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Abstract

This paper studies the values of the sums

Sc@y = 3 (~DTrEH g e Fon,

XEFzm

whereTr is the trace function ofom, m = 2r andged (2™ — 1, k) = 1. We mainly prove that when

k = 2/(mod 2 — 1), for somgj, thensS; (a) takes at least four values whamuns througtFon . This

result, and other derived properties, can be viewed in the study of weights of some cyclic codes and
of crosscorrelation function afi-sequences.
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1. Introduction

The computation of the trace function applied to polynomial&sf[x], whereFon is
the finite field of order 2, is related with several general problems, especially in coding
theory. This problem is strongly connected with the study of the weights of some cyclic
codes, but also with the study of the spectrum of some sequences and of some Boolean
functions.
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We treat binary cyclic codes which have two nonzeros only. Such a code is here of length
n=2"—1,m = 2t,and of dimension2. To study its weights is actually to compute the
sums

Si@ = Y (DT g e Fan,

X€F2m

wherek andn are coprime andr is the trace function ofro». These sums can be seen
as the Fourier-transforms of the Boolean functior> Tr(x¥). Moreover, the function
a — Si(a) provides the crosscorrelation function of onesequence of length with its
decimation byk. Our work is based o[9]; in this paper, Helleseth proved thgt(k), a in
F5., takes on at least three values, if and only if k is not a powert At the end of9], the
author stated two conjectures srsequences which can be replaced in these two general
problems:

21:. Determine the values oh andk such thatSy (a) takes on at least four values when
aruns througtFs,, .

P> Fixing m, determine the integekssuch thatS; (@) = 0 for at least one nonzeeo In
this case, which elemendsprovide Si (a) = 0?

In the next section, we briefly explain the context and the connections between several
objects (codes, sequences and Boolean functions). We state or recall some useful properties.

Our results are presented in SectibliVe treat a specific class of valueswpthe so-called
Niho exponentsthese exponents are such thanhodulo 2 — 1 is a power of 2. We also
assume thaged (k, n) = 1 and thak is not a power of 2. We will denote hy",, this set of
Niho exponents with respect to the finite fiélgh, m = 2r.

Our main result is related with the problef, since we prove that far € .47, the sum
Sk (a) takes on at least four values (Theorgmvhena runs through,, . We first establish
that the values 0 and?2' always appear for some nonzex¢Corollary 1).

Several derived results are presented later, in Se8tibrWe propose lower bounds on
the maximal value of; (a), depending on the valuésandm. These bounds can be reached
(see Examplel). We contribute to Probler#,, by characterizing those € .47, such
that S; (1) = O (Proposition3). We deduce thaf; (1) = 0 is impossible whem = 2
modulo 4.

To conclude, we recall some conjectures and open problems. We emphasize that the
conjectures due to Hellesej®) are here strengthened, but remain open problems.

Main notation:

n=2"—-1m=2t

Fom is the finite field of order 2; F5,, = Fou \ {0};

o is a primitive root ofFom;

4 is the cyclic subgroup of ordef 2- 1: ¥ = (¢ ~1y;
wt (1) is the Hamming weight of the vector

Tr is the trace-function ofon;

T; the trace-function fronfror to Fos;

gcd(A, B) is the greatest common divisor AfandB;
A m is the set of integerks satisfying 8) and ©).
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2. Preliminaries

We assume that the reader is familiar with finite algebraic objects which are presented
here. Our main reference for algebraic coding theorfd 4. For cyclic codes with two
zeros and for sequences, more details can be foufdia].

2.1. Context

In this paper, our ambient field i, the finite field of order 2 with m = 2¢. We denote
by o a primitive root ofFo». The trace-function fronkon to F» is denoted bylr.

We are interested in the weight polynomials of some binary cyclic codes of length
2™ —1 which haveawo nonzeros only: ! ando %, where 3 k < 2" —2 andgcd (k, n) = 1.
Such a code is denoted ). Any codeword ofCy, sayc(y) = Z;’;& ¢;y', can be simply
expressed by its so-called-polynomial

Oc(x) = Trux* + vx), u =c(@ ) andv = c(a™1), (1)

providing, Qc(a') = ¢; forallil. For any pairu, v) of elements of »» the corresponding
codeword of lengti is the ordered sequence of binary symbols:

0c(0%), Qced), ..., Qc(@™™d). (2

We denote bywr (c) the Hamming weight o, the integer sum of th@(«'). A codeword
is said to bebalancedwhenwr (c) = 271,
Sincek andn are coprime, to study the weight polynomial@f is to study the weights

corresponding to the paird, v), v € Fon. In other wordsto know the valueixe,:zm

(—=1)Tr*+a) 4 € Fom, and the number of times they occur, is exactly to know the weight
polynomial of the cod€y.

