Annals of Discrete Mathematics 17 (1983) 171-176
© North-Holland Publishing Company

THE EXTENDED REED-SOLOMON CODES
CONSIDERED AS IDEALS OF A MODULAR ALGEBRA

Pascale CHARPIN

Département de Mathématiques, U.E.R. Sciences, 123 rue Albert Thomas, 87060 Limoges,
Cedex, France

The extended Reed-Solomon codes are ideals of a modular algebra A. Some properties of
A are described which permit the lower bound for each principal ideal dimension of A to be
defined. The results are used to characterise among Reed-Solomon codes those which are A
principal ideals.

1. Definitions and previous properties

p is a prime, m and r are integers different from zero, and K and G are,
respectively, the Galois fields GF(p") and GF(p™).
A is the modular algebra KG. 1t is the polynomial space:

A={x= 2 ngg|VgEG,xg€K},
gEG

with the usual operations of polynomial multiplication and addition.
The radical of a ring is the intersection of all its principal ideals. As A has
characteristic p, an element of A is either invertible, or nilpotent, since

x € A, xp:(E ngg>p:2x'g’X"g=<z x;) X°.

gEG geCG

An ideal of A, different from A, has only nilpotent elements. Hence A has only
one maximal ideal which is also its radical:

P={x€A,x”=0}.

Pi j=1,is the j-power of the radical of A. P’ is the subspace of A generated by
the set:

{ﬁxk,xkEP}.

k=1
Let M=m(p —1). I, 0=<j <M, is the subset of N":
]j={(i1,...,im)6[0,p—1]m zlkzl}
k=1
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Theorem 1. Let {ey, ..., e.} be a basis of the F,-vector space G and let for each J,
0=<j<M, the subset of A:

Bi :{H (Xek —l)ik ,(i1,...,im)€1i} .
k=1
Then B® is a basis of the K -vector space A and B’, 1< j < M, is a basis of P'.
Proof. Let j, 0<<j <M, and let x be a linear combination of vectors of B’:
X = Z Ak‘l)k, Ak EK*, UkEBj.
kERCE;
Let i€R, i =(is...,in), S0 that

Vk,kER,kz(kl,---,km)y i
=1

N
i
>

Then
x [ (xs -1y =a [ (X« -1 #0.
k=1 k=1

This means that x is different from zero if R is not empty. The vectors of B! are
linearly independent.
B° has p™ elements, since

|B°|=1{0,p —1]"|=p"
Then B’ is a basis of A. The space generated by B' is a hyperplane of A which
is in P. Then B'is a basis of P. So is becomes, from the definition of P/, j > 1,

that each element of P’ can be written as a linear combination of elements of B’.
So B’ is a basis of P’

Remark. The index of nilpotency of P is M + 1 since PM*' ={0}.

Theorem 2. Let j E[1,M]; s and t are, respectively, the quotient and the
remainder of the division of j by p — 1. ’
Then P’ is the ideal of A generated by the subset of A.

G ={(XE— 1P (XS — 1P (X5 —1) | g1, . -, g are linearly
independent in G}.

Proof. The ideal generated by ¥’ is in P’ and not in P'*' since each element of
%’ is the product of j = s(p —1)+1¢ factors (X& —1).

Let o be an automorphism of the Fp-vector space G and let the A
automorphism be defined so that
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XEA,  x= ) xX¢ bo (X)= D x, X,

g8EG gECG

It is clear that ¢, (%9') = @'

Poli shows in [1] that if an ideal of A is invariant under the group
{9 l o € GL(F,, m)}, it is one of the powers of the radical of A. Hence, the ideal
generated by ¥/ is P/, :

Corollary 1. Let j, jE€[1, M]; I=s(p-1+t t€[0,p—1[. If x € P\ pi+t
there is a y, y € 97 such that:
Y= A(XE=1P T (X — 1P A € K

Proof. Let x € P/\P/*'. There is a z, z € PM7, such that zx#0. Since @M~

generate P™7/, then Jy, y € @M yx#0. Since yx € P we have that yx =
AXO=1P ™ (X% ~ 1P with A € K+,

The powers of the radical P of A are the Reed and Muller codes when p* =2
and the generalized Reed and Muller codes when p" >2[2] and [3]. Theorem 2
is the generalization of a well-known property of Reed and Muller codes [4, p.
385].

2. The dimensions of the principal ideals in A

If x is an element of A, the principal ideal of A generated by x is denoted (x);
dim(x) denotes the dimension of the K -vector space (x).

Property 1. Letx, x € P/\P'*, 1 <J <M. Then each y, y € (P \P"N (x) is
such that (y)=(x).

Proof. Let Y, YE(x) and y € P/\P'*', Then y=ax with a EA\P: 50 a is
invertible; that proves the property (x) = (y).

