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Abstract

This paper studies the values of the sums

Sk(a) =
∑

x∈F2m
(−1)T r(xk+ax), a ∈ F2m,

whereTr is the trace function onF2m , m = 2t andgcd(2m − 1, k) = 1. We mainly prove that when
k ≡ 2j (mod 2t − 1), for somej, thenSk(a) takes at least four values whena runs throughF2m . This
result, and other derived properties, can be viewed in the study of weights of some cyclic codes and
of crosscorrelation function ofm-sequences.
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1. Introduction

The computation of the trace function applied to polynomials ofF2m [x], whereF2m is
the finite field of order 2m, is related with several general problems, especially in coding
theory. This problem is strongly connected with the study of the weights of some cyclic
codes, but also with the study of the spectrum of some sequences and of some Boolean
functions.
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We treat binary cyclic codes which have two nonzeros only. Such a code is here of length
n = 2m − 1,m = 2t , and of dimension 2m. To study its weights is actually to compute the
sums

Sk(a) =
∑

x∈F2m
(−1)T r(xk+ax), a ∈ F2m,

wherek andn are coprime andTr is the trace function onF2m . These sums can be seen
as the Fourier-transforms of the Boolean functionx �→ T r(xk). Moreover, the function
a �→ Sk(a) provides the crosscorrelation function of onem-sequence of lengthn with its
decimation byk. Our work is based on[9]; in this paper, Helleseth proved thatSa(k), a in
F∗
2m , takes on at least three values, if and only if k is not a power of 2. At the end of[9], the

author stated two conjectures onm-sequences which can be replaced in these two general
problems:
P1: Determine the values ofmandk such thatSk(a) takes on at least four values when

a runs throughF∗
2m .

P2: Fixingm, determine the integersk such thatSk(a) = 0 for at least one nonzeroa. In
this case, which elementsa provideSk(a) = 0?
In the next section, we briefly explain the context and the connections between several

objects (codes, sequences andBoolean functions).We state or recall someuseful properties.
Our results are presented in Section3.We treat a specific class of values ofk, the so-called

Niho exponents; these exponents are such thatk modulo 2t − 1 is a power of 2. We also
assume thatgcd(k, n) = 1 and thatk is not a power of 2.We will denote byNm this set of
Niho exponents with respect to the finite fieldF2m ,m = 2t .
Our main result is related with the problemP1, since we prove that fork ∈ Nm the sum

Sk(a) takes on at least four values (Theorem2) whena runs throughF∗
2m . We first establish

that the values 0 and−2t always appear for some nonzeroa (Corollary1).
Several derived results are presented later, in Section3.1. We propose lower bounds on

the maximal value ofSk(a), depending on the valueskandm. These bounds can be reached
(see Example1). We contribute to ProblemP2, by characterizing thosek ∈ Nm such
that Sk(1) = 0 (Proposition3). We deduce thatSk(1) = 0 is impossible whenm ≡ 2
modulo 4.
To conclude, we recall some conjectures and open problems. We emphasize that the

conjectures due to Helleseth[9] are here strengthened, but remain open problems.
Main notation :

• n = 2m − 1;m = 2t ;
• F2m is the finite field of order 2m; F∗

2m = F2m \ {0};
• � is a primitive root ofF2m ;
• G is the cyclic subgroup of order 2t + 1:G = 〈�2t−1〉;
• wt(u) is the Hamming weight of the vectoru;
• Tr is the trace-function onF2m ;
• T r

s the trace-function fromF2r to F2s ;
• gcd(A,B) is the greatest common divisor ofA andB;
• Nm is the set of integersk satisfying (8) and (9).
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2. Preliminaries

We assume that the reader is familiar with finite algebraic objects which are presented
here. Our main reference for algebraic coding theory is[14]. For cyclic codes with two
zeros and for sequences, more details can be found in[5,10].

