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Tools for coset weight enumerators of some codes

PASCALE CHARPIN

Abstract. Every extended primitive code C can be viewed in a group
algebra K[G, +], where K and G are finite fields of same characteristic. Our
purpose is to show that the use of the multiplication of these algebra can
provide, in some situations, some tools which apply to the determination
of weight distributions of cosets of codes. Actually we will explain two
formulae which provide relations between the set of elements orthogonal
to a codeword x and the values of products xy, y ∈ C⊥. We give some
applications.
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1. Introduction

The p-ary Reed-Muller codes (RM-codes) can be seen as polynomials codes
or as extended cyclic codes [14]. Moreover Berman [4] proved that they are
the powers of the radical of the group algebra A = K[{G, +}] , K = GF (p)
and G = GF (pm) (m > 1, p a prime). The Reed-Muller codes have remarkable
properties and all results on them involve results on some codes of length pm

over K, the so-called extended primitive codes. For instance Kasami deduced
weight distributions of two and triple error-correcting binary BCH codes from
the weight distributions of binary Reed-Muller codes of order 1 and 2 [15].

Set N = pm. In this paper we treat only linear codes of length N over K.
Such a code C is viewed as a K-subspace of A and we are mainly interested
by the weight distributions of cosets of C. Let D be the code generated by C

and a coset x + C of C. We will assume that the weight distribution of C⊥ is
known. As C ⊂ D , D⊥ ⊂ C⊥ so that the weight distribution of x + C can
be deduced from the weight distribution of C⊥ and of D⊥. Hence the problem
consists of the determination, for any nonzero weight λ of C⊥, of the number
of elements y of C⊥ of weight λ which are orthogonal to x. We will study the
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zeros of the products xy, for a fixed x. Through Formulae (I) and (II), we
will establish some relations between the possible values of xy and the set of
codewords orthogonal to x.

The formulae are most interesting for codes C which contain the RM-code of
order j and are contained in the RM-code of order j + 1, for some j. In this
case the code C is an ideal of A. Moreover we often will suppose that C is an
extended cyclic code; then we can use together the properties of RM-codes and
the permutations which conserve the code C.

The principal results are obtained in the binary case, when C⊥ is a subcode
of the Reed-Muller code of order 2. For instance we were able to verify the con-
jecture of Camion, Courteau and Montpetit [6]: for m even there are eight
distinct weight distributions for the cosets of any 2-error-correcting extended
BCH codes of length 2m [10]. We give here general tools we applied to the
special case of 2-error-correcting extended BCH codes; we explain the possible
applications and give some new results. Some examples with numerical results
are given in [12].

2. Terminology and basic properties

2.1. Extended cyclic codes in a group algebra. We denote by A the
group algebra K[G, +], which is the set of formal polynomials

x =
∑

g∈G

xgX
g, xg ∈ K,

with

0 =
∑

g∈G

0Xg , 1 =
∑

g∈G

Xg , aXg + bXg = (a + b)Xg .

and

∑

g∈G

xgX
g

∑

g∈G

ygX
g =

∑

h∈G


∑

g∈G

xgyh−g


 Xh .(1)

A code of A is a K-subspace of A. Let C be such a code; we will denote by C⊥

the dual of C:

C⊥ = { y ∈ A | < x, y >= 0 , for all x ∈ C }

where < x, y >=
∑

g∈G xgyg .
The algebra A has only one maximal ideal, its so-called radical

P = { x ∈ A |
∑

g∈G

xg = 0 } = { x ∈ A | xp = 0 } .(2)

For every j, we denote by Pj the jth power of P; it is the ideal of A generated
by the products

∏j
i=1 xi, xi ∈ P . One obtains the decreasing sequence of ideals
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of A:

{0} = Pm(p−1)+1 ⊂ Pm(p−1) ⊂ . . . ⊂ P2 ⊂ P ,

where Pm(p−1) = { a1 | a ∈ K }. The position of an element or a subset of A
in this sequence will appear as a useful parameter we define now:

Definition 1. Let x ∈ A; let U be a subset of A. Let j ∈ [0,m(p− 1)].
• We will say that the depth of x equals j if and only if x is in Pj and not

in Pj+1.
• We will say that the depth of U equals j if and only if U is included in
Pj and not included in Pj+1.

