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Abstract. We characterize the monomial functions Tr(δxd) from a finite field
into its prime subfield having linear structure. Using this result and the me-
thods introduced in [6], we construct permutation polynomials of finite fields
with few non-zero terms.

1. Introduction

Let p be a prime number, Fpn be a finite field of order pn and Fp be its prime
subfield. In this paper we use F (x) to denote a mapping, while F (X) is reserved for
a polynomial. Also, we generally use the term “mapping” to refer F : Fpn → Fpn ,
while we use “function” for a mapping f : Fpn → Fp in order to emphasize that the
image set of f is contained in Fp.

Any mapping of Fpn into itself is given by a unique polynomial of degree less
than pn. A polynomial F (X) ∈ Fpn [X] is called a permutation polynomial of Fpn

if the mapping x �→ F (x) is a permutation of Fpn . The construction of infinite
classes of permutation polynomials over finite fields is an interesting and widely
open problem, which is of great importance for a variety of theoretical and prac-
tical applications. Polynomials consisting of few non-zero terms are called sparse.
Obtaining sparse permutation polynomials is of a particular interest.

Let f : Fpn → Fp and c ∈ Fp. We say that α ∈ F
∗
pn is a c-linear structure of the

function f if

f(x+ α)− f(x) = c for all x ∈ Fpn .

The concept of a linear structure was introduced in cryptography, mainly for Boolean
functions. Functions with linear structures are considered as weak for some cryp-
tographic applications. For example, a recent attack on hash functions proposed
in [4] exploits a similar weakness of the involved mappings. In [6] it is shown that
functions with linear structures yield permutation polynomials of the shape

(1) F (X) = G(X) + γ Tr
(
H(X)

)
, γ ∈ Fpn , G(X), H(X) ∈ Fpn [X],
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where Tr(X) is the polynomial defining the absolute trace function of Fpn . Here
we apply these methods to construct sparse permutation polynomials by choosing
both G(X) and H(X) to be monomials.

This paper is organized as follows: Section 2 summarizes the properties of
functions with linear structure. Our main result is Theorem 5, which describes
the linear space of a monomial function Tr(δxd) from a finite field into its prime
subfield. Using this result and methods introduced in [5, 6] we construct sparse
permutation polynomials in Theorems 6 and 7. Section 4 studies the properties of
mappings of the shape Xs + γTr(Xt) relevant for cryptological applications.

Notation: We denote by |E| the cardinality of a set E. The trace function from
Fpn to any subfield Fpk of Fpn will be denoted as follows:

Trn/k(y) = y + yp
k

+ · · ·+ yp
k(n/k−1)

.

The absolute trace function (i.e., k = 1) is simply denoted by Tr.

2. Preliminary results

Every function f : Fpn → Fp can be represented by Tr(R(x)) for some (not
unique) mapping R : Fpn → Fpn . In this paper we will need the following basic
facts on functions with linear structures; for more details see [6].

Definition 1. Let f : Fpn → Fp and c ∈ Fp. We say that α ∈ F
∗
pn is a c-linear

structure of the function f if

(2) f(x+ α)− f(x) = c for all x ∈ Fpn .

Note that if α is a c-linear structure of f , then necessarily c = f(α)− f(0).

Proposition 1 ([11]). Let α, β ∈ F
∗
pn , α + β �= 0 and a, b ∈ Fp. If α is an

a-linear structure and β is a b-linear structure of a function f : Fpn → Fp , then

α+ β is an (a+ b)− linear structure of f

and for any c ∈ F
∗
p

c · α is a (c · a)− linear structure of f.

In particular, if Λ∗ is the set of linear structures of f , then Λ = Λ∗ ∪ {0} is an
Fp-linear subspace, which we call the linear space of f .

The following theorem characterizes the functions with linear structures.

Theorem 1 ([6, 11]). Let R : Fpn → Fpn and f = Tr ◦R. Then f has a linear
structure if and only if there is a non-bijective linear mapping L : Fpn → Fpn such
that

(3) f(x) = Tr(R(x)) = Tr
(
H ◦ L(x) + βx

)
for some H : Fpn → Fpn and β ∈ Fpn . In this case, the linear space of f contains
the kernel of L.

Lemma 1 is a direct consequence of Theorem 1. For a given non-zero element
γ ∈ Fpn , it describes functions for which this γ is a linear structure.