TheSimplex codés the[n, m] binary cyclic code composed of codeworgas previously
defined (seel)), with ms-polynomials

QOcx) =Tr(ax),a € Fom.

A maximume-length sequenaalledm-sequence, is simply a codeword of Sienplexcode.
More generally, choosing any primitive root B$«, say«X, m-sequences are produced by
Tr(ux®), for someu.

The distance between anrsequence and all cyclic shifts of anothen-sequence’ is
computed with therosscorrelation functioWhen the sequencgis adecimatiorof s by
k, the crosscorrelation function betwegands becomes:

0 =Y (DT 0~ 1.
xerm
To compute the values @, is to compute the crosscorrelation spectruns ahds'. Note
that0, (1) = Sk (o) — 1.

1 This is the Fourier-transform of the codewan@d ), which is usually called its Mattson—Solomon polynomial
in algebraic coding theory.
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In this paper, we need basic tools for computing the Fourier-spectrum of Boolean func-
tions. Our Boolean functions are of the forfiix) = Tr(P(x)), x € Fon andP is some
polynomial onF,~. Let us define the linear Boolean functions as follows:

@, x> Tr(ax),a € F5u.

The Fourier transformof f in some pointa € Fo» is denotedZ ,(f) and calculated as
follows:

Falf)= ) (~HIH0,

xXe F2m

The values of these coefficients form theurier-spectrunof f, generally denoted” .
Recall the well-known Parseval’s relation

S 7 =22 3)
aEFzm
and also this inverse formula
> Fuf)=2"=D'O. &
aEFzm
It is easy to see that not all valuesifis have the same sign. This is because
2

Y. FuH| =D Fun

ae Fzm ae Fzm

which implies that it is impossible to havgé, (/) >0 for allaas well as7 , (f) <0 for all
a, unlesg is affine.

Lemma 1. Let f be any non-affine Boolean function. Then there are at least two values in
its Fourier-spectruny/ ¢, say/ and u, such thatt > Oandu < 0.

Letg = f + ¢,, for somea. Considering the sequence of values

V=200, g%, ...,g"h
as a codeword of length2 the weight ofv is related toZ ,(f) via

wr(v) =2""1— @ (5)

The nonlinearity of f is the minimal value ofwt(v) whena runs throughFo», i.e. the
maximal absolute value of ,(f). The functiong is said to beébalancedf and only ifv is
a balanced codeword. Thatés,(f) = 0.

To compute the valueg ,(f), when f (x) = Tr(x¥), is exactly to computéy (a), a €
Fon. We will be interested later in the maximal absolute valug;af:), which we denote
by Z(k) (see Propositior2). This is exactly the so-calledonlinearity of the function
X = Tr(xk).
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2.2. Basic properties

The next lemma is an instance of a classical formula, but we prove it for clarity. Note
that the duality is defined here with respect to the inner proguct) — Tr(xy).

Lemma 2. Let f be any Boolean function d#p», wherem = 2. Then

Yo TuH=2"Y (-1

aerr XEth

Proof. Simply by writing

Z gf-u(f) = Z Z (_1)f(x)+Tr(ax) = Z (_l)f(x) Z (_1)Tr(ax)
a€F21 aGth xeFom xeFom GGth
=2 Z (—=1)f @),

xeFy

SinceTr(xy) = 0 for anyx, y € Fo, thenFy; = Fx. Thus) . (=177 is equal to
0 unlesst € Fo; whenx € Fo, this sum is equal to’2 [
The next result is connected with Problefa of Sectionl, concerning the determination

of balanced codewords.

acFy

Lemma 3. Letm >4 and set = [m/2]. Let f be a Boolean function of m variables whose
Fourier-spectrum is as follows

S = {20, 21, A2, ..., }V‘u}, u=2,20=0,0< || <2" fori #0.
We denote byv; the number of times; occurs
N; = cardb|7,(f) = 4}, 0<i<p

If, foralli, 4 =0 (mod 2)thenNg > 1.