By convention, P0 = A.

Let R be the quotient algebra K[Z]/(Zn − 1) , where n = pm − 1 . A
cyclic code C∗ of length n over K is a principal ideal of R. It is generated by
a polynomial of K[Z] whose roots are called the zero’s of C∗. We consider the
extension C of the code C∗ in the algebra A. Let α be a primitive root of unity
in G. The extension is the usual one : each codeword c∗ ∈ R, c∗ =

∑n−1
i=0 c∗i Z

i,
is as follows extended to c ∈ A .

c = c0X
0 +

n−1∑

i=0

cαiX
αi , c0 = −(

n−1∑

i=0

c∗i ) , cαi = c∗i .

Now consider the set I of those k such that αk is a zero of the cyclic code C∗.
Then the codeword c is an element of C if and only if it satisfies:

∑

g∈G

cg = 0 and
n−1∑

i=0

cαi(αk)i = 0 , for all k ∈ I .

Therefore we can identify precisely an extended cyclic code in A.

Definition 2. Let S = [0, n]. An extended cyclic code C in A is uniquely
defined by a subset T of S such that 0 ∈ T and T is a union of cyclotomic cosets
of p modulo n. Let us define for all s ∈ S:

φs : x ∈ A 7−→
∑

g∈G

xgg
s ∈ G .

In particular, φ0(x) =
∑

g∈G xg. Then we have that

C = { x ∈ A | φs(x) = 0 , for all s ∈ T }

We say that T is the defining set of the code C.

The p-ary Reed-Muller codes are extended cyclic codes in A [14]. Their
defining-sets are related with the p-weights of the elements of the interval S =
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[0, n]: for any s ∈ S, let
∑m−1

i=0 sip
i , si ∈ [0, p− 1] , be the p-ary expansion of

s; then the p-weight of s is

ωp(s) =
m−1∑

i=0

si .

Definition 3. The p-ary Reed-Muller code of order r, denoted by Rp(r,m),
is the extended cyclic code in A, whose defining-set is

Ip(j, m) = { s ∈ S | ωp(s) < j } , j = m(p− 1)− r .

Berman proved in [4] that the p-ary Reed-Muller codes are the powers of the
radical of A. More precisely:

Pj = Rp(m(p− 1)− j, m) , for all j ∈ [1,m(p− 1)](3)

Therefore, we can deduce from a wellknown property of the generalized Reed-
Muller codes that (Pj)⊥ = Pm(p−1)−j+1 . In the following we will identify the
p-ary RM-codes with the codes Pj . Note that

dim Pj = card { s ∈ S | ωp(s) ≥ j }(4)

Cosets of extended cyclic codes and equations over finite fields: Let C

be an extended cyclic code with defining set T . Let x ∈ A and consider the
coset Cx = x + C . We have

φs(z) = φs(x) , for all z ∈ Cx and for all s ∈ T .

So every coset Cx is uniquely determined by the sequence of elements of G:

S(x) = ( φs(x) | s ∈ T ) ,(5)

the so-called syndrome of x (or of the coset containing x).

Let x ∈ A with syndrome ( βs | s ∈ T ) . To find the number of codewords
of weight λ in Cx consists in solving the following problem: find the number of
codewords z =

∑
g∈G zgX

g of weight λ satisfying
∑

g∈G

zgg
s = βs , ∀ s ∈ T .

When p = 2 we obtain a system of diagonal equations over the finite field of
order 2m; the problem consists in finding the number of solutions

(X1, . . . , Xλ) , Xi ∈ GF (2m), Xi 6= Xj ∀ i, j

satisfying

λ∑

i=0

Xs
i = βs , ∀ s ∈ T .(6)
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2.2. Cosets of codes of A. Let C be an [N, k]-code of A. We first recall the
Mac-Williams transform, which determines uniquely the weight polynomial of
the dual of C from the weight polynomial of the code C itself.

