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Abstract—In this paper we study involutions over a finite field
of order 2n. We present some classes, several constructions of
involutions and we study the set of their fixed points.

I. INTRODUCTION

Let F2n be the finite field of order 2n. Every polynomial
of F2n [x] identifies a mapping from F2n to F2n . Permutations
of F2n have been extensively studied for its applications
in cryptography, coding theory, combinatorial design, etc.
Any permutation P has a compositional inverse G such that
P ◦ G = G ◦ P = I, where I is the identity. It is often
desired to have permutations which are easy to implement.
On the other hand, in many situations, both the permutation
and its compositional inverse are required. For instance, in
block ciphers an S-box is used as a permutation to build
the confusion layer during the encryption process. While
decrypting the cipher, the compositional inverse of the S-box
is used. This motivates the use of an involution, a permutation
whose compositional inverse is itself. One immediate practical
advantage of involution is that implementation of the inverse
does not require additional resources, which is particularly
useful for its implementation (as part of a block cipher) in
devices with limited resources.

Involutions have been used frequently in block cipher
designs (as S-Boxes), e.g., in AES [1], Khazad, Anubis [2],
PRINCE [3]. However, in these references involutions have
been observed from a cryptographic point of view, and it
seems that as a mathematical object involution has rarely
been studied. Our purpose is to study this mathematical object
systematically. We present several constructions of this kind
of polynomials. Since involutions have on the average a high
number of fixed points, our aim is to identify involutions that
have low number of fixed points. This paper is an extended
abstract of a forthcoming full paper [5].

II. INVOLUTIONS, BASIC PROPERTIES

The trace function from F2n onto any subfield F2k of F2n

is as follows:

Trn/k(y) =

n
k −1∑
i=0

y2
ki

.

The absolute trace on F2n (k = 1) is simply denoted by Tr.
For any function F (x), x ∈ F2n , its derivative at point a ∈ F∗

2n

is the function x 7→ F (x) + F (x + a). This function can be
constant for some a; such property was generalized in [8]:

Definition 1: Let n = rk, 1 ≤ k ≤ n. Let f be a function
from F2n to F2k , γ ∈ F∗

2n and b be a constant of F2k . Then γ

is a b-linear translator of f if f(x) + f(x+ uγ) = ub for all
x ∈ F2n and for all u ∈ F2k . In particular, when k = 1, γ is
usually said to be a b-linear structure of the Boolean function
f (where b ∈ F2), that is f(x)+f(x+γ) = b for all x ∈ F2n .

Note that an involution is a special permutation, but the
involution property includes the bijectivity.

Definition 2: Let F be any function over F2n . We say that
F is an involution when it satisfies

F ◦ F (x) = x, for all x ∈ F2n .

Example 1: The most known involutions over F2n are:
– The trivial one’s: x 7→ x+ a, for any a ∈ F2n ;
– The inverse function x 7→ x−1, for any n;
– When n = 2m the linear function x 7→ x2

m

;
– The functions x 7→ x + γf(x) where f is any Boolean
function with a 0-linear structure γ (see [8, Theorem 3]).

It is important to see that an involution F on F2n is a sequence
of pairs. More precisely, F acts by exchanging a pair of
elements of F2n and by fixing the remaining points.

Proposition 1: Let F be an involution over F2n and denote
by U the set of fixed-points of F . Set E = F2n \ U . Then F
is the identity on U and acts on a sequence of pairs of E as
follows, where |E| is the cardinality of E,

E = {(x0, x1), . . . , (xi, xi+1), . . . , (xN−1, xN )}, N =
|E|
2
.

where xi+1 = F (xi) and F (xi+1) = xi.

Let Vn be the set of involutions on F2n ; Vn is not a group
for the composition operator (see the next lemma). But, Vn

contains the identity, which is the identity element for the
operation ◦. If F is an involution then F−1 = F so that F is
its own inverse.

Lemma 1: Let F,G be both in Vn. Then the inverse of
F ◦ G is G ◦ F . Consequently F ◦ G ∈ Vn if and only if F
and G commute.

Example 2: Let G(x) = x2
m

, where m = 2n. It is easy
to check that for any involution F ∈ F2m [x], F ◦ G is an
involution. For instance, if F (x) = x−1 then F ◦ G(x) =

x−2m =
(
x−1

)2m .

Involution are conserved through some compositions. In
fact it is easy to check that for any F ∈ Vn, and for any
permutation G, the function G−1 ◦ F ◦G is an involution.

