THE EXTENDED REED-SOLOMON CODES CONSIDERED AS IDEALS OF A MODULAR ALGEBRA

Pascale CHARPIN

Département de Mathématiques, U.E.R. Sciences, 123 rue Albert Thomas, 87060 Limoges, Cedex, France

The extended Reed-Solomon codes are ideals of a modular algebra A. Some properties of A are described which permit the lower bound for each principal ideal dimension of A to be defined. The results are used to characterise among Reed-Solomon codes those which are A principal ideals.

1. Definitions and previous properties

p is a prime, m and r are integers different from zero, and K and G are, respectively, the Galois fields $GF(p^r)$ and $GF(p^m)$.

A is the modular algebra KG. It is the polynomial space:

$$A = \left\{ x = \sum_{g \in G} x_g X^g \mid \forall g \in G, x_g \in K \right\},\,$$

with the usual operations of polynomial multiplication and addition.

The radical of a ring is the intersection of all its principal ideals. As A has characteristic p, an element of A is either invertible, or nilpotent, since

$$x \in A$$
, $x^p = \left(\sum_{g \in G} x_g X^g\right)^p = \sum_{g \in G} x_g^p X^{pg} = \left(\sum_{g \in G} x_g^p\right) X^0$.

An ideal of A, different from A, has only nilpotent elements. Hence A has only one maximal ideal which is also its radical:

$$P = \{x \in A \mid x^p = 0\}.$$

 P^{j} , $j \ge 1$, is the j-power of the radical of A. P^{j} is the subspace of A generated by the set:

$$\left\{\prod_{k=1}^j x_k \mid x_k \in P\right\}.$$

Let M = m(p-1). I_j , $0 \le j \le M$, is the subset of \mathbb{N}^m :

$$I_j = \left\{ (i_1, \ldots, i_m) \in [0, p-1]^m \middle| \sum_{k=1}^m i_k \ge j \right\}.$$

Theorem 1. Let $\{e_1, \ldots, e_m\}$ be a basis of the F_p -vector space G and let for each j, $0 \le j \le M$, the subset of A:

$$B^{j} = \left\{ \prod_{k=1}^{m} (X^{e_{k}} - 1)^{i_{k}} \mid (i_{1}, \dots, i_{m}) \in I_{j} \right\}.$$

Then B^0 is a basis of the K-vector space A and B^i , $1 \le j \le M$, is a basis of P^i .

Proof. Let j, $0 \le j \le M$, and let x be a linear combination of vectors of B^j :

$$x = \sum_{k \in R \subset I_i} \lambda_k v^k, \quad \lambda_k \in K^*, v^k \in B^j.$$

Let $i \in R$, $i = (i_1, \ldots, i_m)$, so that

$$\forall k, k \in R, k = (k_1, \ldots, k_m), \sum_{l=1}^{m} i_l \leq \sum_{l=1}^{m} k_l.$$

Then

$$x\prod_{k=1}^{m}(X^{e_k}-1)^{p-1-i_k}=\lambda_i\prod_{k=1}^{m}(X^{e_k}-1)^{p-1}\neq 0.$$

This means that x is different from zero if R is not empty. The vectors of B^{i} are linearly independent.

 B^0 has p^m elements, since

$$|B^0| = |[0, p-1]^m| = p^m.$$

Then B^0 is a basis of A. The space generated by B^1 is a hyperplane of A which is in P. Then B^1 is a basis of P. So is becomes, from the definition of P^i , i > 1, that each element of P^i can be written as a linear combination of elements of B^i . So B^i is a basis of P^i .

Remark. The index of nilpotency of P is M+1 since $P^{M+1} = \{0\}$.

Theorem 2. Let $j \in [1, M]$; s and t are, respectively, the quotient and the remainder of the division of j by p-1.