Lemma 1. Let H : Fpn → Fpn be an arbitrary mapping, γ, β ∈ Fpn , γ �= 0 and
c = Tr

(
βγ

)
. Then γ is a c-linear structure of f(x) = Tr(R(x)) where

R(x) = H(xp − γp−1x) + βx.
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Lemma 1 shows that it is easy to construct a function such that a given element
is a linear structure of it. However, the characterization of all polynomials R(X) ∈
Fpn [X], such that the induced function Tr(R(x)) has a linear structure, is very
difficult.

In [5, 6, 10] methods for constructing permutation polynomials of shape (1)
using functions with linear structure are introduced. We recall some of these results
which are used in this paper.

Claim 1 ([6]). Let F (X) ∈ Fpn [X] be a polynomial of type ( 1). Assume that
F (x) is a permutation. Then for any β ∈ Fpn there are at most p elements x ∈ Fpn

with G(x) = β.

Theorem 2 ([6]). Let G(x) be a permutation of Fpn and γ ∈ Fpn be a b-linear
structure of Tr(R(x)). Then we have:

(i): F (x) = G(x) + γ Tr(R(G(x))) is a permutation of Fpn if b �= −1.
(ii): F (x) = G(x) + γ Tr(R(G(x))) is a p- to -1 mapping of Fpn if b = −1.

If p = 2, then statement (i) of Theorem 2 can be strengthen to:

Theorem 3 ([5]). Let G : F2n → F2n be a permutation of F2n , f : F2n → F2

and γ ∈ F
∗
2n . Then the mapping F (x) = G(x) + γ f(x) is a permutation on F2n

if and only if γ is a 0-linear structure of f ◦ G−1, where G−1 denotes the inverse
mapping of G.

3. Monomial functions with a linear structure

In this section we characterize all monomial functions assuming a linear struc-
ture. To be more precise, we describe the integers s and nonzero elements δ ∈ Fpn

for which the function Tr(δxs) has a linear structure.
Let 0 ≤ s ≤ pn − 2. We denote by Cs the cyclotomic coset modulo pn − 1

containing s:
Cs = {s, ps, . . . , pn−1s} (mod pn − 1).

It is easy to see that if the cardinality |Cs| = �, then {xs | x ∈ Fpn} ⊆ Fp� and Fp�

is the smallest such subfield.

Claim 2. A nonzero element a ∈ Fpn is a linear structure of Tr(δxs) if and if
(a) or (b) holds:

(a) a is a linear structure of Tr(δp
i

xspi

)
(b) 1 is a linear structure of Tr(δasxs).

Proof. The statements follow from an easy observation:

Tr
(
δp

i
(
(x+ a)sp

i − xpis
))

= Tr (δ ((x+ a)s − xs))

= Tr
(
δas

((x
a
+ 1

)s

−
(x
a

)s))
.

�
Let (sn−1 sn−2 . . . s0)p be the base p representation of s, i.e., s =

∑n−1
i=0 sip

i

where 0 ≤ si ≤ p− 1. We first introduce some definitions.

• The p-ary weight of s is the sum
∑n−1

i=0 si ∈ Z.
• The (p-ary) Hamming weight of s is the number of nonzero digits in its
base p representation.

Note that these two concepts coincide if and only if p = 2.

101



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4 PASCALE CHARPIN AND GOHAR M. KYUREGHYAN

• We say that (sn−1 sn−2 . . . s0)p is the i-th shift of (s′n−1 s
′
n−2 . . . s

′
0)p

if sj = s′j+i for every j, where indices are taken modulo n.
• For any s = (sn−1 . . . s0)p and t = (tn−1 . . . t0)p we write t ≺ s when s
strictly covers t, that is

(4) t ≺ s ⇐⇒ t �= s and ti ≤ si for any i.

Notation  is used when t = s is allowed.

Observe, that the integers s and s′ are in the same cyclotomic coset modulo pn−1 if
and only if their base p representation are shifts of each other. Moreover, |Cs| < n
if and only if the base p representation of s has period |Cs| = � where � divides
n. The next result implies in particular that it is impossible to have |Cs| < n and
|Cs−1| < n simultaneously. This fact will be used later.

Proposition 2. Let 1 ≤ s, t ≤ pn − 2 be such that |Cs| < n and |Ct| < n.
Then gcd(pn − 1, s− t) �= 1.