Let F (x) =
∑

i∈I λix
i be any polynomial of F2n [x],

where I denotes the set of nonzero terms of F . The degree of
F is the maximal integer value in I .



Lemma 2: Let F ∈ F2n [x]. Denote by d(F ) the degree of
F . If F is an involution, which is not the identity, then its
degree satisfies d(F ) ≥ ⌈2n/2⌉.

III. INVOLUTIONS WITH SPECIAL FORMS

A. Monomials

We are interested in this section in monomial involutions,
that is, involutions of the form xs. According to Lemma 2,
one has necessarily s ≥ ⌈2n/2⌉.

Proposition 2: Let Q(x) = λxd is a polynomial over F2n ,
then Q(x) is involution if and only if λd+1 = 1 and

d2 = 1 (mod 2n − 1). (1)

In Proposition 3 below we treat the case where 2n − 1 is
a Mersenne prime. In this case, d2 = 1 (mod 2n − 1) if and
only if 2n − 1 divides (d + 1)(d − 1). But this is impossible
for 1 < d < 2n − 2.

Proposition 3: Let n be a positive integer such that 2n−1
is prime. Then the only monomial involutions on F2n are the
identity x 7→ x and the inverse function x 7→ x−1.

Thus a quite natural question arises: what happens when
2n − 1 is a composite number? It is clear that

d2 = 1 (mod 2n − 1) ⇔ ∀p ∈Mn, d2 = 1 (mod p)

where Mn denotes the set of prime factors of 2n−1. It seems
to be hard to exhibit all the monomial involutions in that case.
However, the number of such involutions can be computed.

Theorem 1: The number of monomial involutions x 7→ xd

on F2n equals 2τ where τ is the number of prime factors in
the prime decomposition of 2n − 1.

Sketch of proof: Given a positive integer p, let us denote ρ(p)
the number of square roots of unity modulo p. Let us first
show that ρ(pq) = ρ(p)ρ(q), when p and q are coprime. To
this end, note that according to Chinese’s Theorem, Z/(pq)Z
is isomorphic to Z/pZ× Z/qZ via the isomorphism

ψ : x ∈ Z/(pq)Z 7→ (x (mod p), x (mod q)).

Now, one has ρ(pα) = 2 for any odd prime number p and
positive integer α. We write

2n − 1 =

τ∏
i=1

pαi
i , pi ∈Mn, αi > 0.

Then ρ(2n − 1) =
∏τ

i=1 ρ(p
αi
i ) = 2τ .

B. Linear involution

First of all, note that linear involutions exist, one trivial
example would be the function x 7→ x2

m

on F2n , for n = 2m.
In this section we make a study of linear involutions. First we
start with the linear monomials and move to more general
results afterwards.

Proposition 4: Let Q(x) = λx2
i

, where 0 < i < n and
λ ∈ F∗

2n . Then Q is an involution if and only if n is even,
λ2

i+1 = 1 and i = n
2 .

Next we consider linear binomials.

Proposition 5: Let Q(x) = ax2
i

+ bx2
j

, a ∈ F∗
2n and

b ∈ F∗
2n , where i < j. Then

• For even n, n = 2m, Q is an involution if and only
if j = i+m and either

i = 0, ab2
i

+ a2
j

b = 0 and a2
i+1 + b2

j+1 = 1

or m is even and

i =
m

2
, ab2

i

+ a2
j

b = 1 and a2
i+1 + b2

j+1 = 0.

• For odd n, Q is not an involution, for all a, b.

Proof: We compute Q ◦Q :

Q ◦Q(x) = a
(
ax2

i

+ bx2
j
)2i

+ b
(
ax2

i

+ bx2
j
)2j

= a2
i+1x2

2i

+ x2
i+j

(
ab2

i

+ a2
j

b
)
+ b2

j+1x2
2j

.

Note that the exponents of x, e ∈ {2i, i + j, 2j}, all satisfy
0 ≤ e < 2n − 2 and recall i ̸= j. To get Q ◦ Q(x) = x, two
of the three exponents have to be removed. We consider the
following cases:

• 2i ≡ 2j (mod n) implies 2j = 2i + n which is
impossible for odd n; if n = 2m then j = i+m.

• 2j ≡ j + i (mod n) implies 2j = n + i + j, that is
j = n + i which is impossible. The case 2i ≡ j + i
(mod n) implies i = n+ j which is impossible too.