Proof. This resultis directly deduced from Parseval’s relation (8e From hypothesis
we can sef; = 2'a; where|a;| > 0 for anyi # 0. Thus

U U
D N =2"" =22 " Nia?. (6)
i=1 i=1

Let us suppose thdt/_; N; = 2" — 1. We have

1. If mis odd then 2= m + 1 implying >t ; N;a? = 2"~1,
2. If mis even then 2= m and}_!__; N;a? = 2".
These two cases lead each to some contradiction. For case 1, itis becaus@&g,lg@;g

2"=1 Whenmis even, we get a sum of*2— 1 squares, eaokf repeatedv; times, which
is equal to 2'. This would imply thatzjz. =2and (vV; = 1) foronej. [
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3. Main results

Letn = 2" — 1 wherem = 2. Let us denote by the cyclic subgroup of3,, of order
2" + 1. Letk be an integer in the rand&, n — 1]. From now on, we consider the sums

Si@ = Y (~)TrEHW 4 e Fon, (7)

xeFom
with the hypothesis

ged(k,n) =1,k ¢ {1,2,2,...,2" Y (8)
and

k=2/ (mod Z — 1) for somej, 0<j <r — 1. 9)

Such exponentk are currently called thBliho exponentsince they were first studied by
Niho in his thesi§13]. We denote by/",, the set of Niho exponents defined I8y and Q).
Without loss of generality, we can assume thitin the so-calleshormalized formthat is

k=2 —1s+1,0<s <2 -1 (10)
Note thatk = —2s + 1 modulo 2 + 1. From now on, we use this notation
1=k (mod?Z+1),0<1<2. (11)

The next result appeared first[ib3] and a proof can be found [i@]. To be clear with our
terminology, we indicate the proof. We denoteXyy, the trace-function fronfror to Fos, s
dividing r.

Theorem 1. Letk € .1",; kandr are defined b{10) and(11). ThenSy (a) = (N (a)—1)2",
whereN (a) is the number of € ¥ such that

yZ‘L' +ay‘l.'+l +a2’y‘r—l + 1=0. (12)

Proof (Sketch. Let « be a primitive root of,». Since 2 — 1 and 2 + 1 are coprime, any
element: € F5, can be expressed as follows:

7= o(e(21+1)+5(21—1)’ Ogegzt _ 2’ Ogegzt

Then we have for any fixed # 0 and for allz € F5,,.:
Tr +az) =TI T" ((ae(2’+l)+ﬁ(2’—l))k +aae(2'+1)+e(2f—1)) ,

—T1! (Ttm(o{fe(zul) + aae(zul))ae(zurl)) .

Hence
Sp(a)=1+ Z Z (=)7L (T G ay)v)
ye‘:}’xeF;
=2+ Z Z (=TT Fay)x) (13)

yeb xeFy
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Thus S (a) = (N(a) — 1)2', whereN (a) is the number of those € % which satisfy
y' +ay € Fy, thatis

Yot+ay+y T +a?yt=0.

The proof is completed by multiplying the equation aboveyby [

Therefore, according to the previous theorem, we can apply Leninzesl 3 to the
Boolean non-affine function defined y(x) = Tr(x¥). Indeed, there is only one suitable
negative value of () and the nonzero Fourier-coefficients of stihe divisible by 2.

Corollary 1. Let Sx(a) be defined by7) with k € .47,,. Then there is at least one# 0
and oneb # 0 such thatrespectively

Si(a) = =2 and Sy (b) = 0.

Remark 1. The integer, defined by 10), satisfies
ged(t,2 +1) =1 and t#?2.

Indeed, if there i > 1 which dividesgcd(z, 2' + 1) thene dividesk, a contradiction
sincegced(k, 2! + 1) = 1. On the other hand, if = 2/ then 2 = k (modulo 2 + 1). Since
k= (2" —1)s + 1, we get 2 = —2s + 1 which implies 2 — 2 = 0. This is impossible
unlessk = 2"

Remark 2. The exact divisibility of the code€}, wherek € .47, was also proved in
[2, Theorem7.5py using McEliece’s theorem. The weight polynomials of these codes, for
m = 6, 8 and 10, can be found &, p.130]

Now we are going to prove our main result.