2.1. Context

In this paper, our ambient field isF2m , the finite field of order 2m withm = 2t .We denote
by � a primitive root ofF2m . The trace-function fromF2m to F2 is denoted byTr.
We are interested in the weight polynomials of some binary cyclic codes of lengthn =

2m−1which havetwo nonzeros only,�−1 and�−k, where 3�k�2m−2 andgcd(k, n) = 1.
Such a code is denoted byCk. Any codeword ofCk, sayc(y) = ∑n−1

i=0 ciy
i , can be simply

expressed by its so-calledms-polynomial:

Qc(x) = T r(uxk + vx), u = c(�−k) andv = c(�−1), (1)

providing,Qc(�i ) = ci for all i 1 . For any pair(u, v) of elements ofF2m the corresponding
codeword of lengthn is the ordered sequence of binary symbols:

Qc(�0), Qc(�1), . . . , Qc(�n−1). (2)

We denote bywt(c) the Hamming weight ofc, the integer sum of theQc(�i ). A codeword
is said to bebalancedwhenwt(c) = 2m−1.
Sincek andn are coprime, to study the weight polynomial ofCk is to study the weights

corresponding to the pairs(1, v), v ∈ F2m . In other words,to know the values
∑

x∈F2m
(−1)T r(xk+ax), a ∈ F2m , and the number of times they occur, is exactly to know the weight
polynomial of the codeCk.
TheSimplex codeis the[n,m]binary cyclic code composedof codewordsc, as previously

defined (see (2)), with ms-polynomials

Qc(x) = T r(ax), a ∈ F2m.

A maximum-length sequence, calledm-sequence, is simply a codeword of theSimplexcode.
More generally, choosing any primitive root ofF2m , say�k, m-sequences are produced by
T r(uxk), for someu.
The distance between anm-sequences and all cyclic shifts of anotherm-sequences′ is

computed with thecrosscorrelation function. When the sequences′ is adecimationof sby
k, the crosscorrelation function betweensands′ becomes:

�k(�) =
∑

x∈F∗
2m

(−1)T r(xk+��x),0���n − 1.

To compute the values of�k is to compute the crosscorrelation spectrum ofsands′. Note
that�k(�) = Sk(��) − 1.

1This is the Fourier-transform of the codewordc(y), which is usually called its Mattson–Solomon polynomial
in algebraic coding theory.
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In this paper, we need basic tools for computing the Fourier-spectrum of Boolean func-
tions. Our Boolean functions are of the formf (x) = T r(P (x)), x ∈ F2m andP is some
polynomial onF2m . Let us define the linear Boolean functions as follows:

�a : x �→ T r(ax), a ∈ F∗
2m.

TheFourier transformof f in some pointa ∈ F2m is denotedFa(f ) and calculated as
follows:

Fa(f ) =
∑

x∈F2m
(−1)f (x)+�a(x).

The values of these coefficients form theFourier-spectrumof f, generally denotedSf .
Recall the well-known Parseval’s relation

∑
a∈F2m

F2
a(f ) = 22m (3)

and also this inverse formula
∑

a∈F2m
Fa(f ) = 2m(−1)f (0). (4)

It is easy to see that not all values inSf have the same sign. This is because

 ∑

a∈F2m
Fa(f )



2

=
∑

a∈F2m
F2

a(f )

which implies that it is impossible to haveFa(f )�0 for alla as well asFa(f )�0 for all
a, unlessf is affine.

Lemma 1. Let f be any non-affine Boolean function. Then there are at least two values in
its Fourier-spectrumSf , say� and�, such that� > 0 and� < 0.

Let g = f + �a , for somea. Considering the sequence of values

v = g(0), g(�0), . . . , g(�n−1)

as a codeword of length 2m, the weight ofv is related toFa(f ) via

wt(v) = 2n−1 − Fa(f )

2
. (5)

The nonlinearityof f is the minimal value ofwt(v) whena runs throughF2m , i.e. the
maximal absolute value ofFa(f ). The functiong is said to bebalancedif and only if v is
a balanced codeword. That isFa(f ) = 0.
To compute the valuesFa(f ), whenf (x) = T r(xk), is exactly to computeSk(a), a ∈

F2m . We will be interested later in the maximal absolute value ofSk(a), which we denote
by L(k) (see Proposition2). This is exactly the so-callednonlinearityof the function
x �→ T r(xk).
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2.2. Basic properties

The next lemma is an instance of a classical formula, but we prove it for clarity. Note
that the duality is defined here with respect to the inner product(x, y) �→ T r(xy).