Theorem 1. [16, p.146] Let C be a linear [N, k]-code. Define its weight poly-
nomial:

WC(X,Y ) =
N∑

i=0

AiX
N−iY i , Ai = card { c ∈ C | ω(c) = i } ,

where ω(c) is the weight of c. Then the weight polynomial of the dual code C⊥

is

WC⊥(X, Y ) =
1
pk

WC(X + (p− 1)Y, X − Y ) .(7)

Denote by Dx the [N, k + 1]-code generated by C and a coset Cx = x + C

of C:
Dx =

⋃

a∈K

(ax + C) .

As C ⊂ Dx , D⊥
x ⊂ C⊥ ; then every weight of C⊥ can be a weight of D⊥

x .
Moreover the weight distributions of x + C can be deduced from the weight
distribution of C⊥ and of D⊥

x . Indeed suppose that the weight distribution of C⊥

is known and that we can compute the weight polynomial of D⊥
x . The dimension

of Dx equals k + 1 so that the dimension of D⊥
x equals N − (k + 1). Applying

(7) we obtain the weight polynomial of Dx:

WDx(X,Y ) =
1

p N−(k+1)
WD⊥x (X + (p− 1)Y, X − Y ) .

But, by definition, WDx(X, Y ) = (p− 1)Qx(X, Y )+WC(X, Y ), where Qx(X, Y )
is the weight polynomial of the coset x + C . Then the expression of Qx(X, Y )
is as follows:

Qx(X,Y ) =
1

(p− 1)p N−k

(
p WD⊥

x
(X + (p− 1)Y,X − Y )

− WC⊥(X + (p− 1)Y, X − Y )) .(8)

In the following we always will assume that the polynomial WC⊥(X, Y ) is
known and we want to have results on the polynomial Qx(X,Y ), for every x.
Then the problem consists in the determination of the polynomials WD⊥

x
(X, Y ).

Let λ be a non zero weight of C⊥ and Aλ(x) be the number of codewords of
weight λ in D⊥

x . So Aλ(x) is the number of elements of C⊥ of weight λ which
are orthogonal to x:

Aλ(x) = card { y ∈ C⊥ | ω(y) = λ and < y, x >= 0 } .(9)

Indeed y ∈ D⊥
x if and only if < y, z >= 0 for all z in Dx. But z = ax + c ,

a ∈ K and c ∈ C; as y ∈ C⊥, < y, c >= 0 . Hence y ∈ D⊥
x is equivalent to

< y, x >= 0 ,
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3. Weight polynomials of cosets

3.1. Translations on codewords. Let h be any non zero element of G. We
denote by τh the permutation on G which acts as follows on the elements of A:

τh


∑

g∈G

xgX
g


 =

∑

g∈G

xgX
g+h =

∑

g∈G

xg−hXg .

We will say that τh is an h-translation on the codewords. An ideal of A is a code
invariant under every τh.

Let x and y in A. It follows easily from the definition of the multiplication in
A that

xy =
∑

h∈G


∑

g∈G

xgyh−g


Xh =

∑

h∈G

< x,Xhy > Xh =
∑

h∈G

< x, τh(y) > Xh .

Therefore we obtain a relation which links up the weight of xy with the set of
codewords orthogonal to x:

(I) ω(xy) = card { g ∈ G | < x, τh(y) >6= 0 } .

Suppose that the code C is an ideal of A. Then the dual of C is also an ideal. Let
y ∈ C⊥; so the set of the τh(y) is a subset of codewords of C⊥ of same weight.
So Formula (I) means that the weight of xy equals the number of elements of
that subset which are orthogonal to x. In the applications we study later, we
always consider the following ideals C of A:

Proposition 1. Let y in A such that depth(y) = j with j ∈ [0,m(p−1)−1].
Then

τh(y + Pj+1) = y + Pj+1 , ∀ h ∈ G .

Therefore let C be a code of A of depth j satisfying

Pj+1 ⊂ C ⊂ Pj ( i.e. Pm(p−1)−j+1 ⊂ C⊥ ⊂ Pm(p−1)−j) .

Then C is an ideal of A, so that C⊥ is also an ideal.

Proof: Let h ∈ G . Note that Xh − 1 is an element of P. Then

Xhy = (Xh − 1)y + y where (Xh − 1)y ∈ Pj+1 .