Theorem 2. Letm = 2t and letk € ./7,,. Then the sum

Sk(a) — Z (_1)Tr(xk+ax),

xXe Fzm

takes at least four values when a runs throug.

Proof. We assume thatis in its normalized form, as irLQ); 7 is defined by {1). Let us
denote byr” the set of values (a), a € F5,,. We know that the cardinality of” is at least
3[9]. We assume that it is exactly 3. Then, from Theoreand Corollaryl, we actually
suppose that” = {0, —2', 7}, wherey = 2’ 4, with 4 > 0.

First, we considerl(2) for any nonzera in the subfield~, . We get

Yy +ay™+yTh+1=0. (14)

Clearlyy = 1 is a solution, for any. Also, y € % is a solution if and only ify? is a
solution. Thus, for any € Fy, the numbeW («) of solutions of the above equation is such
thatN (a) = 1+ 2¢ for somet. According to Theoreni, we gety = £2'*1. Now we apply
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Lemmaz2 to the Boolean function defined bf(x) = Tr(x*). With Sx(a) = Z.(f), we
get

Y Si@y =2 Y (e = 2m, (15)

acFy xeFy

becausef (x) = 0 for all x € Fy . But in the sum above (on the left), each nonzero term is
divisible by 2+ and then, by hypothesis, must be equaf.tdhus 2 = Ly, for someL,
providingy = 2° with p>r¢ + 1.

In order to prove that the cardinality @f cannot be three, it remains to prove that there is
somea € F3, such thatSi(a) is notin{0, —2', 2°}. In other words, there is sonaee F3,
such that:

N(a) > Land(N(a) — 1)2' # 2°(wherep >t + 1). (16)
Consider nowsy (a) with a € %\ {1}. Asaa? = 1, (12) becomes

Y pay™ 4 a? vl 4 ad? = P 4 a?) " 4 a) = 0.
ThusN (a) is equal to the number of solutionse ¥ satisfying

y*H+a? =0 (17)
or

ylta=0. (18)

Note thaty cannot be a solution of both equations above. Indeed, this would impl 1,
which is impossible sincez2and 2 + 1 are coprime. Also, it is impossible to hawve- 1 =
2" + 1 (see Remartt).

We sete = ged(t + 1,2 + 1) ande’ = ged(t — 1, 2' + 1). Let § be a generator of.
Then we have:

1. If e = ¢ = 1 then (7) and (8 each have one and only one solution providing
N(a) = 2. Thus (6) is satisfied for any.

2.Assume that > 1 ande’ = 1. There is only one solution foi8), for anya. Choosing
a = =Y (for instance) then the solutions df7) are

(B, A0, ..., DUy wherev = (2 + 1)/e.

We getN (a) = e + 1 which satisfies6), sinceN (a) — 1 is odd. Note that the situation is
similar whene = 1 ande’ > 1, by choosing: = 7 1.

3. Now suppose that > 1 ande’ > 1. Note thatgcd(e, ¢’) = 1, sinceged(t — 1,7 +
1)< 2;in particulare # ¢'.

By takinga = =Y, then (L7) hase solutions. Moreover there is no solution a8}
for this a, because this would imply that dividest + 1 too. HenceN (a) = e. Similarly,
choosings’ = ﬂr_l we obtainN (a’) = ¢’. Thus, we get two different valued/,(a) >3 and
N (a") > 3 corresponding to two distinct elementsé@fAt least one of these values satisfies
(16), completing the proof. O
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Remark 3. It is important to complete Theore®) by noticing thatS; (a) takes exactly

four values fork = 2'+1 — 1(see Exampld later). This case was fully solved by Niho in

his thesis where these values and the number of times they occur were given, even when
ged(k, n) # 1[13]. This result was generalized to odd characteristics by Hell¢8gth

3.1. Derived results

This section is an extension of the previous one, where we focused on the number of
valuesS; (a). Notation is as in the previous section. Notaldly; .47, andt are defined by
(8)—(11). The proof of Theoren2 leads us to several partial results concernifigthe set
of the values ofS; (a). We have from Theorerh, Corollaryl and Theoren2:

PV ={0,-2,612', ..., 0:2'},2<i, 0 < §; < 0j41,

whered; = N(a) — 1 for somea. It appeared thaf; («) = 0 modulo 2tlforalla € Fu
(see (4)). Moreover some suchy (a) are not zero. Indeed we can deduce frd){

2<carda € Fy|Sk(a) # 0} <271,

Therefore, the maximal value 6f (a), which we denote by? (k), is greater than or equal
to 2+ If £ (k) = 2+ theny”, which must have at least four elements, contains,
and 2t only. Moreover, in this case, any nonzefga), with a € Fy, is equal to 21
More generally, assume that has four elements only, three of them being-@' andd2’
for some odd. Then all nonzerdy (a), with a € Fy, are equal to the fourth element of
. Moreover, as before by usingg), we claim that this fourth weight is2vith p >¢ + 1.

