maximum of the weights of
the exponents of in . For instance , which is defined
by (1) above, is always of degree 1.

Definition 1: Let . For , the function
given by

is called the derivative of in the direction of . Further,
is said to be a linear structure of if the function is

constant.
By definition, it is clear that if is a linear structure

of then

(2)

If for some , then is called -linear
structure. It is clear that by adding 0 to the set of linear structures
of , we get a vector subspace of . It is called the linear
space of .
For any dividing , the function is

defined as

It will be denoted by when . From now on, we will
only consider functions from for the cases
and (i.e., Boolean function).
All Boolean functions assuming a linear structure have been

characterized by Lai [16]. In [9], Charpin and Kyureghyan have
done the characterization for the functions of univariate vari-
ables from to of the form , where is a
function over (where is any prime number). More gen-
erally, one can find the following result in [16] with another
terminology. We give our proof for clarity, using the method
proposed in [9].

Theorem 1: Let be a function over the field with
degree at least 1. Then has a linear structure if and only if
there is a non-bijective linear function over such that

(3)

for some function and some linear function
over .

Proof: First, note that if is an affine function then any
is a linear structure of . Indeed, in this case
where is linear and . So, for any

we have for all . Therefore,
(3) holds where is the identity and for all .

From now on we assume that has degree at least 2. Suppose
that (3) holds for . Since is non-bijective, there exists

such that . Then we have

Therefore, is a linear structure of .
Conversely, let be a function over having some

linear structures. Denote by the linear space of . If is its
dimension then is generated by a basis . We as-
sume that is a -linear structure for every .
Therefore, for each we have

Also note that for any , we have

(4)

We extend the basis of to the basis
of . First, we define a linear

function with the kernel . Secondly we define another linear
function by , for all , where
we choose arbitrarily from . Now define

as

(5)

where ’s are chosen arbitrarily from .
We show that is well defined. Let be such that

. Since ,
for some . Then

Therefore, , which justifies (5). More-
over we clearly defined such that
for all , completing the proof.
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III. PERMUTATIONS WITH LINEAR STRUCTURE

From Theorem 1, we have a precise expression of functions
on which have a linear structure. To have such an expres-
sion is difficult when we impose on such a function to be bi-
jective. We want to exhibit specific properties of this kind of
functions. First we discuss the following properties which are
simply obtained.

Lemma 1: If is a permutation of then it cannot have a
0-linear structure.

Proof: If is a 0-linear structure of then
, for all , a contradiction.

Lemma 2: Let be a bijection over and denote by
the inverse function of . Then, is a -linear structure of if
and only if is an -linear structure of .

Proof: By hypothesis, for all
. Thus, replacing , we have for all or, equiva-

lently, for all

completing the proof.

If is a permutation then is also a permutation
for any constant . Moreover, both functions have the
same linear space. Thus we can assume that without
loss of generality. Recall that the hyperplanes of can be
described as the set of subspaces of

(6)

Note that is equivalent to . Thus,
is equivalent to . Also , i.e.,

, for exactly such . From now on, in this section,
is a permutation on such that

(7)

for all , for some . To construct such a permuta-
tion by using Theorem 1 is not immediate. However a direct
construction is easy as we show now. Taking any :
1) choose a hyperplane such that (i.e.,

).
2) fix , set and ; set

, with .
3) for any , from 2 to , consider the pair

; choose in and set
;

4) on each step replace: .
At the end, for any pair , one element will
be in and the other outside of ; by construction, is a
permutation satisfying (7). Now we are going to specify such
and its image bymeans of the hyperplanes of , after recalling
a useful theorem.
Theorem 2: [8, Theorem 2] Let
and be a permutation polynomial. Then

is a permutation polynomial of if and only if
, where and is a 0-linear structure

of the Boolean function .