Then P^i is the ideal of A generated by the subset of A.

$$\mathcal{G}^{J} = \{ (X^{g_1} - 1)^{p-1} \cdots (X^{g_s} - 1)^{p-1} (X^{g_{s+1}} - 1)^t \mid g_1, \dots, g_{s+1} \text{ are linearly independent in } G \}.$$

Proof. The ideal generated by \mathcal{G}^j is in P^j and not in P^{j+1} since each element of \mathcal{G}^j is the product of j = s(p-1) + t factors $(X^{s_i} - 1)$.

Let σ be an automorphism of the Fp -vector space G and let the A automorphism be defined so that

$$x \in A$$
, $x = \sum_{g \in G} x_g X^g$, $\phi_{\sigma}(x) = \sum_{g \in G} x_g X^{\sigma(g)}$.

It is clear that $\phi_{\sigma}(\mathcal{G}^{i}) = \mathcal{G}^{i}$.

Poli shows in [1] that if an ideal of A is invariant under the group $\{\phi_{\sigma} \mid \sigma \in GL(F_p, m)\}$, it is one of the powers of the radical of A. Hence, the ideal generated by \mathcal{G}^{i} is P^{i} .

Corollary 1. Let $j, j \in [1, M]$; $j = s(p-1) + t, t \in [0, p-1]$. If $x \in P^j \setminus P^{j+1}$, there is a $y, y \in \mathcal{G}^{M-j}$ such that:

$$yx = \lambda (X^{e_1} - 1)^{p-1} \cdots (X^{e_m} - 1)^{p-1}, \quad \lambda \in K^*.$$

Proof. Let $x \in P^j \setminus P^{j+1}$. There is a $z, z \in P^{M-j}$, such that $zx \neq 0$. Since \mathcal{G}^{M-j} generate P^{M-j} , then $\exists y, y \in \mathcal{G}^{M-j}$, $yx \neq 0$. Since $yx \in P^M$, we have that $yx = \lambda (X^{e_1} - 1)^{p-1} \cdots (X^{e_m} - 1)^{p-1}$ with $\lambda \in K^*$.

The powers of the radical P of A are the Reed and Muller codes when p'=2 and the generalized Reed and Muller codes when p'>2 [2] and [3]. Theorem 2 is the generalization of a well-known property of Reed and Muller codes [4, p. 385].

2. The dimensions of the principal ideals in \boldsymbol{A}

If x is an element of A, the principal ideal of A generated by x is denoted (x); $\dim(x)$ denotes the dimension of the K-vector space (x).

Property 1. Let $x, x \in P^j \setminus P^{j+1}, 1 \le j \le M$. Then each $y, y \in (P^j \setminus P^{j+1}) \cap (x)$ is such that (y) = (x).

Proof. Let $y, y \in (x)$ and $y \in P^i \setminus P^{i+1}$. Then y = ax with $a \in A \setminus P$: so a is invertible; that proves the property (x) = (y).

Theorem 3. Let j, $1 \le j \le M$ and j' = M - j; s' and t' are, respectively, the quotient and the remainder of the division of j' by p-1. Then,

$$\forall x, x \in P^{j} \setminus P^{j+1}, \quad \dim(x) \ge p^{s'}(t'+1). \tag{1}$$

If x is an element of
$$\mathcal{G}^j$$
 (Theorem 2), then $\dim(x) = p^{s'}(t'+1)$. (2)

Proof. Let $x \in P^i \setminus P^{i+1}$. From Corollary 1: $\exists y, y \in \mathcal{G}^{M-i}$, $yx \neq 0$. So

$$y = (X^{g_1} - 1)^{p-1} \cdots (X^{g_{s'}} - 1)(X^{g_{s'+1}} - 1)^{t'}$$

where $(g_1, \ldots, g_{s'+1})$ are linearly independent in G.