Thus the coset y +Pj+1 is invariant under any h-translation. The code C can
be considered as a union of such cosets. Hence it is an ideal of A.
¤

Remark: Assume that p = 2. It follows immediatly from the proposition
above that any coset of depth j of the RM-code Pj+1 is an orphan (see the
terminology in [5]). Indeed the minimum weight codewords of these cosets cover
all coordinate positions.
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3.2. Application of Formula (I). In the application we present now, For-
mula (I) is most interesting, because xy has few possible weights, since the depth
of y is m− 2; moreover the τh(y) form the set of codewords of a given weight in
the coset y + Pm−1 (see Proposition 2). From now on, in this Section, p = 2,
K and G will be respectively the finite field of order 2 and 2m. We will consider
linear codes C of depth 2 such that:

P3 ⊂ C ⊂ P2 ( i.e. Pm−1 ⊂ C⊥ ⊂ Pm−2) .

From Proposition 1, the code C is an ideal of the algebra A. The code C⊥ is
an union of cosets of the Reed-Muller code of order 1, which are contained in
the Reed-Muller code of order 2. These cosets are precisely described in [16,
Chapter 15]; the reader can also refer to [8]. We only recall the results we need.

Such a coset y+Pm−1 is uniquely defined by the symplectic form associated
to y. Since y is in Pm−2, then y can be identified to a quadratic boolean function
fy :

y =
∑

g∈G

fy(g)Xg − i.e. yg = fy(g).

The associated symplectic form of fy is

Ψy : (u, v) ∈ G2 7−→ Ψy(u, v) = fy(0) + fy(u) + fy(v) + fy(u + v) ∈ K .

The kernel of Ψy is as follows defined:

Ey = { u ∈ G | ∀v ∈ G : Ψy(u, v) = 0 } .

The set Ey is a K-subspace of G of dimension κ = m− 2h, where 2h is the rank
of Ψy. Let Ey = y + Pm−1 ; then Ψy = Ψb for all b ∈ Ey. Moreover the
weight distribution of Ey only depends on h; that is (cf. [16, p. 441]):

weights 2m−1 − 2m−h−1 2m−1 2m−1 + 2m−h−1

number 22h 2m+1 − 22h+1 22h

where h ∈ [0, bm/2c ]. Note that such a coset has exactly three weights unless
m is even and h = m/2.

Definition 4. Let y ∈ Pm−2. Let 2h be the rank of the symplectic form
associated to y. We will say that the coset Ey = y + Pm−1 is of type (h).

The proofs of Proposition 2, Lemma 1 and Proposition 3 can be found in
[10] and [12]. In the following we will always consider y ∈ Pm−2\Pm−1 ,
Ey = y + Pm−1 . If Cx = x + C is any coset of C, then we will denote by
Dx the code Cx ∪C (see Section 2.2). We suppose that the weight polynomial
of C⊥ is known and we want to determine the weight polynomial of D⊥

x . In
accordance with Formula (8), the weight distribution of the coset x + C is:

Qx(X,Y ) =
1

22m−k

(
2WD⊥

x
(X + Y,X − Y )−WC⊥(X + Y,X − Y )

)
(10)

where k is the dimension of C.
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Proposition 2. Let λ be a weight of Ey such that λ 6= 2m−1 and suppose
that ω(y) = λ. We denote by κ the dimension of the kernel of the symplectic
form Ψy. Then we have:

{ Xgy | g ∈ G } = { a ∈ Ey | ω(a) = λ } ,

and the cardinal of the set above is 2m−κ. So each codeword b of Ey, of weight
different from 2m−1 is invariant under 2κ translations

Lemma 1. Let x ∈ A\P2 , y ∈ C⊥, Ey = y+Pm−1 ; Dx is the code Cx∪C,
where Cx is the coset x + C. Then D⊥

x contains half of elements of Ey:

card { a ∈ Ey | < x, a >= 0 } =
card Ey

2
= 2m .

Proposition 3. Let x ∈ A\P2 . Let λ be a weight of Ey and suppose that
ω(y) = λ. We denote by Nλ the number of codewords of Ey of weight λ. Set

N̂λ = card { a ∈ Ey | ω(a) = λ and < x, a >= 0 } .

Then

x ∈ P\P2 =⇒ N̂λ = N̂2m−λ

x ∈ A\P =⇒ N̂λ = Nλ − N̂2m−λ .