Theorem 3: Let be a permutation on with
. Assume that has a linear structure . Then, for
any such that and for any such that

, there is a permutation such that

Moreover, setting :
• is a linear structure of the permutation ;
• the derivatives of satisfy:
— if then for all ;
— if then for all .

• the Boolean function is affine.
Proof: We assume that is a permutation satisfying (7).

Let such that and .
Define

(8)

Let be the Boolean function . The
function is a permutation if and only if is a 0-linear
structure of (see Theorem 2). We compute the derivative of
with respect to

since is an -linear structure of (see Lemma 2). Thus,
we have proved that is a permutation, for any pair
as defined above. Now we examine the image set of the permu-
tation . We have, using (8):

(9)

Hence, for any

since and . Thus, ,
for any , implying . Now we look at
the derivatives of . First, using (7)

for all , since . So is an
-linear structure of . More generally, since
for any , we have for any using (9)
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for all . Now, with

since . We conclude

Note that besides this result we have also proved that any
is a linear structure of the function .

Thus is affine, completing the proof.

Remark 1: Let be a permutation with a linear structure .
By Theorem 3 we proved that such an is strongly related with
permutations satisfying: there is such that

(10)

However, the converse is more complicated. There are per-
mutations without linear structure which send one given hyper-
plane to another.
Remark 2: We want to mention the link here with the

so-called crooked functions which were introduced in [1], and
more generally defined in [14]. A function is crooked if the
image of every derivative of is an affine hyperplane. In this
case is a so-called almost perfect nonlinear (APN) function,
i.e., all its derivatives are 2-to-1.

IV. FUNCTIONS WITH(OUT) LINEAR STRUCTURE

In this section, we exhibit an infinite class of permutations
with linear structure. However, our purpose consists in a dis-
cussion on the existence of linear structures. We first indicate a
basic result, whose proof is obvious because for an affine func-
tion its linear space equals .

Lemma 3: Let be a function on . Then has a linear
structure, say , if and only if is a linear structure of

, for some and some affine function
on .
Let and be two integers. We say that strictly covers if
and, in the binary representation of and , every digit of

is less or equal to the corresponding digit of . In this case we
note .

Theorem 4: Let . Let and be integers such that

Define the functions over

(11)

where is any affine function. Then such a function has no
linear structure unless it is affine.

Proof: Thanks to Lemma 3, we have to study the function
only. If is a linear structure of then, using

(2), we must have . However,

Then, we must have

(12)

which is impossible unless is the null polynomial. Let
and ; note that

these sets can be empty.
If , then has at least one term corresponding

to an exponent of the form with or
with . Since and , it is impossible to
have for all . Note that this case happens notably
for (i.e., when is a monomial).
If then and is a monomial. Finally

is the only possibility, meaning that is linear.

According to Theorem 1, we directly deduce:

Corollary 1: Let be given by (11). Then cannot be ex-
pressed in the form (3).
Note that the characterization of linear structures of a function
becomes difficult as soon as its expression includes more than

two terms. We illustrate this fact by a simple example.

Example 1: The following has 1 as linear structure

On the other hand, set . Then has no
linear structure.
Next we summarize a few known results which characterize

the so-called component (Boolean) functions of a permuta-
tion polynomial in terms of linear structures. Recall that a
Boolean function on is said to be balanced when the set

has cardinality .

Theorem 5: [18, Theorem 7.7] The function over is a
permutation if and only if all its component functions

are balanced.
Note that if is quadratic then the Boolean function

is of degree at most 2 for all .
The following result is currently known. A proof can be found
in [5, Proposition A.1].
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Proposition 1: Let be a Boolean function of degree 2, then
it is balanced if and only if there exists an element such
that

Combining Theorem 5 and Proposition 1, we get the following
characterization of the quadratic permutation polynomials.

Theorem 6: Let be any quadratic polynomial over .
Then is a permutation if and only if all its component func-
tions , have a linear structure.