Thus Q is an involution only when j = i +m (n even) and
in this case

Q ◦Q(x) = x2
2i
(
a2

i+1 + b2
j+1

)
+ x2

i+j
(
ab2

i

+ a2
j

b
)
.

Note that 2i ≡ n (mod n) only when i = 0. Otherwise we
must have i+ j = n, providing 2i = m since j = m+ i.

Now we look at linear involutions with any number of
terms. The following obvious lemma is particularly useful for
polynomials of F2[x].

Lemma 3: Let I be any subset of {0, 1, . . . , n − 1} and
Q(x) =

∑
i∈I aix

2i where ai ∈ F∗
2n . Then

Q ◦Q(x) =
∑
i∈I

a2
i+1

i x2
2i

+
∑

i<j,(i,j)∈I2

(aia
2i

j + a2
j

i aj)x
2i+j

.

Proposition 6: Let Q(x) =
∑

i∈I x
2i , where the cardinal-

ity |I| of I is such that |I| > 1. Then Q cannot be an involution
on F2n when n is odd. When n is even, Q is an involution on
F2n if and only if∑

i∈I

x2
2i

= x (mod x2
n

+ x). (2)

Proof: involution By using the expression given in Lemma
3, we get (2) since ai = 1 for all i. Clearly 2j ≡ 2i (mod n)
is impossible for odd n unless i = j.

Thus, for even n it is easy to construct linear involutions having
coefficients from the set {0, 1}. For instance, it is easy to
describe a large set of trinomials which are involutions of F2n

(where n = 2m):

x+ x2
i

+ x2
m+i

, i = 1, 2, . . . ,m− 1.



We already have seen that linear monomial and binomial
involutions do not exist over F2n , when n is odd. However,
linear involutions with higher number of terms for odd n do
exist, as it is shown below, where one may note that γ cannot
be 1 as n is odd, which makes it distinct from Proposition 6.

Proposition 7: The function x 7→ x + γTr(x) is an
involution if and only if Tr(γ) = 0, where γ ∈ F∗

2n .

IV. INVOLUTION FROM ANOTHER INVOLUTION

A. Exchanging values of a pair of inputs

Recently, Yu, Wang and Li proposed some new permuta-
tions with low differential uniformity [9]. These are obtained
by exchanging two values of a given permutation. We first
show that it is easy to construct an involution from another
involution, by using this method.

Theorem 2: Let F : F2n 7→ F2n be an involution. Let α
and β be two nonzero distinct elements of F2n . Define G :
F2n 7→ F2n as follows:

G(x) =

{
F (x) for all x ̸∈ {α, β}
F (α) if x = β
F (β) if x = α.

Then G is an involution if and only if {α, β} is stable under
F , that is

∀x ∈ {α, β}, F (x) ∈ {α, β} (3)

Proof: Clearly, G(G(x)) = F (F (x)) if x ̸∈ {α, β}. Thus,
if x ̸∈ {α, β}, G(G(x)) = x, that is, the restriction of G
to the complement set of {α, β} is an involution. Suppose
now that (3) holds. Recall that any permutation of a set of
cardinality 2 is an involution. Hence, the restriction of G to
{α, β} is an involution too proving that G is an involution
of F2n . Conversely, suppose that G is an involution, that is
G(G(x)) = x = F (F (x)) for every x ∈ F2n . Let x be such
that F (x) = α. If x ̸∈ {α, β} then

G(G(x)) = G(F (x)) = G(α) = F (β) = x = F (α),

which is impossible since F is bijective. Hence x ∈ {α, β}.
If F (x) = β, similar argument follows, thus completing the
proof.

Remark 1: Recently, in a lot of papers, the authors modify
the inverse function and look at some cryptographic properties
of the derived function (for instance, [6], [9]). Actually, doing
this, we often lose the involution property.

B. Using subfields of F2n

In this section we study involutions of the form

x 7→ G(x) + γf(x), γ ∈ F∗
2n

where G is an involution and f is a function from F2n to
a subfield of F2n . We begin by recalling those involutions
introduced in [8]. The simplest one is in Example 1; we are
interested here in more general classes of involutions.

We begin by giving an instance of a theorem of [8]. Recall
that a F2k -linear function on F2n (n = rk) is of the form

L : F2n 7→ F2n , L(x) =

r−1∑
i=0

λix
2ki

, λi ∈ F2n .