Moreover, if λ 6= 2m−1 we have:

N̂λ = 2−κ (2m − ω(xy)) .(11)

By hypothesis the code C⊥ is an ideal of A, since it is invariant under any
translation. Thus the cosets of C of minimum weight 1 have the same weight
distribution. By applying Formula (11), we can compute this weight distribution.

Corollary 1. Suppose that the dual of the code C consists of the code Pm−1

itself and L sets of cosets of same type; that is : Li cosets of type (hi), i ∈ [1, L].
Let x = Xg, g ∈ G and Dx = (x + C) ∪ C. Set

Al = card { c ∈ D⊥
x | ω(c) = l } and λi = 2m−1 − 2m−hi−1 , i ∈ [1, L] .

So the weights of D⊥
x are elements of the set { 0, 2m−1, λi, 2m−λi (i ∈ [1, r]) }.

Then the coefficients of the weight polynomial of D⊥
x are, for each i in [1, L]:

Aλi = Li(22hi−1 + 2hi−1) , A2m−λi = Li(22hi−1 − 2hi−1) ,

A0 = 1 and A2m−1 = β/2 where β is the number of codewords of weight 2m−1

in C⊥. The weight distribution of the coset x + C can be calculated from the
Formula ( 10).
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Proof: We will apply the Proposition 3 to each type of cosets. Let Ey =
y +Pm−1 be a coset of type (hi); recall that the dimension of the kernel of the
symplectic form associated to y is κ = m− 2hi. Assume that ω(y) = λi. Since
ω(x) = 1, ω(xy) = ω(y). Thus, according to (11), we have:

N̂λi
= 22hi−m(2m − λi) = 22hi−m(2m − 2m−1 + 2m−hi−1)

= 22hi − 22hi−1 + 2hi−1 = 22hi−1 + 2hi−1 ,

and Aλi = LiN̂λi . Since N̂2m−λi = Nλi − N̂λi , then

N̂2m−λi
= 22hi − 22hi−1 − 2hi−1 = 22hi−1 − 2hi−1 .

The null vector belongs to D⊥
x while the all-one vector does not. Since 2m−1 =

2m − 2m−1, we obtain for any coset of any type 2N̂2m−1 = N2m−1 . That means
that D⊥

x contains half of codewords of C⊥ of weight 2m−1.
¤

3.3. Shifts of codewords. From now on we will treat only extended cyclic
codes as they are defined in Section 2.1. Such codes are invariant under the
shifts. Recall that we consider codes of length N = pm over the finite field K

of order p. A shift of a given codeword x is as follows:

σj :
∑

g∈G

xgX
g 7−→

∑

g∈G

xgX
αjg , j ∈ [0, pm − 2].

Proposition 4. Set S = [0, n] , where n = pm−1 . Any s ∈ S is identified
with its p-ary expansion (s0, . . . , sm−1). Then we define a partial order on S:

for all s, t in S : s ≺ t ⇐⇒ ∀ i ∈ [0,m− 1] : si ≤ ti

Let x ∈ A and y ∈ A. Then

∀ s ∈ S : φs(xy) =
∑

i≺s

(
s

i

)
φi(x)φs−i(y) .(12)

Proof:

φs(xy) =
∑

g∈G

xg

∑

h∈G

yh(g + h)s =
∑

g∈G

xg

∑

h∈G

yh

s∑

i=0

(
s

i

)
gihs−i

=
s∑

i=0

(
s

i

) ∑

g∈G

xgg
i
∑

h∈G

yhhs−i =
∑

i≺s

(
s

i

)
φi(x)φs−i(y) ,

since, by Lucas’s Theorem,
(

s

i

)
6≡ 0 (mod p) is equivalent to i ≺ s .

¤
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Theorem 2. Let x ∈ Pr and y ∈ Pm(p−1)−r . Then the product xy is zero
if and only if φn(xy) = 0. Moreover if xy = 0 then x(y+Pm(p−1)−r+1) = {0}.
Define the polynomial of G[Z]:

R(Z) =
∑

ωp(i)=r

φi(x)φn−i(y)Zn−i .

Then we have for all j ∈ [0, n− 1] :

(II) φn(xσj(y)) = (−1)rR(αj) .