A. Bilinear Polynomials

The polynomials of the form , where and
are two linear polynomials, are called bilinear polyno-

mials [2], [17]. In [2], [17], some quadratic permutation poly-
nomials have been identified in the class of bilinear polynomials
of the form . Below we characterize bilinear polynomials
with linear structure.

Lemma 4: Let be a bilinear polynomial. Then
is a linear structure of if and only if

(13)

Proof: Using (2) we know that is a linear structure
of if and only if for all

(14)

Set . We have

Hence, (14) holds if and only if (13) holds, completing the
proof.

Note that by Theorem 6, we know that quadratic polynomials
with linear structures exist, since quadratic permutations exist.
For this special class of bilinear polynomials, we are able to give
a complete result.

Proposition 2: Define the bilinear polynomial
. Assume that is strictly bilinear, i.e., it is of

degree 2.
Then, the linear structures of are those such that

. Consequently, if is a permutation, it has
no linear structure.

Proof: From Lemma 4, we know that is a linear
structure of if and only if (13) holds. Clearly, (13) holds when

. In the case where , we get

This leads to , i.e., is linear if
and is the null polynomial otherwise. On the other hand taking

(at the beginning) we get a similar result and both
cases contradict that has degree 2.

So, if (13) holds then and, further, . In
this case, cannot be a permutation since ,
completing the proof.

Thus, one can construct a bilinear polynomial with linear
structure for any pair of linear functions
which have as a common zero. Moreover, using Lemma 3, we
obtain a more general result on the linear structures of quadratic
polynomials.

Corollary 2: Let , where
and are linear functions over and is an affine function
over . If or is bijective then does not possess any
linear structure.

Proof: If is a linear structure of then is a linear struc-
ture of . From Proposition 2, this is possible if and only if

. In this case, and are not bijective.

So we have proved that any quadratic polynomial of the form

cannot have any linear structure.

Example 2: In [11], Dobbertin introduced a class of quadratic
permutation polynomials as over .
Since

then using Corollary 2, it is clear that these permutations cannot
have any linear structure.

B. A Class of Permutations With Linear Structure

In [8], a class of permutation polynomials was presented as
follows.
Proposition 3: [8, Lemma 4] Let be a linear

2-to-1 mapping with kernel and . If for
some the mapping

is a permutation of , then does not belong to the image set
of L. Moreover, for such an element the mapping is a
permutation if and only if is a 1-linear structure of .
Recall that the equation

has no solution in if and only if .
Based on Proposition 3, we are able to construct quadratic

permutation polynomials with linear structure. The next propo-
sition is a particular case of [8, Theorem 6].

Proposition 4: Let be odd and let be an integer such that
. Then the quadratic polynomial of the form
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where , is a permutation polynomial over with
the linear structure 1.

Proof: Let , then is a 2-to-1 linear
function with kernel . Since , it is impossible
to have . Hence, is not in the image set of .
Now, we have

since is odd, which shows that 1 is a 1-linear structure of
. Therefore, by Proposition 3, is a permutation

polynomial over .
Again, we have for any

So, 1 is a linear structure of , completing the proof.

Remark 3: It has been proved in [8] that for any integer
, such that for all integers and

, the Boolean function can never have a linear
structure (for any ). Therefore, one cannot construct
any permutation polynomial having degree more than 2 and of
the form

where and are as given in Proposition 3.
Moreover, since does not have a linear structure,

does not have any linear structure too.
However, using Proposition 3 again, we are going to construct

permutations of higher degree which have a linear structure.
This construction is an example of an infinite class of higher
degree permutations with a linear structure over for odd .
There may be some other classes of higher degree permutations
over that have linear structures too.
Observe that if has a linear structure , then is also a

linear structure of . Moreover, if is a 1-linear struc-
ture of , then

where , is a permutation polynomial with the
linear structure (see Proposition 3).

Lemma 5: Let and be two integers such that
and . Set

Then for any , for all .
Proof: We simply compute the derivative of at the point

1 and for any .