Proof. Set |Cs| = � and |Ct| = m. Since m and � are proper divisors of n we
have 1 ≤ �,m ≤ n/2. Further

{xs | x ∈ Fpn} ⊆ Fp� and {xt | x ∈ Fpn} ⊆ Fpm .

Hence for any x ∈ Fpn we have xs−t = y · z for some y ∈ Fp� and z ∈ Fpm . If
gcd(pn − 1, s− t) = 1 then x �→ xs−t is a permutation on Fpn implying

(5) |{y · z | y ∈ Fp� , z ∈ Fpm}| = pn.

But the above cardinality can be upper bounded as follows

|{y · z | y ∈ Fp� , z ∈ Fpm}| ≤ 1 + (p� − 1)(pm − 1) < p�+m ≤ pn,

which shows that (5) cannot hold, completing the proof.
�

We use also the following well known facts.

Theorem 4 (Lucas Theorem). Let d = (dn−1 dn−2 . . . d0)p and
m = (mn−1 mn−2 . . .m0)p. Then(

d

m

)
≡

(
dn−1

mn−1

)
· · ·

(
d0
m0

)
(mod p).

In particular,
(
d
m

)
≡ 0 (mod p) as soon as di < mi for at least one i, so that(

d

m

)
�≡ 0 (mod p) if and only if m  d.

Claim 3. Let δ ∈ Fpn and 1 ≤ s ≤ pn − 2.

(a) Let |Cs| = n. Then Tr(δxs) is constant on Fpn if and only if δ = 0.
(b) Let |Cs| = � < n. Then Tr(δxs) is constant on Fpn if and only if

Trn/�(δ) = δ + δp
�

+ · · ·+ δp
(n/�−1)�

= 0.

(c) Let 1 ≤ si ≤ pn−2, i ∈ I, be from different cyclotomic cosets and Tr(δix
si)

be nonzero mappings. Then
∑

i∈I αiTr(δix
si), αi ∈ Fpn , is constant on

Fpn if and only if αi = 0 for all i ∈ I.
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Proof. (a) Suppose δ �= 0. Let c ∈ Fp and consider the polynomial

f(X) = δXs + · · ·+ (δXs)
pn−1

+ c,

which induces the function x �→ Tr(δxs)+c on Fpn . The same function is described

by the unique polynomial g(X) ≡ f(X) (mod Xpn −X) of degree strictly less than

pn. Observe that g(X) =
∑

t∈Cs
δtX

t (mod Xpn −X) with δt ∈ {δ, . . . , δpn−1}. In
particular, g(X) is not the zero polynomial and cannot have pn zeroes in Fpn .

(b) We set again f(x) = Tr(δxs) + c for some c ∈ Fp. Since xs ∈ Fp� for any
x ∈ Fpn , we have

f(x) = Tr�/1
(
Trn/�(δ)x

s
)
+ c.

As above, f(x) = 0 for all x if and only if c = Trn/�(δ) = 0.
(c) Let |Csi | = �i where �i ≤ n, for any i ∈ I. We consider here

f(x) =
∑
i∈I

αi Tr(δix
si) + c =

∑
i∈I

αi Tr�i/1
(
Trn/�i(δ)x

si
)
+ c.

Since the si are from different cyclotomic cosets all the exponents in f(x) are dif-

ferent. As previously, f(x) = 0 for all x if and only if all coefficients of the xsip
j

are
zero. Since the functions Tr(δix

si) are not zero, this is equivalent to αi = 0 for all
i. �

Claim 4. Let 1 ≤ t ≤ pn − 1.

(a) Let b be a nonzero element from Fpn . Then xt = b has a solution in Fpn

if and only if b is a t-th power in Fpn .
(b) Let u be a primitive element of Fpn and t be a divisor of pn − 1. Then a

nonzero element b of Fpn is a t-th power in Fpn if and only if b = ur with
r divisible by t.

(c) A non-zero element b of Fpn is a t-th power in Fpn if and only if b(p
n−1)/d =

1, where d = gcd(pn − 1, t).

(d) Let p be odd and 1 ≤ i ≤ n − 1. Then the equation xpi−1 = −1 has a
solution in Fpn if and only if n/gcd(n, i) is even.

Proof. Statements (a)-(c) are obviously true. To prove (d), let k = gcd(i, n)
and n = k · v. Then gcd(pi − 1, pn − 1) = pk − 1 and pn − 1 = (pk − 1)(pk(v−1) +

· · ·+ pk +1). By (a) and (c) the equation xpi−1 = −1 is solvable in Fpn if and only
if

(−1)p
k(v−1)+···+pk+1 = 1.