Lemma 2. Let f be any Boolean function onF2m , wherem = 2t . Then
∑
a∈F2t

Fa(f ) = 2t
∑
x∈F2t

(−1)f (x)

Proof. Simply by writing

∑
a∈F2t

Fa(f )=
∑
a∈F2t

∑
x∈F2m

(−1)f (x)+T r(ax) =
∑

x∈F2m
(−1)f (x)


 ∑

a∈F2t
(−1)T r(ax)




= 2t
∑
x∈F2t

(−1)f (x).

SinceT r(xy) = 0 for anyx, y ∈ F2t , thenF⊥
2t = F2t . Thus

∑
a∈F2t (−1)T r(ax) is equal to

0 unlessx ∈ F2t ; whenx ∈ F2t , this sum is equal to 2t . �
The next result is connected with ProblemP2 of Section1, concerning the determination

of balanced codewords.

Lemma 3. Letm�4and sett = �m/2�. Let f be a Boolean function of m variables whose
Fourier-spectrum is as follows:

Sf = {�0, �1, �2, . . . , ��},��2, �0 = 0,0< |�i | < 2m f or i �= 0.

We denote byNi the number of times�i occurs

Ni = card{b|Fb(f ) = �i}, 0� i��.

If, for all i, �i ≡ 0 (mod 2t ) thenN0 > 1.

Proof. This result is directly deduced from Parseval’s relation (see (3)). From hypothesis
we can set�i = 2t ai where|ai | > 0 for anyi �= 0. Thus

�∑
i=1

Ni�
2
i = 22m = 22t

�∑
i=1

Nia
2
i . (6)

Let us suppose that
∑�

i=1Ni = 2m − 1. We have

1. If m is odd then 2t = m + 1 implying
∑�

i=1Nia
2
i = 2m−1.

2. If m is even then 2t = m and
∑�

i=1Nia
2
i = 2m.

These two cases lead each to some contradiction. For case 1, it is becausewe get
∑�

i=1Ni �
2m−1. Whenm is even, we get a sum of 2m − 1 squares, eacha2i repeatedNi times, which
is equal to 2m. This would imply thata2j = 2 and (Nj = 1) for onej. �
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3. Main results

Let n = 2m − 1 wherem = 2t . Let us denote byG the cyclic subgroup ofF∗
2m of order

2t + 1. Letk be an integer in the range[1, n − 1]. From now on, we consider the sums

Sk(a) =
∑

x∈F2m
(−1)T r(xk+ax), a ∈ F2m, (7)

with the hypothesis

gcd(k, n) = 1, k �∈ {1,2,22, . . . ,2m−1} (8)

and

k ≡ 2j (mod 2t − 1) for somej, 0�j � t − 1. (9)

Such exponentsk are currently called theNiho exponentssince they were first studied by
Niho in his thesis[13].We denote byNm the set of Niho exponents defined by (8) and (9).
Without loss of generality, we can assume thatk is in the so-callednormalized form, that is

k = (2t − 1)s + 1,0< s < 2t − 1. (10)

Note thatk ≡ −2s + 1 modulo 2t + 1. From now on, we use this notation

� ≡ k (mod 2t + 1),0< ��2t . (11)

The next result appeared first in[13] and a proof can be found in[7]. To be clear with our
terminology, we indicate the proof. We denote byT r

s , the trace-function fromF2r to F2s , s
dividing r.

Theorem 1. Letk ∈ Nm; k and�are definedby(10)and(11).ThenSk(a) = (N(a)−1)2t ,
whereN(a) is the number ofy ∈ G such that

y2� + ay�+1 + a2
t

y�−1 + 1= 0. (12)

Proof (Sketch). Let � be a primitive root ofF2m . Since 2t − 1 and 2t + 1 are coprime, any
elementz ∈ F∗

2m can be expressed as follows:

z = �e(2
t+1)+&(2t−1),0�e�2t − 2,0�&�2t .