We note by I the subset of $\mathbb{N}^{s'+1}$: $I = [0, p-1]^{s'} \times [0, t']$ and $\forall i, i \in I, i = (i_1, \ldots, i_{s'+1}), u^i = (X^{g_1} - 1)^{i_1} \cdots (X^{g_{s'+1}} - 1)^{i_{s'+1}},$

$$\mathscr{U} = \{ u^i x \mid i \in I \}.$$

The cardinal of \mathcal{U} is $p^{s'}(t'+1)$. Let z be a K-linear combination of elements of \mathcal{U} :

$$z = \sum_{k \in R \subset I} \lambda_k u^k x, \quad \lambda_k \in K^*,$$

and let $i, i \in R$, $i = (i_1, \ldots, i_{s'+1})$ so that for each $k, k \in R$, $k = (k_1, \ldots, k_{s'+1})$,

$$(k_1,\ldots,k_{s'})=(i_1,\ldots,i_{s'}) \Rightarrow i_{s'+1} < k_{s'+1},$$

$$(k_1,\ldots,k_{s'})\neq (i_1,\ldots,i_{s'})\Rightarrow \sum_{l=1}^{s'}i_l\leqslant \sum_{l=1}^{s'}k_l.$$

Then

$$(X^{g_1}-1)^{p-1-i_1}\cdots(X^{g_{s'}}-1)^{p-1-i_s}(X^{g_{s'+1}}-1)^{t'-i_{s'+1}}z=yx\neq 0.$$

So $z \neq 0$, if R is not empty.

 \mathcal{U} is a system of $p^{s'}(t'+1)$ linearly independent vectors of the K-vector space (x). (1) is proved.

We now suppose that $x = (X^{g_{s'+1}} - 1)^{p-1-t'}(X^{g_{s'+2}} - 1)^{p-1} \cdots (X^{g_m} - 1)^{p-1}$, where (g_1, \ldots, g_m) is a basis of G.

 B^0 is expressed from (g_1, \ldots, g_m) (Theorem 1). So, if v is in B^0 , either $vx \in \mathcal{U}$ or vx = 0. Then \mathcal{U} is a basis of (x). (2) is proved.

3. The extended Reed-Solomon codes considered as ideals of A

Notations. $n = p^m - 1$, S = [0, n].

 $\forall k, k \in S$, the weight of k is $\omega(k)$:

$$\omega(k) = \sum_{i=0}^{m-1} k_i, \quad k_i \in [0, p-1], \quad \sum_{i=0}^{m-1} k_i p^i = k.$$

 $\forall j, \ 1 \leq j \leq M, \ S_j = \{k \in S \mid \omega(k) < j\}.$

 $\forall x, x \in A, x = \sum_{g \in G} x_g X^g$, and $\forall k, k \in S, x(k) = \sum_{g \in G} x_g g^k$. x(k) is calculated in an overfield of K and G.

Property 2. $\forall j, 1 \leq j \leq M, P^j = \{x \in A \mid \forall k, k \in S_i, x(k) = 0\}.$

Proof. For the proof, cf. [3].

Henceforth K = G. The Reed-Solomon code, here denoted by C_d , of length n, with minimum distance d over G, is the cyclic code with generator

$$g_d(X) = \prod_{k=1}^{d-1} (X - \alpha^k),$$

where α is a primitive element of G.

The extended Reed-Solomon code, here denoted by \hat{C}_d , is invariant under the affine permutation group on $GF(p^m)$. (Theorem of Kasami [5].)

It is therefore an ideal of A, expressed as

$$\hat{C}_d = \{ x \in A \mid x(k) = 0 \text{ for } k = 0, 1, \dots, d - 1 \}.$$
(3)

The dimension of \hat{C}_d is dim $\hat{C}_d = n - d + 1$ [5].

Theorem 4. The extended Reed-Solomon code \hat{C}_d is a principal ideal of A iff d is in the set:

$$D = \left\{ d_i = jp^k + \sum_{i=k+1}^{m-1} (p-1)p^i \middle| \begin{array}{l} j \in [1, p-1], k \in [0, m-1] \\ l = j + (p-1)|[k+1, m-1]| \end{array} \right\}.$$

(If k = m - 1, then $d_l = jp^{m-1}$.) If $d = d_l$, $d_l \in D$, then $\hat{C}_d = (\hat{g}_d)$, where \hat{g}_d is the word g_d extended.