The latter is satisfied if and only if pk(v−1) + · · ·+ pk + 1 is even or, equivalently, if
the number v of its summands is even. �

Now we are ready to characterize the monomial functions Tr(δxs) having a
linear structure. This problem was partially solved by the second author for the
case |Cs| = n in [9]. Below, we rewrite Lemma 2 from [9] using Claim 2,(b).

Lemma 2. Let 0 ≤ s ≤ pn−2 be of Hamming weight larger than 2 and |Cs| = n.
Then the function Tr(δxs) has no linear structure for any nonzero δ ∈ Fpn .

Further we consider the cases which are not covered by Lemma 2.

Lemma 3. Let s = k · pi, where 0 < k ≤ p − 1 and 0 ≤ i ≤ n − 1. Then the
function Tr(δxs), δ ∈ F

∗
pn , has a linear structure if and only if k = 1.
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Proof. Note that the statement of this lemma is independent on the choice
of δ. Therefore using Claim 2 we may without loss of generality assume that i = 0
and limit a linear structure to the element 1 ∈ Fpn . It holds

(x+ 1)k − xk =

k−1∑
j=0

(
k

j

)
xj .

Clearly, different 0 ≤ j ≤ p− 1 belong to different cyclotomic cosets, and any such
j satisfies

(
k
j

)
�≡ 0 (mod p). Hence by Claim 3,(c),

Tr
(
δ((x+ 1)k − xk)

)
=

k−1∑
j=0

(
k

j

)
Tr(δxj)

is a constant function (equals to Tr(δ)) if and only if k = 1. �

Lemma 4. Let s = kpi +mpj, where 0 < k,m ≤ p− 1 and 0 ≤ i < j ≤ n− 1.
Assume that |Cs| = n and Tr(δxs), δ ∈ F

∗
pn , is nonzero. Then the function Tr(δxs)

has a linear structure only if k = m = 1.

Proof. Recall that notation ≺ is defined by (4). Claim 2 allows us to restrict
ourselves to i = 0 and the linear structure 1. So, let s = k + mpj . By Lucas
Theorem, it holds

(x+ 1)k+mpj − xk+mpj

=
∑
t≺s

(
k +mpj

t

)
xt,

Any integer t such that t ≺ s is as follows:

t = t0 + tjp
j where 0 ≤ t0 ≤ k , 0 ≤ tj ≤ m and t �= k +mpj .

We divide the last sum into three parts with respect to tj = 0, t0 = 0 and the rest
denoted by S:

∑
t∈T

(
k +mpj

t

)
xt =

k∑
t0=1

(
k

t0

)
xt0 +

m∑
tj=1

(
m

tj

)
xtjp

j

+ S.

Now, we compute f(x) = Tr(δ((x+ 1)s − xs)):

f(x) =
k∑

t0=1

(
k

t0

)
Tr(δxt0) +

m∑
tj=1

(
m

tj

)
Tr(δxtjp

j

) + Tr(δS).

Suppose m �= k, and w.l.g. m > k. Then in the above sum the only exponent
belonging to Cm is mpj . Hence by Claim 3 this sum cannot be constant.

So let k = m �= 1. Then f(x) contains the summand k Tr(δxk−1+kpj

). The
assumption |Cs| = n ensures j �= n/2, and therefore k−1+kpj is the only exponent
from its cyclotomic coset present in f(x). Again by Claim 3 the function f(x)
cannot be constant. �

In the following lemma, we consider the exponents s such that |Cs| < n. Recall
that such integers have base p representations of period �. This observation is
helpful for the next proof.

Lemma 5. Let 1 ≤ s ≤ pn − 2 and |Cs| < n. Further let δ ∈ F
∗
pn define a

nonzero function Tr(δxs). Then Tr(δxs) has no linear structure.
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Proof. Let |Cs| = �, n = �m and s = (sn−1 . . . s0)p. We assume that 1 < � <
n; so we have implicitly n ≥ 4 and s > 2.

By Claim 2 we may assume that s is the smallest element of Cs so that s0 �= 0.
Moreover it is enough to show that 1 ∈ F

∗
pn is not a linear structure of Tr(δxs) for

an arbitrary δ. Using Lucas Theorem we get

(6) Tr (δ ((x+ 1)s − xs)) =
∑
t≺s

(
s

t

)
Tr(δxt).