The number of shifts of y (i.e. the σj(y)) which are orthogonal to x equals the
number of zeros of the polynomial R(Z).

Proof: The product xy is in PrPm(p−1)−r = Pm(p−1). A codeword z of Pm(p−1)

is defined by φs(z) = 0 unless s = n. If φn(z) = 0, z is the null vector; otherwise
z = a1, a ∈ K and 1 is the all-one vector (see Section 2.1). If xy = 0 then
xb = 0 for every codeword b of the coset y +Pm(p−1)−r+1, since xPm(p−1)−r+1

is in Pm(p−1)+1 which is the null space.
From the definition of the functions φs and of σj , we have:

φs(σj(y)) =
∑

g∈G

yg(αjg)s = αjsφs(y).

Thus (noting that every i in S satisfies i ≺ n):

φn(xσj(y)) =
n∑

i=0

(
n

i

)
φi(x)φn−i(σj(y)) =

n∑

i=0

(
n

i

)
φi(x)φn−i(y)α−ji

Since x ∈ Pr , φi(x) = 0 for all i such that ωp(i) < r (see Definition 3).
When ωp(i) > r, ωp(n − i) < m(p − 1) − r; in this case φn−i(y) = 0, since
y ∈ Pm(p−1)−r. Then the sum above is a sum on the i such that ωp(i) = r.

Now we consider such an i and its p-ary expansion (i0, . . . , im−1) and we

want to compute the coefficient
(

n

i

)
modulo p:

(
n

i

)
=

m−1∏
t=0

(
p− 1

it

)
=

m−1∏
t=0

(−1)it = (−1)ωp(i) = (−1)r ,

since
(

p− 1
it

)
= (p− 1) . . . (p− it)/(it!) = (−1)it (modulo p). Therefore

φn(xσj(y)) =
∑

ωp(i)=r

(−1)rφi(x)φn−i(y)α−ji = (−1)rR(αj) .

¤

Remarks: 1) The set of the i whose p-weight equals r is invariant under the
multiplication by p (modulo n); moreover φsp(z) =

∑
g∈G zgg

ps = (φs(z))p, for
any z. The polynomial R(Z) is in fact a trace-function from G to K.
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2) Suppose that a code C is such that its dual is a union of L cosets y +
Pm(p−1)−r+1 , y ∈ Pm(p−1)−r , where all cosets have the same weight enumer-
ator. Then there is only one weight distribution for the cosets x + C , x ∈ Pr

and this result holds for non extended cyclic codes C. It becomes from the fact
that L/2 cosets composing C⊥ are orthogonal to x, for any x. We will treat later
a special application of this fact (see Corollary 3).

3.4. Application of Formula (II). In this section we will consider ex-
tended cyclic codes C of depth r, for some r, such that:

Pr+1 ⊂ C ⊂ Pr ( i.e. Pm(p−1)−r+1 ⊂ C⊥ ⊂ Pm(p−1)−r) .

Let T⊥ be the defining set of the dual code C⊥. In accordance with Definition
3 and with the definition of C, T⊥ has the following form:

T⊥ = Ip(m(p− 1)− r + 1,m) \ {s1, . . . , sl} ,(13)

where the si are some elements of S of p-weight m(p − 1) − r. Note that the
defining set of C is T = Ip(r,m) ∪ {n− s1, . . . , n− sl} . Set U = {s1, . . . , sl}
and let E be the cyclic code (in the algebra R) whose nonzeros are the αt,
t ∈ U . The code E can be viewed in the algebra A , by adding an all-zero
column to the generator matrix. Clearly depth(E) equals depth(C⊥) equals
m(p−1)−r.Then, since the dimension of E equals the number of elements of U ,
which is the dimension of the quotient space C⊥/Pm(p−1)−r+1 , we have clearly

C⊥ =
⋃

y∈E

(y + Pm(p−1)−r+1) .(14)

The definitions of C⊥, U and E hold in all this section. Recall that Dx is the
linear code generated by C and the coset of C containing x; we want to determine
the weight distribution of the dual of Dx.

Proposition 5. Let a coset of C: Cx = x + C , x ∈ Pr \ C .
Let y in E. Then, for every j ∈ [0, n− 1]:

φn(x σj(y)) = 0 if and only if
l∑

t=1

φn−st(x)φst(y)αstj = 0 .