Then we have for any fixeda �= 0 and for allz ∈ F∗
2m :

T r(zk + az)= T t
1T

m
t

(
(�e(2

t+1)+&(2t−1))k + a�e(2
t+1)+&(2t−1)

)
,

= T t
1

(
T m
t (��&(2t−1) + a�&(2

t−1))�e(2
t+1)

)
.

Hence

Sk(a)= 1+
∑
y∈G

∑
x∈F∗

2t

(−1)T
t
1(T

m
t (y�+ay)x)

= −2t +
∑
y∈G

∑
x∈F2t

(−1)T
t
1(T

m
t (y�+ay)x). (13)
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ThusSk(a) = (N(a) − 1)2t , whereN(a) is the number of thosey ∈ G which satisfy
y� + ay ∈ F2t , that is

y� + ay + y−� + a2
t

y−1 = 0.

The proof is completed by multiplying the equation above byy�. �
Therefore, according to the previous theorem, we can apply Lemmas1 and3 to the

Boolean non-affine function defined byf (x) = T r(xk). Indeed, there is only one suitable
negative value ofSk(a) and the nonzero Fourier-coefficients of suchf are divisible by 2t .

Corollary 1. Let Sk(a) be defined by(7) with k ∈ Nm. Then there is at least onea �= 0
and oneb �= 0 such that, respectively,

Sk(a) = −2t and Sk(b) = 0.

Remark 1. The integer�, defined by (10), satisfies

gcd(�,2t + 1) = 1 and � �= 2t .

Indeed, if there ise > 1 which dividesgcd(�,2t + 1) thene dividesk, a contradiction
sincegcd(k,2t + 1) = 1. On the other hand, if� = 2t then 2t ≡ k (modulo 2t + 1). Since
k = (2t − 1)s + 1, we get 2t ≡ −2s + 1 which implies 2s − 2 ≡ 0. This is impossible
unlessk = 2t .

Remark 2. The exact divisibility of the codesCk, wherek ∈ Nm, was also proved in
[2, Theorem7.5]by using McEliece’s theorem. The weight polynomials of these codes, for
m = 6,8 and 10, can be found in[2, p.130].

Now we are going to prove our main result.

Theorem 2. Letm = 2t and letk ∈ Nm. Then the sum

Sk(a) =
∑

x∈F2m
(−1)T r(xk+ax),

takes at least four values when a runs throughF∗
2m .

Proof. We assume thatk is in its normalized form, as in (10); � is defined by (11). Let us
denote byV the set of valuesSk(a), a ∈ F∗

2m . We know that the cardinality ofV is at least
3 [9]. We assume that it is exactly 3. Then, from Theorem1 and Corollary1, we actually
suppose thatV = {0,−2t , �}, where� = 2t�, with � > 0.
First, we consider (12) for any nonzeroa in the subfieldF2t . We get

y2� + a(y�+1 + y�−1) + 1= 0. (14)

Clearly y = 1 is a solution, for anya. Also, y ∈ G is a solution if and only ify2
t
is a

solution. Thus, for anya ∈ F2t , the numberN(a) of solutions of the above equation is such
thatN(a) = 1+ 2& for some&. According to Theorem1, we get� = &2t+1. Now we apply
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Lemma2 to the Boolean function defined byf (x) = T r(xk). With Sk(a) = Fa(f ), we
get

∑
a∈F2t

Sk(a) = 2t
∑
x∈F2t

(−1)T r(xk) = 2m, (15)

becausef (x) = 0 for all x ∈ F2t . But in the sum above (on the left), each nonzero term is
divisible by 2t+1 and then, by hypothesis, must be equal to�. Thus 2m = L�, for someL,
providing� = 2	 with 	� t + 1.
In order to prove that the cardinality ofV cannot be three, it remains to prove that there is

somea ∈ F∗
2m such thatSk(a) is not in{0,−2t ,2	}. In other words, there is somea ∈ F∗

2m

such that:

N(a) > 1 and(N(a) − 1)2t �= 2	(where	� t + 1). (16)

Consider nowSk(a) with a ∈ G \ {1}. As aa2t = 1, (12) becomes

y2� + ay�+1 + a2
t

y�−1 + aa2
t = (y�+1 + a2

t

)(y�−1 + a) = 0.