Further, because of the �-periodic structure of s, if t ≺ s then tpj� ≺ s for any
1 ≤ j ≤ m− 1 as well. After collecting all such exponents together, (6) is reduced
to

Tr (δ ((x+ 1)s − xs)) =
∑
t∈T

(
s

t

)
Tr

(
(δ + δp

�

+ · · ·+ δp
�(m−1)

)xt
)

=
∑
t∈T

(
s

t

)
Tr

(
Trn/�(δ)x

t
)
,

where T is a set of representatives of the classes {t, tp�, . . . , tp(m−1)�} with t ≺ s.
Now we consider the summand corresponding to the exponent s− 1. Note that

s − 1 ≺ s, since s0 �= 0, and |Cs−1| = n, by Proposition 2. Moreover there is only
one element from Cs−1 in T . Indeed, suppose that there is 0 < i < � such that
pi(s − 1) ∈ T . Let 0 ≤ κ ≤ pn − 2 and κ ≡ pi(s − 1) (mod pn − 1). Since the
multiplication by pi results a shift of the base p representation, we have

κ = κ′ − pi,

where κ′ = pis (mod pn − 1) with 0 ≤ κ′ ≤ pn − 2. From the assumption κ ∈ T , it
follows that κ = κ′ − pi ≺ s. On the other hand s < κ′, since s was chosen to be
the smallest element of Cs. Hence there is j such that sj < κ′

j . Since the base p
representations of s and κ′ are of period �, we can choose j ≥ �, and in particular
j �= i. Then we have

sj < κ′
j = (κ′ − pi)j ≤ sj

a contradiction.
Hence by Claim 3 the function Tr (δ ((x+ 1)s − xs)) is constant only if the

summand Tr
(
Trn/�(δ)x

s−1
)
is constantly zero, which forces Trn/�(δ) to be zero.

But we have

Tr(δxs) = Tr�/1
(
Trn/�(δ)x

s
)

since xs ∈ Fp� . We conclude that for such a δ the function Tr(δxs) is the zero one,
completing the proof. �

The next theorem characterizes the monomial functions assuming a linear struc-
ture. Moreover it specifies the linear structures of such functions. Note that a large
part of (ii) in Theorem 5 follows also from the well known results in coding theory
on computing the weights of the Reed-Muller codes of order 2 (see [13, 14]).

Theorem 5. Let p be any prime number, δ ∈ Fpn and 1 ≤ s ≤ pn − 2 be such
that f(x) = Tr(δxs) is not the zero function. Then f has a linear structure if and
only if one of the following cases occurs:

(i): s = pj , 0 ≤ j ≤ n − 1, and δ ∈ F
∗
pn . In this case any α ∈ F

∗
pn is a

Tr(δαs)-linear structure of f .
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(ii): s = pj(pi + 1), where 0 ≤ i, j ≤ n − 1, i �∈ {0, n/2}. In this case,
α ∈ Fpn is a linear structure of f if and only if it satisfies(

δp
n−j

αpi+1
)pi−1

+ 1 = 0.

More exactly the linear space Λ of f is as follows:
(a) Let p = 2, τ = gcd(n, 2i). Then Λ = {0} if δ is not a (2i + 1)-th

power in F2n . Otherwise, if δ = β2j(2i+1) for some β ∈ F2n , it holds
Λ = β−1

F2τ .
(b) Let p be odd and t = gcd(n, i). Then Λ �= {0} if and only if n/t is

even and δ is as follows:
- δ is a (pt + 1)-th power in Fpn if n/2t is even;
- δ is a (pt + 1)/2-th power but not a (pt + 1)-th power in Fpn if
n/2t is odd.

In this case Λ consists of 0-linear structures, and Λ = εFp2t with ε

satisfying
(
δp

n−j

εp
i+1

)pi−1

+ 1 = 0.

Proof. By Lemmas 2–5 if f has a linear structure then s = pj or s = pj(pi+1)
with i �∈ {0, n/2}. Note that in both cases |Cs| = n, and hence f is not the zero
function for such an exponent and any nonzero δ, according to Claim 3, (a).

(i) This case easily follows from the observation that Tr(δxpj

) = Tr(δp
n−j

x) is a
linear function.

(ii) Let s = pj(pi+1) and i �∈ {0, n/2}. Claim 2,(a), shows that α ∈ F
∗
pn is a linear

structure of Tr(δxpj(pi+1)) if and only if it is a linear structure of Tr(δp
n−j

xpi+1).