Thus 1 is a 1-linear structure of .

Proposition 5: Let be odd, and let be an odd integer
such that . Let

i.e., . Consider the function

where and
satisfies .
Then is a permutation of degree which has 1 as

a -linear structure.
Proof: From Lemma 5 we know that 1 is a 1-linear struc-

ture of . Hence, for all

According to Proposition 3, is a permutation. Moreover

Now we look at the degree of . We have clearly

Note that in , the exponents and , where
for some , only have the maximum

weight, i.e., . In total, there are exponents of weight
. Among these exponents, if two exponents belong

to the same cyclotomic coset, then they cancel each other in
. Since is odd and so is , therefore, at least one

exponent will not be canceled out in by some other
exponent. Thus, the degree of is also equal to
and hence the degree of is equal to (the Hamming
weight of ).

V. MAIORANA–MCFARLAND BENT FUNCTIONS
WITHOUT AFFINE DERIVATIVE

In [13], Hou proved that all the 8-variable cubic Boolean bent
functions have at least one derivative in . In [6], Can-
teaut and Charpin presented a family of -variables, and

cubic bent functions which have no derivative in .
Those functions belong to theMaiorana–McFarland class which
was extensively studied by Dillon [10, pp. 90–95]. This class is
usually called the class of bent functions. Using our previous
results, we propose a more general approach.

Lemma 6: Let . Let us consider a Boolean function
defined by

(15)

where is a function over and is any function on .
Then, is a bent function if and only if is a bijection. In this
case, is said to belong to the class of bent functions.

Theorem 7: Let . Let be a function over of
degree . Let be a function given by (15) where
the degree of is less than or equal to 2. Then has no affine
derivative if and only if does not have any linear structure.
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In this case, if is a bijection then is a bent function without
affine derivative.

Proof: Note that, since the degree of is less than or equal
to , the degree of is exactly . Take . Then

It is clear that the degree of is at most . If , then
the term asserts that is of degree exactly .
In this case, is not affine.
Let us now investigate for the case . In this case, we

have

Since and any derivative of is affine or constant,
is affine if and only if the function is
constant, i.e., is a linear structure of .
When is a permutation, is a bent function belonging to
(see Lemma 6).

By Theorem 7, we are able to construct bent functions of any
degree , on which have affine
derivatives. For example, we obtain the following result directly
from Proposition 5.

Corollary 3: Let with odd. Let be defined as in
Proposition 5. Then is a bent function
of degree whose derivative at the point 1 is affine.
On the other hand we can state some general results such as

the following which generalizes [6, Lemma 1].

Corollary 4: Let . Let and be integers such that
. Let . Assume that has

degree and is any function of degree at most 2. Then
the function

does not have any affine derivative. In particular, any function

is a bent function without affine derivatives.
Proof: By Theorem 7, we know that the function
has no linear structure. Hence we can apply Theorem 7. In

particular, we get the class of cubic bent functions without any
affine derivative introduced in [6]. Note that is coprime to

(i.e., is a permutation) if and only if
is odd (see for instance [19, Lemma 11.1]).

Theorem 7 also has a surprising consequence. By Hou’s result
[13], we know that all the cubic bent functions of 8 variables
have at least one affine derivative. In particular this property

holds for bent functions of the form (15) with and where
is a permutation on . Thus we have:

Corollary 5: Any quadratic permutation over has at least
one linear structure.
Note that quadratic permutations over do exist (see a

simple example below). Corollary 5 leads us to suggest the fol-
lowing open problem.
Open Problem 1: How to define a family of quadratic per-

mutations each having a linear structure, satisfying (i) and (ii)
stated below:
i) contains permutations over for taking an infinite
number of values;

ii) any quadratic permutation over is contained in .