ThusN(a) is equal to the number of solutionsy ∈ G satisfying

y�+1 + a2
t = 0 (17)

or

y�−1 + a = 0. (18)

Note thaty cannot be a solution of both equations above. Indeed, this would implyy2� = 1,
which is impossible since 2� and 2t + 1 are coprime. Also, it is impossible to have� + 1=
2t + 1 (see Remark1).
We sete = gcd(� + 1,2t + 1) ande′ = gcd(� − 1,2t + 1). Let 
 be a generator ofG.

Then we have:
1. If e = e′ = 1 then (17) and (18) each have one and only one solution providing

N(a) = 2. Thus (16) is satisfied for anya.
2. Assume thate > 1 ande′ = 1. There is only one solution for (18), for anya. Choosing

a = 
−(�+1) (for instance) then the solutions of (17) are

{
,
1+v, . . . ,
1+(e−1)v},wherev = (2t + 1)/e.

We getN(a) = e + 1 which satisfies (16), sinceN(a)− 1 is odd. Note that the situation is
similar whene = 1 ande′ > 1, by choosinga = 
�−1.
3. Now suppose thate > 1 ande′ > 1. Note thatgcd(e, e′) = 1, sincegcd(� − 1, � +

1)�2; in particulare �= e′.
By takinga = 
−(�+1), then (17) hase solutions. Moreover there is no solution of (18)

for thisa, because this would imply thate′ divides� + 1 too. HenceN(a) = e. Similarly,
choosinga′ = 
�−1 we obtainN(a′) = e′. Thus, we get two different values,N(a)�3 and
N(a′)�3 corresponding to two distinct elements ofG. At least one of these values satisfies
(16), completing the proof. �
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Remark 3. It is important to complete Theorem2, by noticing thatSk(a) takes exactly
four values fork = 2t+1 − 1(see Example1 later). This case was fully solved by Niho in
his thesis where these values and the number of times they occur were given, even when
gcd(k, n) �= 1 [13]. This result was generalized to odd characteristics by Helleseth[9].

3.1. Derived results

This section is an extension of the previous one, where we focused on the number of
valuesSk(a). Notation is as in the previous section. Notably,k ∈ Nm and� are defined by
(8)–(11). The proof of Theorem2 leads us to several partial results concerningV, the set
of the values ofSk(a). We have from Theorem1, Corollary1 and Theorem2:

V = {0,−2t , �12t , ..., �i2t },2� i,0< �j < �j+1,

where�j = N(a) − 1 for somea. It appeared thatSk(a) ≡ 0 modulo 2t+1 for all a ∈ F2t
(see (14)). Moreover some suchSk(a) are not zero. Indeed we can deduce from (15):

2�card{a ∈ F2t |Sk(a) �= 0}�2t−1.

Therefore, the maximal value ofSk(a), which we denote byL(k), is greater than or equal
to 2t+1. If L(k) = 2t+1 thenV, which must have at least four elements, contains 0,±2t

and 2t+1 only. Moreover, in this case, any nonzeroSk(a), with a ∈ F2t , is equal to 2t+1.
More generally, assume thatV has four elements only, three of them being 0,−2t and�2t

for some odd�. Then all nonzeroSk(a), with a ∈ F2t , are equal to the fourth element of
V. Moreover, as before by using (15), we claim that this fourth weight is 2	 with 	� t +1.
In the cases1.and2.of the proof of Theorem2, we obtained odd values forN(a) − 1 (for
somea ∈ G). Thus we proved the following property.

Proposition 1. Assume that the sumSk(a), k ∈ Nm, takes four values only, when a runs
throughF2m . Recall that

e = gcd(� + 1,2t + 1) and e′ = gcd(� − 1,2t + 1).