Claim 2,(b), implies that α is a linear structure of Tr(δp
n−j

xpi+1) if and only if 1

is a linear structure of Tr(δp
n−j

αpi+1xpi+1). Set μ = δp
n−j

αpi+1. Then we have

Tr(μ((x+ 1)p
i+1 − xpi+1)) = Tr(μ(xpi

+ x+ 1)) = Tr((μpn−i

+ μ)x+ μ),

which is constant on Fpn if and only if μpn−i

+ μ = 0 or, equivalently, μpi

+ μ = 0.

Thus α is a linear structure of f if and only if μpi−1 = −1 where μ = δp
n−j

αpi+1.
So the problem is reduced to the existence of α ∈ F

∗
pn satisfying

(7) αp2i−1 = −
(

1

δpn−j

)pi−1

.

Set t = gcd(n, i) and τ = gcd(n, 2i).
Let p = 2. Then by Claim 4,(a), there is a solution of (7) if and only if

δ2
n−j

= β2i+1 for some β ∈ F
∗
2n . In this case, clearly β−1 satisfies (7) and thus

Λ = β−1
F2τ .

For the rest of the proof we assume that p is odd. Since a solution of (7) yields

an element μ satisfying μpi−1 = −1, Claim 4,(c), forces n/ gcd(n, i) = n/t to be
even. So, let n/t be even. Then

gcd(pn − 1, p2i − 1) = pgcd(n,2i) − 1 = p2t − 1.

By Claim 4,(a),(c), there exists α ∈ F
∗
pn satisfying (7) if and only

(
−
(

1

δpn−j

)pi−1
) pn−1

p2t−1

= 1,
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equivalently, if and only if

(8)
(
−δ(p

t−1)
) pn−1

p2t−1
= 1.

As in proof of Claim 4 mentioned, (−1)
pn−1

p2t−1 = 1 if and only if n/2t is even. Suppose
that n/2t. Then (8) is reduced to

(
δ(p

t−1)
) pn−1

p2t−1
= δ

pn−1

pt+1 = 1,

implying that δ is a (pt + 1)-th power in Fpn .

If n/2t is odd, then (−1)
pn−1

p2t−1 = −1 and (8) is reduced to

δ
pn−1

pt+1 = −1 =⇒ δ
2 pn−1

pt+1 = 1,

implying that δ is a ((pt + 1)/2)-th power but not a (pt + 1)-th power in Fpn .
Note that if ε ∈ Fpn is a solution of (7), then Λ = εFp2t . To complete the proof

it remains to show that every α ∈ Λ∗ is a 0-linear structure of f . By definition of
a linear structure it follows that α is an f(α)-linear structure of f . We have

f(α) = Tr(δαpj(pi+1)) = Tr(δp
n−j

αpi+1).

Let u ∈ F
∗
p. Then uα ∈ Λ∗ and it is a u2f(α)-linear structure of f , since

f(uα) = Tr(δp
n−j

(uα)p
i+1) = u2Tr(δp

n−j

αpi+1) = u2f(α).

On the other hand, by Proposition 1 the element uα is a uf(α)-linear structure of
f . Hence it must hold u2f(α) = uf(α) for any u ∈ Fp, and therefore f(α) = 0 for
any α ∈ Λ∗. �

Remark 1. Let p = 2. Consider f(x) = Tr(δx2j(2i+1)) with i �∈ {0, n/2}. It is
well-known that

gcd(2i + 1, 2n − 1) = 1 ⇔ gcd(i, n) = gcd(2i, n),

which is especially true when n is odd. Thus for such i and n every non-zero element
of F2n is a 2i + 1-power. Then Theorem 5, (ii), shows that for any δ ∈ F

∗
2n the

linear space of f is not trivial.

Theorems 2 and 5 yield the following family of sparse permutation polynomials.

Theorem 6. Let 0 ≤ i ≤ n− 1, i �∈ {0, n/2} and γ, δ ∈ Fpn be such that(
δγpi+1

)pi−1

+ 1 = 0.

Then

F (X) = X + γ Tr(δXpi+1)

is a permutation polynomial of Fpn whenever

- p is odd

- p = 2 and Tr(δγpi+1) = 0.