Theorem 3: [8, Theorem 1] Let n = rk, k > 1. Let L
be a F2k -linear permutation on F2n . Let f be a function from
F2n onto F2k , h : F2k 7→ F2k , γ ∈ F∗

2n and b be fixed in
F2k . Assume that f is surjective. Assume that γ is a b-linear
translator of f . Then

F (x) = L(x) + L(γ)h(f(x))

permutes F2n if and only if g : u 7→ u+ bh(u) permutes F2k .

Corollary 1: Hypotheses are those of Theorem 3 with b =
0. Set G(x) = x+ γh(f(x)). Then the function

F : F2n 7→ F2n , F (x) = L(x) + L(γ)h(f(x))

is a permutation on F2n . Moreover G is an involution over
F2n ; further, if L is an involution which commutes with G
then F is an involution too.

Proof: If b = 0 then g is the identity in Theorem 3 so
that F is bijective. And we have

G ◦G(x) = G(x+ γh(f(x)))

= x+ γh(f(x)) + γh(f(x+ γh(f(x))))

= x+ γh(f(x)) + γh(f(x)) = x,

since γ is a 0-translator of f . Since L is F2k -linear, we have:
F = L ◦G so that F−1 = G ◦ L−1. According to Lemma 1,
when L is involution, F is an involution whenever G and L
commute.

Example 3: Let n = 2m. Let ϕ be any mapping from F2m

to itself then the mapping ψ from F2n to itself given by

ψ(x) = ϕ(Trn/m(x)) + x2
m

(4)

is an involution on F2n . For this, one can apply Corollary 1.
First note that γ = 1 is a 0-linear translator of Trn/m since

Trn/m(x) + Trn/m(x+ u) = 0, for all u ∈ F2m .

So, ψ is a permutation (taking L(x) = x2
m

). But L is an
involution which commutes with G : x 7→ x+ ϕ(Trn/m(x)).

C. Adding a Boolean function

Here we consider the functions over F2n of the form

Q(x) = G(x) + γf(x) (5)

where G is an involution, γ ∈ F∗
2n and f is any Boolean func-

tion. We first recall the conditions for Q to be a permutation.

Theorem 4: [6] Let Q be defined by (5), where G is a
permutation only. Then Q is a permutation over F2n if and only
if γ is a 0-linear structure of f ◦G−1, where G−1 denotes the
compositional inverse function of G. Moreover, in this case,

Q−1 = G−1 ◦H where H(x) = x+ γf(G−1(x)). (6)

Next we identify when permutations defined by (5) are invo-
lutions.

Theorem 5: Let Q be defined by (5). Then Q is involution
if and only if

(i) γ is a 0-linear structure of f ,
(ii) f ◦G = f and
(iii) H ◦G = G ◦H where H(x) = x+ γf(x).



Proof: Suppose that Q is involution. We first show that
one has necessarily f ◦G = f . If Q is involution then Q−1 =
Q. So, from (6) and since G is involution too

Q(x) = G(x) + γf(x) = G ◦H(x) = Q−1(x)

= G (x+ γf(G(x))) .

If x is such that f(x) = 0 then G
(
x + γf(G(x))

)
= G(x)

yielding that x + γf(G(x)) = x since G ◦ G(x) = x. Thus
f(G(x)) = 0. If f(x) = 1 then

G(x) + γ = G (x+ γf(G(x)))

and one has necessarily f(G(x)) ̸= 0. Furthermore, according
to Theorem 4 and since G−1 = G, γ is a 0-linear structure of
f ◦G−1 which is equal to f . The third assertion follows from
Q−1 = Q and G−1 = G. Replacing f ◦G−1 = f ◦G = f in
(6), we get Q = G ◦H which equals H ◦ G, due to Lemma
1. Conversely, suppose that (i) to (iii) hold. From the first
assertion of Theorem 4, we get that Q is a permutation. Note
that (ii) implies Q = H ◦G. From (6) and (iii), we get that

Q−1 = G−1 ◦H = G ◦H = Q = H ◦G,
proving that H is involution, which completes the proof.

Remark 2: The conditions, (i) to (iii), of Theorem 5 are
quite strong. However it is possible to construct such involu-
tions Q, as we show by the corollary below. In accordance
with Definition 1, one can explain a little more about these
conditions. Condition (ii) means that f is constant on any pair
(x,G(x)). Moreover (i) means that f(x) = f(x + γ) for all
x. This implies that any pair (x, x+γ) is either in the support
of f or outside this support. We will illustrate this in the next
section. Condition (iii) is the fact that the involutions H and
G commute and this is clear from Lemma 1.