Example 3: It is easy to check that the function

is a permutation, and its derivative at point 1 is

In [6, Section IV], it was proved that a bent function has an
affine derivative if and only if its dual has an affine derivative.
The dual of a bent function of the class given by (15) is
known to be as follows:

(where is a permutation). Let be a bent function, defined as
in Theorem 7. If has no linear structure then has no affine
derivative. Thanks to Lemma 2, has no linear structure too;
further has no affine derivative. So we prove, by another way,
an instance of the result given in [6].

VI. CRYPTOGRAPHIC RELEVANCE

So far we have considered functions over the finite field .
Let denote the vector space of binary -tuples. The vector
space can easily be identified to the field . This is done
by choosing a basis of the vector space over
. Then an element can be described as ,

i.e., we can identify to the -tuple

The number of nonzero ’s is the Hamming weight of , de-
noted by , and any Boolean function is an
-variable Boolean function. The -variable function can be
expressed as a sum of products of as

This representation is called the algebraic normal form (ANF)
of . The maximum value of such that is called
the algebraic degree of . For example
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is a 4-variable Boolean function with algebraic degree 3. The
ANF representation of is unique.
Let be a Boolean function represented by a univariate poly-

nomial over . Using the relation , one can
obtain the ANF of . It can also be shown that the value of the
degree of as it was defined in Section II, is the same as the
algebraic degree of . Henceforth, we will only say degree in-
stead of algebraic degree for any Boolean function defined over
.
There are several cryptosystems in which Boolean functions

are used. For instance, in some LFSR based stream ciphers,
a Boolean function is used to combine the outputs of several
LFSRs. For secure design purpose, it is required that the
output of the Boolean function should not have correlation
with a subset of input variables. Otherwise, one can mount the
correlation attack [21] by exploiting the statistical dependence
between the input variables and the output of the Boolean func-
tion. Therefore in order to resist this attack it is required that
the Boolean function remains balanced if some input bits are
kept constant. From this requirement, the concept of resiliency
comes.
A Boolean function is -resilient if and only if

for all such that , where denotes the
usual dot product over .
There are several constructions of resilien

t functions. There is one construction, introduced in [4, Propo-
sition 4.2], which is quite similar to the Maiorana–McFarland
construction of bent functions.

Proposition 6: [4] Let be an integer such that
. Let be any function such that

for all . Then the Boolean function

given by

is a -resilient function of variables, where is any function
from to and is the dot product on .
Using the multivariate representation, after identifying the

field to the vector space , anyMaiorana–McFarland bent
function given by (15) can easily be defined over . Note
that for is identified with the scalar product

, where and are the vectors in corresponding to
and respectively. Then it is easy to note the similarity be-

tween the above mentioned construction of resilient functions
and the construction of Maiorana–McFarland bent functions.
Thus, Theorem 7 can easily be extended in the case of resilient
functions as follows.

Theorem 8: Let be any function of degree
, such that for all .

Then the -resilient function of degree more than 2

does not possess any affine derivative if and only if does not
have any linear structure.

Proof: We simply translate the proof of Theorem 7 in the
context of vector space. Take . Then

It is clear that the degree of is at most . If , then
the term asserts that is of degree exactly .
In this case, is not affine.
On the other hand, when , we get

Since is affine if and only if the function
is constant, i.e., is a linear structure of .

VII. CONCLUSION

The most significant result of this paper is that we have
characterized when Maiorana–McFarland functions have affine
derivatives. More generally, this characterization holds for any
Boolean function which is of Maiorana–McFarland type. In
particular, such resilient functions which have affine derivative
are characterized. However, if a Maiorana–McFarland function
has an affine derivate, so far it is not clear how to use this fact
to mount some attacks.
Lai [15] proposed higher order differential attack which

works for vectorial Boolean functions with low degree deriva-
tives. Therefore, it will be interesting to find some attacks
on Boolean functions in general which have low degree
derivatives. This kind of attack on resilient functions of the
Maiorana–McFarland type may be an interesting special case.
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