Moreover, if p = 2 and Tr(δγpi+1) = 1, then F (X) induces a 2 − to − 1 mapping
on F2n .
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4. Properties of mappings xs + γTr(xt)

In this section we indicate some properties of the mappings

x �→ xs + γ Tr(xt), x ∈ F2n ,

which are relevant for cryptological applications. Let us repeat briefly some basic
facts. Any mapping F : F2n → F2n is given by a polynomial over F2n of de-

gree less than 2n. The algebraic degree of the mapping F (x) =
∑2n−1

k=0 αkx
k is

maxk,αk �=0{wt(k)}, where wt(k) is the binary weight of k. For any a and b in F2n ,
we define

δF (a, b) = |{x ∈ F2n , F (x) + F (x+ a) = b}|
and

δ(F ) = max
a �=0, b∈F2n

δF (a, b).

A mapping F is said to be differentially k-uniform if δ(F ) = k. It is easy to see
that δ(F ) ≥ 2. A mapping F is called almost perfect nonlinear (APN) if δ(F ) = 2.
More details on this context can be found, for instance, in [1, 8].

To protect a block cipher against attacks the involved mappings must be per-
mutations having large algebraic degree and low differential uniformity. Moreover,
these mappings must be represented by sparse polynomials to admit an efficient
implementation. The “inverse” mapping x �→ x2n−2 permutes F2n and has alge-
braic degree n − 1. It is APN if n is odd, and it is differentially 4-uniform if n is
even. The inverse mapping is used as the S-box of AES for n = 8. The existence
of APN permutations for even n was (and it is still) the mystery of the research on
APN mappings, until the recent announcement of such mappings for n = 6 by John
Dillon [7].

The use of monomial mappings in block ciphers is often criticized, since such
mappings exploit only the multiplicative structure of the underlying finite field.
Define

(9) Fs,t,γ(X) = Xs + γ Tr(Xt),

where 1 ≤ s, t ≤ 2n − 2 and γ ∈ F
∗
2n . In the rest of this section we will show that

for certain choices of s, t, γ the mapping Fs,t,γ is a permutation with large algebraic
degree and low differential uniformity.

Firstly we characterize s, t, γ such that the corresponding Fs,t,γ is a permutation
of F2n (see also [5, Corollary 1]).

Theorem 7. Let Fs,t,γ(X) = Xs + γ Tr(Xt) with γ ∈ F
∗
2n . Then Fs,t,γ is a

permutation on F2n if and only if gcd(s, 2n − 1) = 1,

t ≡ 2j(2i + 1)s (mod 2n − 1) for some 0 ≤ i, j ≤ n− 1, i �= n/2,

and either (a) or (b) holds:

(a) i = 0 and Tr(γ) = 0.

(b) i > 0 and γ ∈ F2k with Tr(γ2i+1) = 0, where k = gcd(2i, n).

Moreover, if Tr(γ) = 1, in case (a), or Tr(γ2i+1) = 1 in case (b), then Fs,t,γ is a
2-to-1 mapping.

Proof. Note that if gcd(s, 2n − 1) > 2, then Fs,t,γ cannot be a permutation,
since Tr(xt) is two valued. Hence gcd(s, 2n − 1) = 1, implying that x �→ xs is a
permutation. Let s−1 be the inverse of s modulo 2n−1. By Theorem 3 the mapping

Fs,t,γ is a permutation if and only if γ is a 0-linear structure of Tr(xts−1

). Using
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Theorem 5, this is possible if and only if ts−1 ≡ 2j(2i +1) modulo 2n − 1, for some
i, j. To complete the proof it remains to note, that case (a) corresponds to case
(i) of Theorem 5. Further, (b) follows from case (ii)(a) of Theorem 5: In this case

Tr(xts−1

) = Tr(x2i+1) and γ is a Tr(γ2i+1)-linear structure of Tr(x2i+1) if and
only if γ ∈ F2k . �

In [3] it was observed that any mapping F (x) = G(x) + Tr(H(x)) satisfies
δ(F ) ≤ 4 as soon as G is APN. We give in the next proposition a slightly more
general version of this fact.

Proposition 3. Let G and H be mappings on F2n and δ(G) = ρ. Then the
mapping F (x) = G(x) + γTr(H(x)) satisfies δ(F ) ≤ 2ρ for any γ ∈ F

∗
2n .