In the case4. and2. of the proof of Theoren2, we obtained odd values fo¥ (a) — 1 (for
somea € 9%). Thus we proved the following property.

Proposition 1. Assume that the sui(a), k € A", takes four values onJyhen a runs
throughF2». Recall that

e=gced(t+1,2 +Dand e = ged(r —1,2" +1).

If e = 1ore = 1thenSi(a) = 2° with p>t + 1, for all a € Fx such thatSy(a) # 0.
Moreover we have:

o ife=¢ =1theny = {0, £2/, 2°};
e ife=1ande > 1then? = {0, -2, 2", 2°};
e ife >1ande = 1theny” = {0, -2, e2', 2°}.

Now look at other consequences of our resultsSpfa) for a € 4 \ {1}. In the case 1,
we show thatS; (a) = 2! for any sucha. With the hypothesis of 2, we characterize some
a such thatSy (a) = e2' with e > 3. With the hypothesis of 3, we obtain somsuch that
Si(a) = (e — 1)2' and somer’ such thatSy(a’) = (¢/ — 1)2' withe>3,¢' >3 ande # ¢'.
Hence % (k) = 2'*1 is possible in the case 1 only. In any case, we get a lower bound on
P k).
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Whent is odd then 3 divides’2- 1, which implies that 3 is not a divisor of(see Remark
1). Then either — 1 ort + 1 (and not both) are divisible by 3. Thus, whda odd then the
case 1 is impossible and we are sure tifak) > 2/+1. We summarize these results in the
next proposition. Recall thate A",,, m = 2r.

Proposition 2. (i) For all a € Fx, Si(a) = 0 modulo2'*t1; moreover at leas (and at
most2'~1) such a provideSi (a) # 0. Therefore

PLk)=2"L, where L (k) = max | (a)].
ackom

(i) If L) = 2"t thene = ¢/ = 1 and Si(a) takes exactly four value$0, £2¢, 2/+1};
the value2’*1 occurs at leas®’ 1 times

(iiiy Ife=¢ =1thenSi(a) =2 foralla € 4\ {1).

(iv) If only one element of the paie, ¢’) is equal tol, saye’ = 1, then. % (k) >¢2' and
there is some a such th&t(a) = ¢2'.

(V) If e > 1ande’ > 1thenS;(a) takes the valuge — 1)2' for some a and the value
(¢’ — 1)2' for another a therefore

Lk)=E2', where E=maxe —1,¢ — 1.
(i) If m=2 (mod 4 thenZ (k) > 2/+1.
Example 1. Lower bounds onZ (k) are proposed in the previous proposition; they are
reached for some values kfandm). We illustrate this by two well-known examples. The
first one is given in RemarB, that isk = 2/+1 — 1. We have to solvelQ) with t = 3,

7—1=2andr+1=4,implyinge = ¢ = 1. In this case? (k) = 2'*+1,
Whenk = 2' 4+ 3, we consider its normalized form:

k=2 24+1DQ2 -1 +1,1=2"22 +3)=2"1 (mod Z +1).

Itis knownthat? (k) = 3x 2" (sed9, Theorem 4.8] According to the previous proposition
we are sure that at least one element of the (eair’) is equal to 1. It is odd then 3 divides
2" + 1 andr — 1; thus we must have = 1 ande’ = 3. For instance fom = 10 andk = 35
we gett = 16,2 + 1= 33,7 — 1 =15 andr + 1 = 17. But take for instance = 8 and
k = 19; here we have = ¢/ = 1 since 2+ 1 is prime.