Proof. (1) First we suppose that $d \in D$. Then

$$\exists l, \quad l = j + (p-1)|[k+1, m-1]|, \quad d = d_l.$$

We have

$$\dim \hat{C}_d = n - d + 1 = p^m - d = p^k \left(p^{m-k} - \sum_{i=k+1}^{m-1} (p-i)p^{i-k} - j \right)$$
$$= p^k (p-j).$$

But d is such that for all $i, i \in S$ and $\omega(i) < l$, then i < d. Therefore it follows from (3) and from Property 2 that $\hat{C}_d \subset P^l$. \hat{g}_d is such that $\hat{g}_d(l) \neq 0$ by the definition of the generator g_d . Then $\hat{g}_d \not\in P^{l+1}$.

We have shown:

Property 3. If $d = d_l$, $d_l \in D$, then $\hat{g}_d \in P^l \setminus P^{l+1}$ and then $\hat{C}_d \subset P^l$, $\hat{C}_d \not\subset P^{l+1}$.

Then, appealing to Theorem 3, we have $\dim(\hat{g}_d) \ge p^s(t+1)$ where s = m - |[k+1, m-1]| - 1 = k and t = p-1-j. We have

$$(\hat{g}_d) \subset \hat{C}_d$$
 and $\dim(\hat{g}_d) \ge \dim \hat{C}_d$.

Therefore $\hat{C}_d = (\hat{g}_d)$.

(2) We suppose now that $d \not\in D$. Let l be the first index such that $d < d_l$. Since $\hat{C}_{d_l} \subset \hat{C}_d$, it follows from Property 3 that $\hat{C}_d \not\in P^{l+1}$. If l=1, $\hat{C}_d \subset P$ and $\hat{C}_d \not\subset P^2$. If l>1, $\hat{C}_d \subset \hat{C}_{d_{l-1}}$. So, it follows from Property 3 that $\hat{C}_d \subset P^{l-1}$. But $\hat{C}_{d_{l-1}} = (\hat{g}_{d_{l-1}})$. If there is one $x, x \in \hat{C}_d \cap (P^{l-1} \setminus P^l)$, then, by Property 1, $\hat{C}_{d_{l-1}} = (x)$ with $(x) \subset \hat{C}_d$. So $\hat{C}_d = \hat{C}_{d_{l-1}}$. This equation is impossible because $d > d_{l-1}$. So $\hat{C}_d \subset P^l$. In all the cases, the definition of the generator gives $\hat{g}_d \not\in P^{l+1}$. We have proved Property 4.

Property 4. Let d be such that $d \not\in D$. If l is the first index such that $d < d_1$, then $\hat{C}_d \subset P^l$, $\hat{C}_d \not\subset P^{l+1}$ and $\hat{g}_d \in P^l \setminus P^{l+1}$.

Then, if \hat{C}_d is a principal ideal of A, it follows from Property 4 and Property 1 that $\hat{C}_d = (\hat{g}_d) = (\hat{g}_{d_l})$. This equation is impossible because $d < d_l$. Theorem 4 is thus proved.

References

- [1] A. Poli, Codes stables sous le groupe des automorphismes isométriques de $A = F_p[X_1, \ldots, X_n]/(X_1^p 1, \ldots, X_n^p 1)$, C.R. Acad. Sci. Paris (1980).
- [2] S.D. Berman, Kibernetika 3(1) (1967) 31-39.
- [3] P. Charpin, Puissances du radical d'une algèbre modulaire et codes cycliques, Revue CETHEDEC (1981).
- [4] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977).
- [5] J.H. Van Lint, Coding Theory (Springer, New York, 1971).