Proof. Let a ∈ F2n . Then

F (x) + F (x+ a) = G(x) +G(x+ a) + γε,

where ε = Tr(H(x) +H(x+ a)) ∈ F2. This shows that for any a, b ∈ F2n , it holds

δF (a, b) ≤ δG(a, b) + δG(a, b+ γ) ≤ 2ρ,

implying the proof. �

Combining Theorem 7 and Proposition 3, we obtain an infinite class of sparse
polynomials describing permutations with upper bounded differential uniformity.

Corollary 1. Let gcd(s, 2n − 1) = 1 and the permutation x �→ xs be diffe-
rentially ρ-uniform. Further, let 1 ≤ i < n/2 and k = gcd(2i, n). Then for any

γ ∈ F2k such that Tr(γ2i+1) = 0 the polynomial

Fs,s(2i+1),γ(X) = Xs + γ Tr
(
Xs(2i+1)

)
defines a permutation on F2n satisfying δ

(
Fs,s(2i+1),γ

)
≤ 2ρ.

We conclude this section with some remarks on the permutations Fs,t,γ with
low differential uniformity. We use the notation fs : x �→ xs.

It is well known that if fs is APN then gcd(s, 2n − 1) = 1 when n is odd and
gcd(s, 2n−1) = 3 when n is even (see [1, Proposition 3]). Using Claim 1 or Theorem
7 we observe that

There is no permutation of the shape Xs+γ Tr(Xt) with n even
and x �→ xs is APN.

For an odd n, we derive another observation on Fs,s(2i+1) from Theorem 7. If
gcd(2i, n) = 1 then γ must be chosen from F2. Since Tr(1) = 1, we cannot obtain
permutations for such i. Thus

There is no permutation of the shape Xs + γ Tr(Xs(2i+1)) with
n odd and gcd(i, n) = 1.

However, such permutations exist whenever n is an odd composed number. As was
noticed in Corollary 1, we exhibit a large class of permutations which are at most
differentially 2ρ-uniform as soon as fs is differentially ρ-uniform. In particular,
when fs is APN we get permutations which are at most differentially 4-uniform.
In the next proposition we apply these ideas to the inverse mapping and obtain
permutations with low differential uniformity and large algebraic degree.
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Proposition 4. Let γ ∈ F
∗
2n , 0 ≤ i < n, i �= n/2, and

(10) Gi,γ(X) = X2n−2 + γ Tr(X2n−1−2i−1−1).

Then Gi,γ(X) is a permutation polynomial if either (i) or (ii) holds:

(i): i = 0 and Tr(γ) = 0 (a trivial case).

(ii): 0 < i < n, i �= n/2 and γ ∈ F2k such that Tr(γ2i+1) = 0, where
k = gcd(2i, n). Moreover, δ(Gi,γ) ≤ 4 for odd n and δ(Gi,γ) ≤ 8 for
even n.

Proof. Recall that the inverse mapping is APN for odd n and differential
4-uniform for even n. The upper-bound on δ(Gi,γ) is obtained by Proposition 3.

The case i = 0 corresponds to Theorem 7, (a). Note that G0,γ is a composition
of the linear permutation X + γTr(X) and the inverse mapping, and therefore the
differential uniformity of G0,γ is equal to the one of the inverse mapping.

The case i > 0 follows from Corollary 1, since

(2n − 2)(2i + 1) = 2i + 2n − 2i+1 − 2 = 2n − 2i − 2

= 2(2n−1 − 2i−1 − 1) (mod 2n − 1).

�

Clearly, the mappings which are at most differentially 4-uniform must be checked
whether they are APN. Presently only APN mappings of algebraic degree 2 of the
shape xs+Tr(xt) are known. Notably the mapping x �→ x3+Tr(x9) is APN for any
n [3]. Using the previous discussions it is clear that they cannot be permutations:

There is no permutation on F2n of the shape X3+γ Tr(X9), for
any γ ∈ F

∗
2n and for any n.

5. Conclusion

In this paper we focused on the simplest permutations that can be constructed
using the tools described in [5, 6]. To do that we completely solved the problem
of the existence of linear structures of monomial functions. The characterization
of all polynomials yielding functions with linear structure remains open in general.
The results from [2] yield some partial information for binomial functions. For
any solved instance of this problem Theorem 2 allows to construct permutation
polynomials.

Another open problem is the determination of the Walsh spectrum of the con-
sidered permutations. Little is known about the Walsh spectrum of Fs,t,γ considered
in Corollary 1. We think that some insight on this problem can be obtained using
the tools of [1]. In general, any property linking the mappings fs and Fs,t,γ is of
great interest.
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