Corollary 2: Let Q be given by (5) with G(x) = x−1 and
f is not the null function. Then Q is an involution if and only
if either of the following conditions holds:

(a) γ ̸= 1, with Tr(γ−1) = 0, and f is 0 everywhere
except at the roots of equation x2 + γx+ 1 = 0.

(b) γ = 1 and one of the following conditions holds:
(b.1) If n is odd then f(x) = 0 for all x ∈

F2n \ {0, 1} and f(0) = f(1) = 1;
(b.2) If n is even then f(x) = 0 unless

either x ∈ {0, 1} or x ∈ {y, y + 1}
where y2 + y + 1 = 0 or x ∈
{0, 1, y, y + 1}.

In the case (a), Q has 4 fixed points. In the case (b), Q has
0 fixed point (case (b.1) and, respectively, 0, 4, 2 fixed points
(case (b.2).

Sketch of proof: Following Theorem 5, Q is an involution if
and only if (i)–(iii) hold. Note that (i) means that H : x 7→
x+ γf(x) is a permutation and we have for all x ∈ F2n :

(i) ⇐⇒ f(x) = f(x+ γ)

(ii) ⇐⇒ f(x−1) = f(x)

(iii) ⇐⇒ x−1 + γf(x−1) =
1

x+ γf(x)
.

Assume that (i)–(iii) hold. Thus (ii) and (iii) imply

(1 + xγf(x)) (x+ γf(x)) = x, x ̸= 0, x+ γf(x) ̸= 0. (7)

If x = 0, then (iii) becomes γf(0) = (γf(0))
−1. This is

satisfied if and only if either f(0) = 0 or f(0) = γ = 1.
Now assume that x + γf(x) = 0 where f(x) = 1. Then (iii)
becomes γ−1 + γ = 0 which leads to γ = 1, since γ ̸= 0;
further x = 1. From (i), f(0) = f(1) when γ = 1.

Assuming that γ ̸= 1, and (7) holds which is, equivalent
to

f(x) = 0 or x2 + γx+ 1 = 0

where Tr(γ−1) = 0, since f is not the null function.

Now γ = 1. If n is odd then x2 + x + 1 = 0 has no root
so that f(x) = 0 for x ∈ F2n \ {0, 1}. When n is even there
are two roots, say y and y+1 = y−1. Thus f can be equal to
1 either at one of the pairs (0, 1) and (y, y+1) or at both the
pairs. On other points f equals 0.

Conversely, assume that f satisfies (a) or (b), i.e., (b.1) or
(b.2). Clearly, the involution G is modified by exchanging the
values of some pairs of inputs. So we use Theorem 2.

V. INVOLUTIONS PIECE BY PIECE

We present the following way to construct involutions from
involutions in lower dimensions. Let n be a positive integer
and m|n. Let Q be an involution of F2n \ F2m and F be an
involution of F2m . Then

H(x) =

{
F (x) if x ∈ F2m

Q(x) if x ∈ F2n \ F2m
(8)

is an involution of F2n . To illustrate our purpose we present
two such constructions of involutions without fixed points.

Proposition 8: Let n = 2m. Let b ∈ F⋆
2m . Let F be an

involution of F2m with no fixed points. Define

H(x) =

{
F (x) if x ∈ F2m

(x+bx2m)
b+1 if x ∈ F2n \ F2m .

Then H is an involution of F2n with no fixed points.

Proof: Consider, for any b ∈ F⋆
2m ,

Q(x) =

(
x+ bx2

m)
b+ 1

, x ∈ F2n \ F2m .

Note that Q(x) ∈ F2m if and only if x + bx2
m

= x2
m

+ bx,
that is x ∈ F2m . Next, using Proposition 5, it is easy to check
that Q is an involution of F2n , then of F2n \ F2m .

Furthermore, Q has no fixed points in F2n \ F2m since
Q(x) = x if and only if either x = 0 or x+ bx2

m

= x+ bx,
that is x ∈ F2m .

Now let Q(x) = xd, d2 ≡ 1 (mod 2n−1). Thus the set of
fixed points of Q has cardinality τ = gcd(d− 1, 2n − 1) + 1;
x is a fixed point of Q if x = 0 or xτ = 1. In particular, if
n = km and τ = 2m this set is F2m . We construct H by using
(8), where F is an involution which has no fixed point in F2m

and Q = xd. Clearly H has no fixed point.