Theorem 3. Let j, 1< JSMand j'=M-j; s' and ¢ are, respectively, the
quotient and the remainder of the division of j' by P — 1. Then,

Vx, x € PP\ pi+, dim(x)= p",(t’ +1). ()]

; If x is an element of 9’ (Theorem 2), then dim(x) = p*'(t' + 1). 2)

Proof. Let x € P/\ P'*', From Corollary 1: Jy, y € 9™ yx£0. So
y = (X8~ 1Pt (X& — (X B~ 1)

where (g, ..., &+1) are linearly independent in G.
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We note by I the subset of N°*': I =[0,p —1]"x[0,¢'] and Vi, i €1, i=
(i oy dsnr)y U = (XB = 1)1 (X &0 = 1),
U ={u'x liEI}.
The cardinal of % is p*'(¢t' +1). Let z be a K-linear combination of elements of

.

z= D Au*x, MEKH*,

keERCI

and let i, i €ER, i = (iy,...,i+1) so that for each k, k ER, k = (ky, ..., kyv1),
(kl, ey kx') = (il, ey ix‘) ? is’+l < ks’+1;

(ky oo ko) # (b)) IZ i< k.

Then
(Xg, _ 1);’—1—1‘l . (ng, _ 1)p—1—ix,(ng,+L_ 1),'_‘rS,HZ — yx7£ O

So z#0, if R is not empty.

9 is a system of p*(t'+ 1) linearly independent vectors of the K-vector space
(x). (1) is proved.

We now suppose that x = (X &+ — )P (X8~ 1P+ (X — 1), where
(g1,...,8n) 1s a basis of G.

B°is expressed from (g, ..., g ) (Theorem 1). So, if v is in B°, either vx € U
or vx =0. Then % is a basis of (x). (2) is proved.

3. The extended Reed-Solomon codes considered as ideals of A

Notations. n=p" —1, § ={0,n].
Vk, k €8, the weight of k is w{k):

m—1 m—1

wk)=Y k, kel[0,p-1], D kp' =k
i=0 i=0
Vi l<sj<M, S={k€S|wk)<j}.
Vx, x EA, x = 2,ea X X5 and Yk, k €S, x(k) =2 c0X,8"
x (k) is calculated in an overfield of K and G.

Property 2. Vj, ISj<M, P/ ={x € A |Vk, k €S, x(k)=0}.

Proof. For the proof, cf. [3].
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Henceforth K = G. The Reed-Solomon code, here denoted by C,, of length
n, with minimum distance d over G, is the cyclic code with generator

800 =1 (x-a"),

where « is a primitive element of G.

The extended Reed-Solomon code, here denoted by C,, is invariant under the
affine permutation group on GF(p™). (Theorem of Kasami [5].)

It is therefore an ideal of A, expressed as

Ci={x€A|x(k)=0for k =0,1,...,d —1}. 3)
The dimension of C, is dim Cy =n —d +1 [5].

Theorem 4. The extended Reed—Solomon code Cy is a principal ideal of A iff d is
in the set:

L ROTRPE. -~ e jE[l,p—l],kE[O,m—l]}
p=a=pt+ 3 o= | SR Him Tl

(Ufk=m~—1, thend, = jp™ ) Ifd = d;, d, €D, then C, = (84), where g, is the
word g, extended.
Proof. (1) First we suppose that d € D. Then
=[A I=j+(@-D|[k+1,m-1]|, d=d.
We have

m—1
dmCi=n-d+1=p"—d = p* (p”"" - _:ZH (p—-ip* —j>

=p“(@—J)
But d is such that for all i, i €S and w (i) </, then i < d. Therefore it follows
from (3) and from Property 2 that C, C P'. g, is such that g4(1)#0 by the
definition of the generator g;. Then &, & P'"".
We have shown:

Property 3. If d = d,, d, € D, then g, € P'\P"*' and then C, C P, C, P'*.
Then, appealing to Theorem 3, we have dim(g,)=p*(t+1) where s =
m—|[k+1,m—1]|-1=k and t =p —1— . We have
(8)C ¢ and  dim(g)=dim Cu.
Therefore C; = (84).
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(2) We suppose now that d & D. Let [ be the first index such that d < d,. Since
C, C Cy, it follows from Property 3 that C,& P'*'. If I =1, C, C P and C,Z P>
Ifi>1,CcC C‘d,_l. So, it follows from Property 3 that C,C P But (A,’d,‘l =
(84,_,)- If there is one x, x € C; N (P'*\ P'), then, by Property 1, C,_, = (x) with
(x)C Ci.So C, = C,,_,. This equation is impossible because d > d,_,. So C; C P*.

In all the cases, the definition of the generator gives g, & P'"'. We have proved
Property 4.

Property 4. Let d be such that d& D. If | is the first index such that d < d,, then
C,C P, Ci P"* and g, € P'\ P,

Then, if C, is a principal ideal of A, it follows from Property 4 and Property 1
that €, = (84) = (84,)- This equation is impossible because d < d,. Theorem 4 is
thus proved.
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