We can also derive some results related with the prolsfento characterize some set of
balanced codewords. In accordance with Theotefy (a) = 0 if and only if the equation

yZ‘L' +ayf+l +a2’yrfl 4 1= 07
has one and only one solutigne .
Proposition 3. For anyk € ./, we have

S = Y ()T 0 e=e/ =1

xXe F2m
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Moreover in this case
ged(yF +y 4yl 1y? ey =y 41

Notably if t is odd thenS, (1) # 0.
In other words, the binary codeworof Iength22’ — 1 with ms-polynomial Q¢(x) =
Tr(x* + x) is balanced if and only if t, k andare such that = ¢’ = 1.

Proof. Itis simply deduced from
y2‘[ + y‘L'+l + y‘l,'—l + 1= (yl'-i-l + 1)(y‘f—1 + 1)

The polynomial above has one and only one roo%irfwhich isy = 1) if and only if
ged(t—1,2 + 1) =ged(t+ 1,2 +1) = 1.
As we previously noticed, this last condition is impossible whisrodd. [

Example 2. Form = 8 and 16 then 2+ 1 is equal, respectively to 17 and 257, which
are prime numbers. Thus, in these casgsl) = 0 for anyk € ./7,,. On the contrary, if
m = 4s with s odd, there are different situations. Take for instance= 12; sor = 6,

2 —1=63and 2+ 1=65:

e If k = 67 =64+ 3 thent = 32 (see Exampl&). Sincegcd (65, 31) andgcd (65, 33)
are equal to 1 thef; (1) = 0.

e If k = 5x 63+ 1thent = 56. Sincegcd (65,55 = 5 andgcd(65,57) = 1 then
Sk(1) # 0. Moreover? (k) >5 x 25.

Whenrt = 3, EqQ. (L2) becomes
y6+ay4+a2’y2+1:0’

which has at most three solutions. Therefore, we deduce from Thedieah.? (k) < 2/1,
implying that the set of values 6f () is exactly{0, =2, 2'+1}. (see, for instance, Example
1). This suggests a method for finding(k) for some values of.

Research problenCharacterize an infinite class of Niho expondngatisfying:

1. onthe one hand, Propositi@provides a lower bound fo# (k), sayb2!, usinggcd (t +
1,2 +1).
2. onthe other hand,is such that the equatiottZ) cannot have more thdn+ 1 solutions.

4. Conclusion

In this paper, we studied the Boolean functionsFon, m = 2¢, of the form f : x —
Tr(x*) wherek € A", i.e.,gcd(2" — 1, k) = 1 andk modulo 2 — 1 is a power of 2. We
noticed that these functions can be seen as a concatenation of linear functiens\dke
notably gave an upper bound on their nonlinearity. To find the exact nonlinearity remains
an open problem.
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Itis along-standing problem to find weight enumerators of cyclic codes with two nonze-
ros. Most recently, these codes were studied in relation with some cryptographic problems.
It appeared that, their minimum weight, the number of their weights and their divisibility
are of most interest in this context (§@e-4] and their references).

Concerning the number of weights of codgs the most recent result is due to McGuire,
who proved thatfor m even andk = 0 (mod 3, C; cannot have three weights only
[12]. We define here another large class of codedqfor k € .47,) which cannot have
three nonzero weights. Moreover we prove that, for these codes, the number of balanced
codewords is strictly greater thafr2(2" — 1). Note that the next well-known conjecture
is satisfied whetk is a Niho exponent (see Propositign

Conjecture 1. Letm = 2r; letCy be thg2™ —1, 2m] binary cyclic code with two nonzeros
a~1ando*. Then the minimum distance 6f is smaller than or equal t@”—1 — 2!,

Consider two binaryn-sequences, any-sequence and its decimation kyFor even
m, we exhibit here a large class kfsuch that these sequences cannot have a 3-valued
crosscorrelation. Our result strengthens the conjecture stated by Hellefgth in

Conjecture 2. Two binarym-sequences of length = 2" — 1 cannot have &-valued
crosscorrelation function when m is a power of two

Calderbank et al1] proved that these three values (above) cannetbe-1 + A and
—1— A (see alsg11]). We contribute to the second conjecture of Helle§@flConjecture
5.1]which can be expressed as follows:

Conjecture 3. Foranymandksuchthgtd (2" -1, k) = 1,thesund_ ¢, (—1)Tr+ax)
is null for at least one nonzera a

Recall that whemm is even the maximal nonlinearity of balanced Boolean functions is

not known; the most recent results can be founf®]n
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