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Content

1. - A cryptographic context

Differential cryptanalysis is the first statistical attack proposed
for breaking iterated block ciphers.

Numerous works which investigate the security offered by different
types of functions with respect to differential attacks.

2. - The power functions.

Their properties are related with cyclic codes with two zeroes.

3. - Other sparse functions

Permutations of the shape G(x) + λ Tr(H(x))

Joint works with C. Blondeau, A. Canteaut, G. Kyureghan and
E. Pasalic
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Differential cryptanalysis [Biham-Shamir, 1991]
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A block cipher - plaintexts M, M ′ and ciphertexts C, C′ -.

A statistical study of the differences : differential cryptanalysis

exploits the existence of (α, β) such that

F (M + α) + F (M) = β for many values of M.
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Elements for the design of functions F over F2n

The image set.

x 7→ F (x) is a permutation of F2n.

Differential uniformity.

# { x | F (x) + F (x + α) = β }
must be small for any β (for any fixed α).

Sparse functions.

F has a low implementation complexity

with properties relatively easy to describe.

Starting from applications, appear some directions of research

such as the structure of the image set, the behaviour of deriva-

tives, to find sparse functions with interesting properties
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The monomial functions

Functions F : x 7→ xd over F2n, d ∈ [1, 2n − 2].

d =

n−1∑

i=0

di2
i, di ∈ {0, 1}, wt(d) =

∑

i

di

• The algebraic degree of F2n equals wt(d).

• F2n is a permutation if and only if gcd(d, 2n − 1) = 1.

• To compute the derivatives

(x + α)d + xd = αd

((
x

α
+ 1

)d

+

(
x

α

)d
)

.

is to compute the derivative in point 1.

To study differential properties is easier ; all elements of the

differential spectrum are interesting
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The differential spectrum of F : x 7→ xd

(Joint work with Celine Blondeau and Anne Canteaut, 2010)

δ(b) = #{x ∈ F2n, (x + 1)d + xd = b}, any d.

The differential uniformity of F is

δ(F ) = max
b∈F2n

δ(b).

The differential spectrum of F (x) = xd is

S = {ω0, ω2, ..., ωδ(F )} with ωi = #{b ∈ F2n|δ(b) = i}.

It appears that very often

δ(F ) = δ(b) where b ∈ F2.

To compute δ(b), b ∈ F2, is to study the irreducible factors in
F2[x] of the polynomial

(x + 1)d + xd + b.
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The inverse function

Let

F : x 7→ x−1 over F2n.

• n odd : δ(F ) = 2 and ω0 = 2n−1, ω2 = 2n−1.

• n even : δ(F ) = δ(0) = 4 and ω0 = 2n−1 + 1,

ω2 = 2n−1 − 2, ω4 = 1.

Definition. A new design. Let F (x) = xs over F2n.

Then F is said to be quasi-APN if and only if

δ(F ) ∈ {δ(0), δ(1)} and δ(b) ≤ 2 for all b /∈ F2.

Infinite classes of such functions exist ; for instance for n = 2t

x 7→ xd with d = 2t − 1. [Blondeau-Canteaut-Charpin, 2010].
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To compute δ(0) and δ(1)

α is a primitive root of F2n, δ(b) = #Rb with

Rb = { x | (x + 1)d + xd + b = 0 }, b ∈ F2

Lemma. δ(0) = s − 1 where s = gcd(d, 2n − 1).

Lemma. Consider the trinomials over F2

P (x) = x2k
+ x + 1, k ≥ 1.

Then any irreducible factors of P (x) has degree 2s with

s = gcd(2s, k) and 2s divides 2k

⇒ x2s
+ x + 1 divides P (x) for all such s.
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Theorem. b ∈ F2. Assume that, for i > 0,

αi ∈ Rb =⇒ P (αi) 6= 0, for any k ≥ 1.

Then, Rb \ F2 is a set of αi where i describes an even number of

cyclotomic cosets modulo (2n − 1).

The hypothesis of the Theorem is satisfied in the following cases.

(i) When n is odd, for R1 \ F2 and R0.