That means that the number of shifts of y orthogonal to x is related with the
weight of the codeword y′ of E defined by

φst(y
′) = φn−st(x)φst(y) , t ∈ [1, l] .(15)

Let n(y) be the number of elements of the set {σj(y) | j ∈ [0, n− 1] }. Then we
have

L(y) = card { σj(y) | < x, σj(y) >= 0 } =
n(y)
n

(n− ω(y′)) ;

the code D⊥
x contains L(y) cosets σj(y) + Pm(p−1)−r+1.
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Proof: In accordance with Theorem 2, φn(x σj(y)) = 0 if and only if R(αj) = 0.
Moreover, by hypothesis, φn−i(y) = 0 for every i such that ωp(i) = r unless
n− i ∈ U . Since U = {s1, . . . , sl} we have :

R(αj) =
∑

n−i∈U

φi(x)φn−i(y)α−ij =
l∑

r=1

φn−sr
(x)φsr

(y)αsrj = 0 .

Let z ∈ A. Recall that the Mattson-Solomon polynomial of z is

MSz(Z) =
n−1∑

i=0

φi(z)Zn−i .

It is well-known that MSz(αj) = zαj [16, p.239]. Then

ω(z) = n− (card {j ∈ [0, n− 1] | MSz(αj) = 0}) + ε .

where ε equals 0 if z0 = 0 and 1 otherwise.
Let y′ be the codeword of E whose coefficients φst

are given by Formula (15)
(the other coefficients φi(y′) are zero, by definition of the cyclic code E). For
every j in [0, n− 1], we have obviously

MSy′(αj) =
l∑

t=1

φst(y
′)(αj)n−st =

l∑
t=1

φn−st(x)φst(y)(α)−jst = R(αj) .

Hence R(αj) = 0 if and only if y′αj = 0. Let n(y) be the number of distinct shifts
of y and let n = n(y)n1. Then

card { σj(y) | < x, σj(y) >= 0 } =
1
n1

card { j | < x, σj(y) >= 0 } =
1
n1

(n−ω(y′) .

Note that y′0 = 0, by definition.
¤

Now we want to show how it is possible to achieve the computation of the
weight distribution of the code D⊥

x – then of the coset x+C of depth r. We will
examine this problem when U contains only one cyclotomic class of p modulo n.
From Proposition 5, we have immediate corollaries.

Corollary 2. Let U = { s, ps, ... }, x ∈ Pr \ C ; let y be any element in
E. Set β = φn−s(x)φs(y). Let t = (n, s) and n = tn1 . Then , for every
j ∈ [0, n− 1]:

φn(x σj(y)) = 0 if and only if Tr(βαjs) = 0 .

Let y′ be the element of E such that φs(y′) = β. Then the number L(y) of
cosets σj(y) + Pm(p−1)−r+1 contained in D⊥

x equals (n− ω(y′))/t.
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Note that in this case the code E is an irreductible cyclic code viewed as
a cyclic code of length n, even when n and s are not relatively prime (by t

repetitions of each symbol). When t = 1, E is equivalent to the simplex code
whose all codewords have a same weight λ. In this case the corollary above
means that the weight polynomial of D⊥

x does not depend on β, i.e. on x. In
fact L(y) = n− λ and every element in E is a shift of y.

Corollary 3. If all codewords of the code E have same weight, every coset
of C of depth r (the same depth than C) have the same weight enumerator.

We suppose now that E has more than one weight. The code C⊥ consists of
L separate sets:

⋃

j∈[0,n−1]

(σj(yl) + Pm(p−1)−r+1) , yl ∈ E , l ∈ [1, L] .

Each set is a union of cosets of same weight polynomial, since the RM-codes
are invariant under the shift. Assume that for each l, this weight polynomial,
the weight of yl and φs(yl) are known. Then, by applying Corollary 2, we can
compute the values L(yl) for every l and obtain the weight polynomial of D⊥

x .
The most simple case appears when the code E is such that only two weights

occur. For instance, using the tools we present here, we treat in [10] the cosets
of depth 2 of the extended 2-error-correcting BCH codes.
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