If e = 1 or e′ = 1 thenSk(a) = 2	 with 	� t + 1, for all a ∈ F2t such thatSk(a) �= 0.
Moreover we have:

• if e = e′ = 1 thenV = {0,±2t ,2	};
• if e = 1 ande′ > 1 thenV = {0,−2t , e′2t ,2	};
• if e > 1 ande′ = 1 thenV = {0,−2t , e2t ,2	}.

Now look at other consequences of our results onSk(a) for a ∈ G \ {1}. In the case 1,
we show thatSk(a) = 2t for any sucha. With the hypothesis of 2, we characterize some
a such thatSk(a) = e2t with e�3. With the hypothesis of 3, we obtain somea such that
Sk(a) = (e − 1)2t and somea′ such thatSk(a′) = (e′ − 1)2t with e�3, e′ �3 ande �= e′.
HenceL(k) = 2t+1 is possible in the case 1 only. In any case, we get a lower bound on
L(k).
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Whent is odd then 3 divides 2t +1, which implies that 3 is not a divisor of� (see Remark
1). Then either� − 1 or� + 1 (and not both) are divisible by 3. Thus, whent is odd then the
case 1 is impossible and we are sure thatL(k) > 2t+1. We summarize these results in the
next proposition. Recall thatk ∈ Nm,m = 2t .

Proposition 2. (i) For all a ∈ F2t , Sk(a) ≡ 0modulo2t+1; moreover at least2 (and at
most2t−1) such a provideSk(a) �= 0.Therefore

L(k)�2t+1, where L(k) = max
a∈F2m

|Sk(a)|.

(ii) If L(k) = 2t+1 thene = e′ = 1 andSk(a) takes exactly four values, {0,±2t ,2t+1};
the value2t+1 occurs at least2t−1 times.

(iii) If e = e′ = 1 thenSk(a) = 2t for all a ∈ G \ {1}.
(iv) If only one element of the pair(e, e′) is equal to1, saye′ = 1, thenL(k)�e2t and
there is some a such thatSk(a) = e2t .

(v) If e > 1 and e′ > 1 thenSk(a) takes the value(e − 1)2t for some a and the value
(e′ − 1)2t for another a; therefore:

L(k)�E2t , where E = max{e − 1, e′ − 1}.
(vi) If m ≡ 2 (mod 4) thenL(k) > 2t+1.

Example 1. Lower bounds onL(k) are proposed in the previous proposition; they are
reached for some values ofk (andm). We illustrate this by two well-known examples. The
first one is given in Remark3, that isk = 2t+1 − 1. We have to solve (12) with � = 3,
� − 1= 2 and� + 1= 4, implyinge = e′ = 1. In this caseL(k) = 2t+1.
Whenk = 2t + 3, we consider its normalized form:

k = (2t−2 + 1)(2t − 1) + 1, � ≡ 2t−2(2t + 3) ≡ 2t−1 (mod 2t + 1).

It is known thatL(k) = 3×2t (see[9,Theorem4.8]).According to the previous proposition
we are sure that at least one element of the pair(e, e′) is equal to 1. Ift is odd then 3 divides
2t + 1 and�− 1; thus we must havee = 1 ande′ = 3. For instance form = 10 andk = 35
we get� = 16, 2t + 1 = 33,� − 1 = 15 and� + 1 = 17. But take for instancem = 8 and
k = 19; here we havee = e′ = 1 since 2t + 1 is prime.

We can also derive some results related with the problemP2, to characterize some set of
balanced codewords. In accordance with Theorem1, Sk(a) = 0 if and only if the equation

y2� + ay�+1 + a2
t

y�−1 + 1= 0,

has one and only one solutiony ∈ G.

Proposition 3. For anyk ∈ Nm, we have:

Sk(1) =
∑

x∈F2m
(−1)T r(xk+x) = 0 ⇐⇒ e = e′ = 1.
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Moreover, in this case,

gcd(y2� + y�+1 + y�−1 + 1, y2
t+1 + 1) = y + 1.

Notably, if t is odd thenSk(1) �= 0.
In other words, the binary codewordc of length22t − 1 with ms-polynomialQc(x) =

T r(xk + x) is balanced if and only if t, k and� are such thate = e′ = 1.