(ii) When n = 2m and m is prime: if 3 divides d then for R1 \ F2

otherwise for Ro.

Example: n prime ⇒ δ(1) = 2 or δ(1) ≥ 2 + 2n.
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Corollary. Any F (x) = xd such that δ(F ) ≤ 6.

(i) Assume that n is odd. Then F is a permutation when

• δ(F ) ≤ 4

• δ(F ) = 6 with gcd(3, n) = 1.

(ii) Let n = 2m with m odd, and gcd(3, d) = 1. Then

• if δ(F ) = 4 then F is a permutation;

• if δ(F ) = 6 and gcd(3, n) = 1 then F is a permutation.

(iii) When gcd(3, n) = 3 and δ(F ) = 6 either 7 divides d or F is

a permutation.

Other properties are derived which, together with numerical re-

sults, lead to this question : Does it exist a large class of such

permutations F ?
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Monomial permutations with δ = 4

n number known n number known

6 4 yes 7 2 no

8 1 yes 9 2 no

10 13 6 × no 11 8 no

12 3 yes 13 2 no

14 13 yes 15 0 −−
16 1 yes 17 0 −−
18 13 yes 19 0 −−
20 3 yes 21 0 −−

Known means inverse, quadratic and Kasami exponents. Also
[Bracken-Leander, 2009] for n = 4k, k odd.

Conjecture. There is no monomial function which is differentially
4-uniform for n odd, n ≥ 15. For even n, to find a new class of
such function is an open problem.
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Other sparse functions

To find bijective∗ sparse functions with a low differential unifor-

mity: The main idea which is currently developed consists in

adding any function to an APN function.

For instance: [Pasalic et al., Wang et al., 2009].

F (x) + L(x), F is APN and L is linear.

[Leander-Rodier, 2009]. Study the corpus of functions

x−1 + G(x) where G is any non-affine function.

They proved that these functions are APN on at most a finite

number of fields. They cannot be APN if the degree of G is less

than 7.

∗ Open problem: To find an APN permutation on F2n for n even.

Only one example is known for n = 6 ; such function has a

dense polynomial expression [Dillon, Fq9, 2009].
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Let, the trace-function on F2n

Tr(x) = x + x2 + . . . + x2n−1

and consider the polynomials of the shape

F (X) = G(X) + γ Tr( H(X) ),

where G(X), H(X) ∈ F2n[X] and γ ∈ F2n.

The function defined by F (X):

F (x) =

{
G(x) if Tr(H(x)) = 0

G(x) + γ if Tr(H(x)) = 1

Problem -1 : Characterize or find such permutation polynomials.

[Charpin-Kyureghan, 2008-09] studied the general problem, i.e.,

over finite fields of any characteristic.
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Boolean mappings with a linear structure

Let c ∈ F2. An element γ ∈ F2n∗ is said to be a c-linear structure

of a Boolean mapping Tr(R(x)) if

Tr(R(x)) + Tr(R(x + γ)) = c for all x ∈ F2n.

The linear structures of any Boolean function form (by adding 0)

a linear subspace of F2n.

Or equivalently, using the Walsh transforms, it must hold
∑

x∈F2n

(−1)Tr(R(x)+λx) = 0

for all λ ∈ F2n with Tr(γλ) = c + 1.

[Yashchenko 1997, Dubuc 2001]
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Functions F (x) = G(x) + γ Tr( H(x)

Theorem. G(x) is a permutation ⇒
F (x) = G(x) + γ Tr( H(x) )

is a permutation over F2n, if and only if H(x) = R(G(x)), and

γ is a 0-linear structure of Tr( R(x) ).

If γ is a 1-linear structure of Tr( R(x) ) then F is 2 − to − 1.

Proof. F (x) is a permutation iff for any λ ∈ F2n
∗ it holds

∑

x∈F2n

(−1)Tr(λG(x)) = 0 if Tr(γλ) = 0 (1)

∑

x∈F2n

(−1)Tr(λG(x)+H(x)) = 0 if Tr(γλ) = 1. (2)

(2) means that Tr( R(x) + R(x + γ) ) = u for all x with u = 0.