VI. FIXED POINTS OF INVOLUTIONS

The need of involutions in symmetric cryptosystems is
clear, as explained in Introduction. In this context, One can
read in [10]: “The graphs obtained by some experimental
results indicate a strong correlation between the cryptographic
properties and the number of fixed points and suggest that the
S-boxes should be chosen to contain few fixed points.”

But a random permutation of F2n has one fixed point in
average, while a random involution of F2n has 2n/2+O(1)
fixed points [4] (see [7, VIII.42]). On the other hand a
permutation (or involution) which has no fixed point is also
subject to some attacks [4].

A. General properties

According to Proposition 1, it is clear that an involution
has an even number of fixed points. Thus, it cannot be a so-
called complete permutation, i.e., say the mappings F and x 7→
F (x)+x, both are bijective. It is because the number of fixed
points of F is the number of solutions of the equation F (x)+
x = 0.

Proposition 9: Let F be an involution of F2n . Then the
function x 7→ F (x) + x cannot be a permutation.

Proof: Set G(x) = F (x) + x and assume that G is a
permutation. Thus, there is only one y such that G(y) = 0. So
y is a fixed point of F and it is the only one fixed point.

The construction of involutions by adding a constant to a given
involution is also linked with its fixed points.

Lemma 4: Let F be a permutation over F2n such that
F (0) = 0; consider the permutations defined by Ga(x) =
F (x) + a where a ∈ F2n . If Ga is an involution then a is a
fixed point of F . When F is a linear involution, the number
of involutions Ga is exactly the number of fixed points of F .

Proof: First, we have for any a and for all x ∈ F2n

Ga(Ga(x)) = Ga (F (x) + a) = F (F (x) + a) + a.

If Ga is an involution then Ga(Ga(a)) = a which means
F (a) = a. Now suppose that F is a linear involution. Then

Ga(Ga(x)) = F (F (x)) + F (a) + a = x+ F (a) + a,

proving that Ga is an involution whenever a is a fixed point
of F .

B. Involutions of the form (5)

Let Q be defined by (5) and H(x) = x+γf(x). We begin
with the following remark.

Remark 3: Observe that if Theorem 5 holds then

Q(x) = G(x)+γf(x) = G(x)+γf(G(x)) = H(G(x)). (9)

Thus f ◦Q = f ◦H ◦G = f ◦G ◦H = f ◦H = f , because
H◦G = G◦H and γ is a 0-linear structure of f . From (9), one
deduces that G ◦Q = H = Q ◦G, that is, G and Q commute.

Lemma 5: A point x is a fixed point of Q if and only if
f(x) = 0 and G(x) = x or f(x) = 1 and G(x) = x+ γ.

Proposition 10: Let G and Q be two involutions linked by
the relation Q(x) = G(x) + γf(x). Then, x is a fixed point

of G if and only if Q(x) is a fixed point of G. Similarly, x is
a fixed point of Q if and only if G(x) is a fixed point of Q.

Proof: Since Q and G commute (Remark 3) we have
G(Q(x)) = Q(G(x)). So G(x) = x implies G(Q(x)) =
Q(x). Conversely, G(Q(x)) = Q(x) implies Q(G(x)) =
Q(x). Further, G(x) = x since Q is bijective. This proves that
Q permutes the set of fixed points of G. The second assertion
is similarly proved by exchanging the roles of G and Q in the
preceding lines.

C. Constructions of involutions without fixed points

We start by observing that Pa : x 7→ x+a is an involution
of F2n without fixed point, for any a ∈ F∗

2n . Our previous
results allow us to construct involutions without fixed points
which are not so simple. We have proposed a general method
in Section V as illustrated by Proposition 8. By Theorem 2, one
can reduce the number of fixed points of a given involution
as shown in Corollary 2. Proposition 10 shows how the set
of fixed points of G is modified by composition. Involutions
which have a few fixed points have cryptographic interest.

Proposition 11: Suppose M is an involution and P is a
permutation over F2n , where M does not have any fixed point.
Then F = P−1 ◦M ◦ P is also an involution having no fixed
point. More generally, the number of fixed points of M is
preserved.

It is to be noted that the ENIGMA cipher and PRINCE block
cipher [3] are of the form of F . To find other transformations
which preserve or decrease the number of fixed points in any
permutation is an interesting research problem.
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