Proof. It is simply deduced from

y2� + y�+1 + y�−1 + 1= (y�+1 + 1)(y�−1 + 1).

The polynomial above has one and only one root inG (which is y = 1) if and only if
gcd(� − 1,2t + 1) = gcd(� + 1,2t + 1) = 1.
As we previously noticed, this last condition is impossible whent is odd. �

Example 2. Form = 8 and 16 then 2t + 1 is equal, respectively to 17 and 257, which
are prime numbers. Thus, in these cases,Sk(1) = 0 for anyk ∈ Nm. On the contrary, if
m = 4s with s odd, there are different situations. Take for instancem = 12; sot = 6,
2t − 1= 63 and 2t + 1= 65:

• If k = 67= 64+ 3 then� = 32 (see Example1). Sincegcd(65,31) andgcd(65,33)
are equal to 1 thenSk(1) = 0.

• If k = 5 × 63+ 1 then� = 56. Sincegcd(65,55) = 5 andgcd(65,57) = 1 then
Sk(1) �= 0. MoreoverL(k)�5× 26.

When� = 3, Eq. (12) becomes

y6 + ay4 + a2
t

y2 + 1= 0,

which has at most three solutions. Therefore, we deduce fromTheorem1 thatL(k)�2t+1,
implying that the set of values ofSk(a) is exactly{0,±2t ,2t+1}. (see, for instance, Example
1). This suggests a method for findingL(k) for some values ofk.
Research problem: Characterize an infinite class of Niho exponentsk satisfying:

1. on the one hand, Proposition2provides a lower bound forL(k), sayb2t , usinggcd(�±
1,2t + 1).

2. on the other hand,� is such that the equation (12) cannot havemore thanb+1 solutions.

4. Conclusion

In this paper, we studied the Boolean functions onF2m , m = 2t , of the formf : x �→
T r(xk) wherek ∈ Nm, i.e.,gcd(2m − 1, k) = 1 andkmodulo 2t − 1 is a power of 2. We
noticed that these functions can be seen as a concatenation of linear functions onF2t . We
notably gave an upper bound on their nonlinearity. To find the exact nonlinearity remains
an open problem.
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It is a long-standing problem to find weight enumerators of cyclic codes with two nonze-
ros. Most recently, these codes were studied in relation with some cryptographic problems.
It appeared that, their minimum weight, the number of their weights and their divisibility
are of most interest in this context (see[2–4] and their references).
Concerning the number of weights of codesCk, the most recent result is due to McGuire,

who proved that,for m even andk ≡ 0 (mod 3), Ck cannot have three weights only
[12]. We define here another large class of codesCk (for k ∈ Nm) which cannot have
three nonzero weights. Moreover we prove that, for these codes, the number of balanced
codewords is strictly greater than 2t−1(2m − 1). Note that the next well-known conjecture
is satisfied whenk is a Niho exponent (see Proposition2).

Conjecture 1. Letm = 2t ; letCk be the[2m−1,2m] binary cyclic codewith two nonzeros,
�−1 and�−k. Then the minimum distance ofCk is smaller than or equal to2m−1 − 2t .

Consider two binarym-sequences, anym-sequence and its decimation byk. For even
m, we exhibit here a large class ofk such that these sequences cannot have a 3-valued
crosscorrelation. Our result strengthens the conjecture stated by Helleseth in[9]:

Conjecture 2. Two binarym-sequences of lengthn = 2m − 1 cannot have a3-valued
crosscorrelation function when m is a power of two.

Calderbank et al.[1] proved that these three values (above) cannot be−1,−1+ A and
−1−A (see also[11]). We contribute to the second conjecture of Helleseth[9, Conjecture
5.1] which can be expressed as follows:

Conjecture 3. Foranymandksuch thatgcd(2m−1, k) = 1,thesum
∑

x∈F2m (−1)T r(xk+ax)

is null for at least one nonzero a.

Recall that whenm is even the maximal nonlinearity of balanced Boolean functions is
not known; the most recent results can be found in[6].
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