If u = 1 then F (x) = y for x ∈ G−1(y + γu), u ∈ F2. ¦
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F is a permutation ⇒
for any a ∈ F2n the equation G(x) = a for at most two x.

Theorem. Let G(x) be a linear 2 − to − 1 function with kernel

{0, α} and H : F2n → F2n. Then

G(x) + γ Tr(H(x)), γ ∈ F2n

is a permutation of F2n if and only if

• γ does not belong to the image set of G

• α is a 1-linear structure for Tr(H(x)).

Related problems. To find other suitable functions G to construct

permutation of this shape. Recall that an APN function is such

that all its derivatives are 2 − to − 1 functions .
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Theorem. Let γ ∈ F2n∗, s, t any integer and

F (x) = xs + γ Tr( xt ).

Then F is a permutation over F2n if and only if

gcd(s, 2n − 1) = 1 and t ≡ 2j(2i + 1)s (mod 2n − 1)

for some 0 ≤ i, j ≤ n− 1, i 6= n/2, and either (a) or (b) holds:

(a) i = 0 and Tr(γ) = 0.

(b) i > 0 and γ ∈ F2k with Tr(γ2i+1) = 0, where k = gcd(2i, n).

Moreover, if Tr(γ) = 1 (case (a)), or Tr(γ2i+1) = 1 (case (b)),
then F is a 2 − to − 1 mapping.

The proof uses the complete characterization of the monomial
Boolean functions Tr(λxt) having a linear structure. The func-
tions x 7→ Tr(λxt) which are neither linear not quadratic have no
linear structure [Charpin-Kyureghan, 2009].
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Differential uniformity of F (x) = xs + γ Tr( xt )

δ(F ) = max
a,b∈F2n, a 6=0

#{x ∈ F2n, F (x) + F (x + a) = b}.

Lemma. Assume that δ(G) = ρ. Then for any γ 6= 0.

F (x) = G(x) + γTr(H(x)) satisfies δ(F ) ≤ 2ρ.

Theorem. Assume gcd(s, 2n − 1) = 1 and δ(xs) = ρ.

Further, let 1 ≤ i < n/2 and k = gcd(2i, n). Then:

for any γ ∈ F2k such that Tr(γ2i+1) = 0

F (x) = xs + γ Tr
(
xs(2i+1)

)

is a permutation on F2n satisfying δ(F ) ≤ 2ρ.

Problem - 2 : To study the corpus of these permutations.

Can we have δ(F ) < 2ρ for ρ small ?
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Permutations F (x) = xs + γ Tr( xt )

There is no permutation of the shape xs + γ Tr(xt) with

n even and x 7→ xs is APN.

There is no permutation of the shape xs + γ Tr(xs(2i+1)) with

n odd and gcd(i, n) = 1.

In particular, the function over F2n

x 7→ x3 + γTr(x9)∗

is not a permutation, for any n and for any γ.

∗For γ = 1, this function is APN for any n

[Bracken et al., Budaghyan et al., 2007-2009].
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A class of sparse permutations with a low differential uniformity

Proposition. Let

γ ∈ F2n, γ 6= 0, 0 ≤ i < n, i 6= n/2, k = gcd(2i, n).

F (x) = x−1 + γ Tr(x2n−1−2i−1−1)

Then F (x) is a permutation if either (i) or (ii) holds:

(i) i = 0 and Tr(γ) = 0 (a trivial case).

(ii) 0 < i and γ ∈ F2k with Tr(γ2i+1) = 0.

Moreover: δ(F ) ≤ 4 for odd n

δ(F ) ≤ 8 for even n.
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A number of Open problems

• More on the non-existence of monomials F such that

δ(F ) = 4 for n odd.

• The differential spectra of monomials.

Recent results on x 7→ x2t−1 [BCC, 2010].

• The number of codewords of weight 3 of cyclic codes

with two zeroes.

• Permutations G(x) + γ Tr(H(x)), where G is

2 − to − 1 and of degree > 1.

• Differential uniformity of G(x) + γ Tr(H(x)).

• Find APN permutations over F2n when n is even.
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